Topological BF Description of 2D Accelerated Chiral Edge Modes
Abstract
:1. Introduction
Notations and Conventions
2. The Model: Bulk and Boundary
2.1. The Action
2.2. Equations of Motion and Boundary Conditions
2.3. Ward Identities
2.4. Algebra
3. The 2D Boundary Theory
- Identification of the 2D canonical variables in terms of boundary fields;
- Derivation of the most general 2D action;
- Bulk-boundary correspondence (holographic contact).
3.1. The 2D Canonical Variables
3.2. The 2D Action
3.3. Holographic Contact
3.4. Physical Interpretation
- : LR movers with opposite velocities.It is realized ifThe equal and opposite edge velocities therefore are
- : LR movers in the same direction.It is realized ifMoreover, in this case, we can recover the particular case of a pair of Hall systems [32], with edge excitations moving in the same direction with the same velocity
- : L or R mover not moving, which characterizes the quantum anomalous Hall Insulators [16]. This happens when
4. The Role of Time-Reversal Symmetry
4.1.
4.1.1. Generic Non-Diagonal Metric
4.1.2. Diagonal Metric
4.2. Inherited T-Transformation
5. Conclusions
- Two edge excitations moving in opposite directions. This is realized in Hall systems, such as fractional quantum Hall with [32], and edge modes of quantum spin Hall systems, such as topological insulators (when ), possibly interacting [50], or nanowires [51] with additional magnetic fields acting on the velocities up to switching one off [52,53]. In higher dimensions, an effect of renormalization of chiral velocities (i.e., ) could be achieved by adding magnetic fields [54,55], or by structural deformations [56];
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Solutions of the Boundary Conditions
References
- Witten, E. Topological Quantum Field Theory. Commun. Math. Phys. 1998, 117, 353. [Google Scholar] [CrossRef]
- Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological field theory. Phys. Rept. 1991, 209, 129–340. [Google Scholar] [CrossRef]
- Schindler, F.; Cook, A.M.; Vergniory, M.G.; Wang, Z.; Parkin, S.S.; Bernevig, B.A.; Neupert, T. Higher-order topological insulators. Sci. Adv. 2018, 4, eaat0346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symanzik, K. Schrodinger Representation and Casimir Effect in Renormalizable Quantum Field Theory. Nucl. Phys. B 1981, 190, 1–44. [Google Scholar] [CrossRef]
- Blasi, A.; Maggiore, N.; Magnoli, N.; Storace, S. Maxwell-Chern–Simons Theory With Boundary. Class. Quant. Grav. 2010, 27, 165018. [Google Scholar] [CrossRef]
- Amoretti, A.; Blasi, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Duality and Dimensional Reduction of 5D BF Theory. Eur. Phys. J. C 2013, 73, 2461. [Google Scholar] [CrossRef]
- Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Holography in flat spacetime: 4D theories and electromagnetic duality on the border. J. High Energy Phys. 2014, 4, 142. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, E.; Maggiore, N. Holographic Projection of Electromagnetic Maxwell Theory. Symmetry 2020, 12, 1134. [Google Scholar] [CrossRef]
- Stone, M. Edge Waves in the Quantum Hall Effect. Ann. Phys. 1991, 207, 38–52. [Google Scholar] [CrossRef]
- Wen, X.G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 1992, 6, 1711–1762. [Google Scholar] [CrossRef] [Green Version]
- Blasi, A.; Ferraro, D.; Maggiore, N.; Magnoli, N.; Sassetti, M. Symanzik’s Method Applied to the Fractional Quantum Hall Edge States. Ann. Phys. 2008, 17, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, N. From Chern–Simons to Tomonaga–Luttinger. Int. J. Mod. Phys. A 2018, 33, 1850013. [Google Scholar]
- Moore, J.E. The birth of topological insulators. Nature 2010, 464, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Topological Insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.Z.; Moore, J.E. Three-Dimensional Topological Insulators. Ann. Rev. Condens. Matter Phys. 2011, 2, 55–78. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar]
- Cho, G.Y.; Moore, J.E. Topological BF field theory description of topological insulators. Ann. Phys. 2011, 326, 1515–1535. [Google Scholar] [CrossRef] [Green Version]
- Blasi, A.; Braggio, A.; Carrega, M.; Ferraro, D.; Maggiore, N.; Magnoli, N. Non-Abelian BF theory for 2 + 1 dimensional topological states of matter. New J. Phys. 2012, 14, 013060. [Google Scholar] [CrossRef]
- Amoretti, A.; Blasi, A.; Maggiore, N.; Magnoli, N. Three-dimensional dynamics of four-dimensional topological BF theory with boundary. New J. Phys. 2012, 14, 113014. [Google Scholar] [CrossRef] [Green Version]
- Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Introduction of a boundary in topological field theories. Phys. Rev. D 2014, 90, 125006. [Google Scholar] [CrossRef] [Green Version]
- Kaç, V. Simple graded algebras of finite growth. Izv. Akad. Nauk SSSR Ser. Mat. 1968, 32, 1323–1367, Erratum in Math. USSR-Izv. 1968, 2, 1271–1311. [Google Scholar]
- Moody, R. Lie Algebras associated with generalized Cartan matrices. Bull. Am. Math. Soc. 1967, 73, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Floreanini, R.; Jackiw, R. Selfdual Fields as Charge Density Solitons. Phys. Rev. Lett. 1987, 59, 1873. [Google Scholar] [PubMed]
- Kane, B.E.; Tsui, D.C.; Weimann, G. Evidence for edge currents in the integral quantum Hall effect. Phys. Rev. Lett. 1987, 59, 1353. [Google Scholar] [CrossRef]
- Bocquillon, E.; Freulon, V.; Berroir, J.M.; Degiovanni, P.; Plaçais, B.; Cavanna, A.; Jin, Y.; Fève, G. Separation of neutral and charge modes in one-dimensional chiral edge channels. Nat. Commun. 2013, 4, 1839. [Google Scholar] [CrossRef]
- Wen, X.G. Gapless Boundary Excitations in the Quantum Hall States and in the Chiral Spin States. Phys. Rev. B 1991, 43, 11025–11036. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.G. Electrodynamical Properties of Gapless Edge Excitations in the Fractional Quantum Hall States. Phys. Rev. Lett. 1990, 64, 2206. [Google Scholar] [CrossRef]
- Kane, C.L.; Fisher, M.P. Impurity scattering and transport of fractional quantum Hall edge states. Phys. Rev. B 1995, 51, 13449–13466. [Google Scholar] [CrossRef] [Green Version]
- Hashisaka, M.; Fujisawa, T. Tomonaga-Luttinger-liquid nature of edge excitations in integer quantum Hall edge channels. Rev. Phys. 2018, 3, 32–43. [Google Scholar] [CrossRef]
- Wen, X.G. Edge transport properties of the fractional quantum Hall states and weak-impurity scattering of a one-dimensional charge-density wave. Phys. Rev. B 1991, 44, 5708. [Google Scholar] [CrossRef]
- Bertolini, E.; Gambuti, G.; Maggiore, N. Notes from the bulk: Metric dependence of the edge states of Chern-Simons theory. Phys. Rev. D 2021, 104, 105011. [Google Scholar] [CrossRef]
- Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 1995, 44, 405–473. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Bernevig, B.; Zhang, S. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 2006, 96, 106401. [Google Scholar]
- Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.C. Quantum Anomalous Hall Effect in Hg1-yMnyTe Quantum Wells. Phys. Rev. Lett. 2008, 101, 146802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Zhang, W.; Zhang, H.J.; Zhang, S.C.; Dai, X.; Fang, Z. uantized anomalous Hall effect in magnetic topological insulators. Science 2010, 329, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Basler, M. Functional methods for arbitrary densities in curved spacetime. Fortsch. Phys. 1993, 41, 1–43. [Google Scholar]
- Blau, M. Lecture Notes on General Relativity. 2021. Available online: http://www.blau.itp.unibe.ch/newlecturesGR.pdf (accessed on 5 March 2022).
- Nakanishi, N. Covariant Quantization of the Electromagnetic Field in the Landau Gauge. Prog. Theor. Phys. 1966, 35, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Lautrup, B. Canonical Quantum Electrodynamics in Covariant Gauges. Mat.-Fys. Meddelelser Udgivet Det K. Dan. Vidensk. Selsk. 1967, 35, NORDITA-214. [Google Scholar]
- Blasi, A.; Maggiore, N. Topologically protected duality on the boundary of Maxwell-BF theory. Symmetry 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Nash, C.; Sen, S. Topology and Geometry for Physicists; Academic Press: Cambridge, MA, USA, 1988; ISBN 9780080570853. [Google Scholar]
- Warner, F.W. Foundations of Differentiable Manifolds and Lie Groups; Springer: Berlin/Heidelberg, Germany, 1983; ISBN 9780387908946. [Google Scholar]
- Mack, G. Introduction to conformal invariant quantum field theory in two and more dimensions. In Nonperturbative Quantum Field Theory; Cargèse Lectures; Hooft, G., Ed.; Plenum Press: New York, NY, USA, 1988; ISBN 978146130729-7. [Google Scholar]
- Becchi, C.; Piguet, O. On the Renormalization of Two-dimensional Chiral Models. Nucl. Phys. B 1989, 315, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. 3 + 1D Massless Weyl spinors from bosonic scalar-tensor duality. Adv. High Energy Phys. 2014, 2014, 635286. [Google Scholar] [CrossRef]
- Maggiore, N. Holographic reduction of Maxwell-Chern-Simons theory. Eur. Phys. J. Plus 2018, 133, 281. [Google Scholar]
- Maggiore, N. Conserved chiral currents on the boundary of 3D Maxwell theory. J. Phys. A 2019, 52, 115401. [Google Scholar]
- Kane, C. Lectures on Bosonization. Available online: https://www.physics.upenn.edu/~kane/pedagogical/boulderlec12.pdf (accessed on 5 March 2022).
- Wen, X.G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons; Oxford Scholarship Online: Oxford, UK, 2010; ISBN 9780199227259. [Google Scholar] [CrossRef] [Green Version]
- Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M. Time-resolved pure spin fractionalization and spin-charge separation in helical Luttinger liquid based devices. Phys. Rev. B 2015, 92, 195414. [Google Scholar] [CrossRef] [Green Version]
- Meng, T.; Loss, D. Strongly anisotropic spin response as a signature of the helical regime in Rashba nanowires. Phys. Rev. B 2013, 88, 035437. [Google Scholar] [CrossRef] [Green Version]
- Středa, P.; Šeba, P. Antisymmetric Spin Filtering in One-Dimensional Electron Systems with Uniform Spin-Orbit Coupling. Phys. Rev. Lett. 2003, 90, 256601. [Google Scholar] [CrossRef]
- Heedt, S.; Traverso Ziani, N.; Crepin, F.; Prost, W.; Trellenkamp, S.; Schubert, J.; Schapers, T. Signatures of interaction-induced helical gaps in nanowire quantum point contacts. Nat. Phys. 2017, 13, 563–567. [Google Scholar] [CrossRef]
- Soluyanovv, A.A.; Gresch, D.; Wang, Z.; Wu, Q.-S.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl Semimetals. Nature 2015, 527, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Tchoumakov, S.; Civelli, M.; Goerbig, M.O. Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals. Phys. Rev. Lett. 2016, 117, 086402. [Google Scholar] [CrossRef] [Green Version]
- Goerbig, M.O.; Fuchs, J.-N.; Montambaux, G.; Piechon, F. Tilted anisotropic Dirac cones in quinoid-type graphene and alpha-(BEDT-TTF)_2I_3. Phys. Rev. B 2008, 78, 045415. [Google Scholar] [CrossRef] [Green Version]
- Rebora, G.; Ferraro, D.; Rodriguez, R.H.; Parmentier, F.D.; Roche, P.; Sassetti, M. Electronic Wave-Packets in Integer Quantum Hall Edge Channels: Relaxation and Dissipative Effects. Entropy 2021, 23, 138. [Google Scholar] [CrossRef] [PubMed]
- Blasi, A.; Maggiore, N. Massive gravity and Fierz-Pauli theory. Eur. Phys. J. C 2017, 77, 614. [Google Scholar] [CrossRef] [Green Version]
- Blasi, A.; Maggiore, N. Massive deformations of rank-2 symmetric tensor theory (a.k.a. BRS characterization of Fierz–Pauli massive gravity). Class. Quant. Grav. 2017, 34, 015005. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertolini, E.; Fecit, F.; Maggiore, N. Topological BF Description of 2D Accelerated Chiral Edge Modes. Symmetry 2022, 14, 675. https://doi.org/10.3390/sym14040675
Bertolini E, Fecit F, Maggiore N. Topological BF Description of 2D Accelerated Chiral Edge Modes. Symmetry. 2022; 14(4):675. https://doi.org/10.3390/sym14040675
Chicago/Turabian StyleBertolini, Erica, Filippo Fecit, and Nicola Maggiore. 2022. "Topological BF Description of 2D Accelerated Chiral Edge Modes" Symmetry 14, no. 4: 675. https://doi.org/10.3390/sym14040675
APA StyleBertolini, E., Fecit, F., & Maggiore, N. (2022). Topological BF Description of 2D Accelerated Chiral Edge Modes. Symmetry, 14(4), 675. https://doi.org/10.3390/sym14040675