
����������
�������

Citation: Guo, Z.-Y.; Chen, Y.-C.; Lin,

H.-P. Oblivious Access for

Decentralized Database Systems: A

New Asymmetric Framework from

Smart Contracts . Symmetry 2022, 14,

680. https://doi.org/10.3390/

sym14040680

Academic Editor: José Carlos R.

Alcantud

Received: 19 February 2022

Accepted: 15 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Oblivious Access for Decentralized Database Systems: A New
Asymmetric Framework from Smart Contracts †

Zhong-Yi Guo 1, Yu-Chi Chen 1,* and Hsiu-Ping Lin 2

1 Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan;
s1076026@mail.yzu.edu.tw

2 imToken Labs, Singapore 038989, Singapore; nic@token.im
* Correspondence: wycchen@saturn.yzu.edu.tw; Tel.: +886-3-4638800 (ext. 2358)
† This paper is an extended version of our paper published in AsiaCCS 2020 (Zhong-Yi Guo, Yu-Chi Chen, and

Hsiu-Ping Lin, “POSTER: Oblivious Access System on Decentralized Database over Parallel Smart Contract
Model”, ACM ASIA Conference on Computer and Communications Security, 2020).

Abstract: With the rapid development of cloud servers, storing data on cloud servers has become a
popular option. However, cloud servers are centralized. Storing data on centralized cloud servers
may involve some risks. For example, the data access pattern may be revealed when accessing data on
cloud servers. Therefore, protecting a user’s patterns has become a crucial concern. Oblivious RAM
(ORAM) is a candidate solution to hide the data access pattern. However, it inherently induces some
overhead of accessing data, and many blockchain-based applications also do not consider the access
pattern leakage issues. In this paper, we address these issues above by proposing a decentralized
database system with oblivious access in a (parallel) smart contract model. The interactions of
oblivious access are asymmetric where the smart contract side is expected to put much effort into
computation. The proposed system slightly reduces the overhead of ORAM and overcomes the
issues stemming from the centralization of servers. The main techniques are to use the garbled
circuits to reduce the cost of communication and to combine with the parallel smart contract model
to (conceptually) improve the performance of smart contract execution on the blockchain.

Keywords: smart contract; blockchain; oblivious RAM; garbled circuits

1. Introduction

With the increasing popularity of the Internet of Things (IoT), the number of novel
IoT applications is increasing [1]. Contemporary IoT systems usually consist of low-
power and lightweight devices with sensors. The devices are responsible for collecting
data from the surrounding environment and may exchange data with other devices or
servers. In traditional IoT systems, the collected data are stored on centralized cloud servers.
Hence, users have to trust that the centralized cloud servers will protect their sensitive and
private data, which are normally unencrypted. In fact, centralized IoT systems might face
some challenges. Stored data are unencrypted, so they face the risk of being modified or
deleted. Furthermore, if centralized cloud servers stop working, the entire system might
get paralyzed.

Blockchain, first proposed by Nakamoto and Bitcoin [2], is a distributed timestamp
ledger of blocks that is utilized to share and store data. It may be a promising technique
to mitigate the issues faced by centralized IoT systems because of its superior properties
(decentralization, tamper-resistance, anonymity, security, and privacy). Smart contracts [3],
which refer to executable code on the blockchain, can help blockchain be thought of as
a platform for developing distributed applications. Smart contracts can be regarded as
decentralized cloud servers. Zhou et al. [4] proposed the BeeKeeper, which is a decentral-
ized database system. Although this system addresses the concerns posed by centralized
systems, it fails to protect the data access pattern. Imagine that the data are encrypted

Symmetry 2022, 14, 680. https://doi.org/10.3390/sym14040680 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040680
https://doi.org/10.3390/sym14040680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5577-0016
https://doi.org/10.3390/sym14040680
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040680?type=check_update&version=1

Symmetry 2022, 14, 680 2 of 20

by users before uploading to the smart contract. If users access identical data multiple
times, the smart contract will learn that the data are important to users. Thus, although
the data are encrypted, attackers can still infer sensitive information based on the data
access pattern. Thus, in this case, the data access pattern is the information leaked by the
program’s series of accesses to the data storage.

To address this issue, oblivious random access machine (ORAM) protocol, first intro-
duced by Goldreich and Ostrovsky [5], is a candidate method for hiding the data access
pattern. ORAM allows clients to store data on an untrusted server and to access them as if
they were stored locally. The protocol guarantees that the server learns nothing about the
client’s access pattern or data. In recent years, several ORAM frameworks (e.g., [6,7]) have
been introduced to improve efficiency. However, when these frameworks are used, users
must maintain a position map on the local side. Thus, ORAM actually induces some com-
munication and memory storage overhead related to data access. If we directly apply such
ORAM to smart contracts (without considering any technical issues with the combination),
a disadvantage is the communication overhead that induces the transaction cost on the
smart contract. In Table 1, we show the comparisons with ORAM and conceptual ORAM
on smart contract. Here we do not construct the conceptual ORAM on smart contract, so
the results in Table 1 are conjecture.

Table 1. Security and efficiency comparisons (n is the database size).

ORAM ORAM on SC Proposal

Round O(log n) O(log n) O(1)

Payload O(log n) O(log n) O(1)

Client storage O(log n) O(log n) O(1)

Security Centralized Decentralized Decentralized

1.1. Contributions

This paper aims to address the issues faced by centralized cloud servers and to protect
the data access pattern. Our main results are conceptually simple solutions that use smart
contracts to implement a decentralized database and oblivious access within this system.
The main contributions of this paper are two-fold.

• We propose a decentralized database system with oblivious access in a (parallel) smart
contract model, aiming to provide the service of decentralized cloud storage that hides
the data access pattern and overcomes the overhead associated with ORAM.

• In our construction, we combine smart contracts with ORAM and garbled circuits [8] to
ensure that this system enables more secure and confidential personal data protection.
Hence, the user of this system can access and upload their personal data as frequently
as they wish without any privacy concerns.

• The abstraction design of our construction could be easily applied to the parallel
smart contract (PSC) model that is proposed by Yu et al. [9]. It uses multi-thread
technology [10] to execute smart contracts in parallel. Using this new model to process
transactions could reduce the average time cost and improve performance.

In general, the proposed system inherits advantages from blockchain and ORAM. We
roughly summarize a few properties, Decentralization, Tamper-Resistance, and Obliviousness,
as follows. There is no centralized party controlling the system, but the data are maintained
by all participating nodes instead. Therefore, the user has higher ownership of their own
data. In addition, all transactions executed on the smart contract are completely recorded
and can be viewed and checked by any entity. The user does not need to worry about the
risk of data loss or or unintentional data modification. Finally, the user accesses the data on
the smart contract through the index. However, the index will not be learned by the smart
contract, nor will the smart contract learn which data the user accesses.

Symmetry 2022, 14, 680 3 of 20

Let us briefly highlight the techniques in our system. The smart contract not only
enables oblivious access and data storage functions but also maintains low cost. Therefore,
the user does not incur additional server maintenance overhead. In our oblivious structure,
we adopt the tree-based ORAMs [6,7,11,12] that store data in the binary tree and rely on
the position map to access the data. Notably, the position map is not held by users; instead,
it is stored on the smart contract. Furthermore, we garble some fields on the position
map and use garbled circuits to return the data. Through these techniques, the costs of
communication and memory storage are reduced. In the proposed system, it is not trivial
to combine the two existing techniques, blockchain and ORAM. The innovation of this
system is adopting garbled circuits over smart contracts to simplify the immediate level
between the decentrailzed storage and ORAM structure without losing any security. Its
practical applications can provide a decentralized database (e.g., multiple NASs) where
the outside attacker does not know which components are accessed. (Note that encryption
can provide confidentiality, but cannot hide access pattern.) For example, if a location of
storage is frequently touched, it may be very important. Let us consider the binary search
tree on the storage. We can have side information that the frequently touched location is
the root.

1.2. Organization

The remainder of this paper is organized as follows. Section 2 lists the related work.
Section 3 briefly reviews background techniques of the decentralized database system
with oblivious access in the (parallel) smart contract model. Section 4 presents the system
framework and security definition of this system. Section 5 introduces the specific structure
and security proof of the proposed system. Specific experimental implementations and
discussion are presented in Section 6. Finally, conclusions for this paper are given in
Section 7.

2. Related Work
2.1. Oblivious Random Access Machine (ORAM)

The ORAM framework, which was first introduced by Goldreich and Ostrovsky [5,13,14],
aims to hide the user’s pattern of access to server data storage. In the past few years,
numerous ORAM schemes have been proposed. Based on their data lookup technique,
we can roughly divide them into two categories. One is hierarchical [15–19], motivated by
the work of Goldreich and Ostrovsky. The other is tree-based [6,7,11,12], motivated by the
work of Shi et al. [20]. The technical details of the two kinds of ORAM are as follows, and
the structure is shown in Figure 1.

• Hierarchical ORAMs: This kind of ORAM uses hash functions for data lookup and it
requires stashes and buckets to deal with hash collisions. To the best of our knowledge,
the balanced ORAM [17] achieves high communication efficiency among hierarchi-
cal ORAMs.

• Tree-based ORAMs: This kind of ORAM uses an index for data lookup and it requires
the user-side storage to maintain the index. However, if the number of data blocks
is quite large, this may be infeasible. If the user cannot store the index on user-side
storage, it can outsource the index to the server in a manner similar to storing real
data blocks. This may increase the cost of communication. The path ORAM proposed
by Stefanov et al. [6] is a typical scheme in this category.

Symmetry 2022, 14, 680 4 of 20

Figure 1. Hierarchical ORAMs and tree-based ORAMs.

2.2. Blockchain and Smart Contract

The concept of blockchain was first proposed by Satoshi Nakamoto in the Bitcoin
White Paper [2] in 2008. Blockchain is a peer-to-peer network that consists of all participat-
ing nodes. Bitcoin is one of the applications of blockchain. In the past, many scientists have
found that blockchain is applicable not only in a decentralized payment system, but also
in other fields such as healthcare data management [21], digital rights management [21],
supply chain traceability [22], and identity management [23]. There is no centralized party
in the blockchain network, and all participating nodes possess the same transcript of a
database. A key feature of blockchain is that transactions and communications between un-
trusted participating nodes can be securely conducted without a trusted centralized party.

The consensus mechanism is a critical blockchain component, and it maintains the
entire functionality in blockchain and the consistency of the node. Ever since Bitcoin
emerged in 2008, its original consensus mechanism, i.e., Proof-of-Work (PoW) [24,25],
has been emulated and iterated due to its limited programming capability. Practical
Byzantine Fault Tolerance (PBFT) [26], Proof-of-Stake (PoS) [27], and Delegated-Proof-of-
Stake (DPoS) [28] are widely-used consensus mechanisms on various blockchain platforms.
Thus, besides Bitcoin, there are many blockchain platforms that are also based on the
property of blockchain, such as Ethereum [29,30], EOS.IO [31], and Hyperledger [32].

Etherenum, which was proposed by Vitalik Buterin in 2014, is the representative of
blockchain 2.0. It supports the development of decentralized applications in addition to
its support of the Ether cryptocurrency. Thus, Ethereum enables the execution of smart
contracts. The concept of smart contracts was first proposed by Nick Szabo in 1994 [3].
Simply put, a smart contract is a special protocol used in the development of a contract in
the blockchain. It is mainly used to provide verification and execution of the conditions set
in the smart contract. Ethereum provides an Ethereum virtual machine (EVM) to process
peer-to-peer contracts through its dedicated cryptocurrency, ETH and gas, which depend on
the complexity of the internal structure. Ethereum allows developers to run decentralized
applications on global public nodes. The process of transactions processing on Etherenum,
the so-called smart contract model, is shown in Figure 2.

Symmetry 2022, 14, 680 5 of 20

Figure 2. Smart contract model.

2.3. Applications of Blockchain

There are many blockchain-based applications on AI, 5G, IoT, etc. The survey of
Salah et al. [33] summarizes emerging blockchain applications for AI. Lu et al. [34] pro-
posed a synchronous federated learning scheme of deep reinforcement learning to address
privacy concerns of data providers in IoV. In addition, to achieve the reliability of data
sharing, it applies a two-stage verification by integrating learned models into blockchain.
Ouaddah et al. [35] proposed a new blockchain-based framework for supporting access
control in IoT. They introduced a system, so-called FairAccess, that provides decentralized
pseudonymous and privacy preserving authorization management. FairAccess allows
users to control their data for accessing. Bera et al. [36] pointed out a few challenges and is-
sues of applying blockchain in 5G-based IoT-enabled Internet of Drones (IoD) environment,
and then proposed a blockchain-based secure framework for data management. The work
of Zhang et al. [37] overcomes privacy issues in online social networks by using blockchain.
The work of [38] mainly studies the security and privacy issues in the transportation system
and vehicle IoT environment in the SDN-enabled 5G-VANET. Due to the poor scalability,
low capacity, and intermittent connectivity of IEEE 802.11p networks, the main technique
is to use 5G network communication to support the application of vehicle IoT. The 5G
technology is considered key to providing ultra-reliable and low-latency communication
in VANET. It presents a new framework to support vehicle IoT services, based on the
decentralization and immutability of the blockchain. The work of [39] presents a modified
IPFS solution that allows smart contracts to implement access control for data sharing. The
key idea is to maintain the access control list on smart contracts. All files being uploaded,
downloaded, or transferred are of interactions with the smart contract. Among these appli-
cations, distributed data management has attracted widespread attention from computer
science and academic fields. Steichen et al. [39] used blockchain to implement the authority
management in traceability systems, and Dai et al. [40]used it to do learning resource
authentication in MOOCs. The above blockchain applications involve data storage, but do
not consider the security issue, leakage of data access patterns. However, the main results
of this paper can be referred to as a solution or remedy (with obliviousness) for improving
security of those applications.

3. Preliminaries
3.1. Garbled Circuits

Garbled circuits, first introduced by Yao [8], is a cryptographic notion that can extend
to two-party secure computation. It enables two parties to evaluate a function over one’s
private input without the presence of a trusted third party. In the garbled circuit protocol,
the function must be described as a Boolean circuit. Garbled circuits consist of two phases
as follows:

• CreateGC(1λ, C)→ (C̃, w̃): This algorithm takes as input a security parameter λ and a
circuit C, then outputs a garbled circuit C̃ and w̃, which is a set of input labels for each
input wire of C.

Symmetry 2022, 14, 680 6 of 20

• EvalGC(C̃, w̃i) → y: This algorithm takes as input a garbled circuit C̃ and a garbled
input w̃i, then outputs the evaluated value y.

The formal security definition of garbled circuits is given as follows:

Definition 1. We require that for all probabilistic polynomial-time adversary A, there is a prob-
abilistic polynomial-time simulator S such that the following distributions are computationally
indistinguishable:

- RealA(λ) : A chooses a circuit C. The experiment runs CreateGC(1λ, C)→ (C̃, w̃) and
sends C̃ to A. A outputs an input i and the experiment outputs (C̃, w̃i).

- IdealA,S (λ) : A chooses a circuit C. The experiment runs S(1λ)→ (C̃, σ) and sends C̃
toA. A outputs an input i and the experiment runs S(1λ, σ)→ w̃i and outputs (C̃, w̃i).

3.2. ORAM

As noted above, ORAM aims to hide the user’s patterns of access to the server data
storage. We inherit the original security of ORAMs. Intuitively, an ORAM scheme is said to
be secure if the server learns nothing about the user’s data access pattern. More precisely,
we give the formal security definition of ORAM as follows:

Definition 2. Let ~x = 〈(op1, id1, B1), · · · , (opn, idn, Bn)〉 denote a private sequence of the user’s
intended data requests, where each op is either a read or a write operation, id is a data’s ID, and B is
a data block.

Let A(~x) = 〈(op′1, loc1, B′1), · · · , (op′n, locn, B′n)〉) denote the sequence of the user’s access
to the remote storage (observed by the adversary), where loc is a location to which data belong, in
order to accomplish the user’s intended data requests. An ORAM scheme is said to be secure if for
any two equal-length private sequences ~x and ~y of the intended data requests, their corresponding
observable access sequences A(~x) and A(~y) are computationally indistinguishable.

4. System Framework
4.1. Model

In order to mitigate the concerns engendered by centralized cloud servers and protect
data access patterns, we propose a decentralized database system with oblivious access
in a (parallel) smart contract model. The framework of this system is shown in Figure 3.
There are two crucial entities: a user and a smart contract. The smart contract integrates
many functions.

Figure 3. Model framework of the decentralized database system with oblivious access.

The user who is a leader of this system can upload his personal data to this system and
access them through the function that is provided by the smart contract. In order to avoid
the leakage of the access pattern when the user accesses his personal data, the user has to

Symmetry 2022, 14, 680 7 of 20

perform some preprocessing on his personal data before uploading them to this system.
The smart contract aims to provide a decentralized cloud storage to store databases and
secure functions to access the databases. Hence, it has to store the user’s personal data in an
oblivious structure, and then it executes some transactions for secure access in this system.
The property of blockchain ensures the transparency and anonymity of all operations on
the smart contract while also satisfying the main needs of the user. The user may securely
and efficiently complete data access through the smart contract. Note that according to the
model setting, there are only two entities (user and SC), and thus the following theoretical
model does not consider the key management issue. However, for practical applications,
we can apply smart contracts to handle the key management (refer to [41] with domain
name service). If the key management is involved in the system, we must rely on the
Ethereum name service (ENS) instead. According to the online introduction, ENS is built
on smart contracts. It consists of two principle components, the registry and resolvers, to
provide human-readable names for accessing smart contracts. ENS also ensures the target
smart contracts are being correctly accessed.

In a nutshell, the smart contract in this system has the following characteristics:

1. It allow users to upload their personal data to the smart contract.
2. It allow users to access their data without revealing data access patterns.

More specifically, the system consists of the following phases: (KeyGeneration,
Initialization, IDHiding, DataAccess, DataRecovery, and DataUpload) and the syntax of them
is formally described as follows:

• KeyGeneration(1δ, 1σ, idU): This algorithm takes as input two security parameters (δ, σ)
and the user’s ID idU , then outputs a secret key k, the user’s private key skU , and the
user’s public key pkU .

• Initialization(1λ, 1γ, k, skU , pkU , T, {(idn, bn)}): This algorithm takes as input two secu-
rity parameters (λ, γ), the secret key k, the user’s private key skU , the user’s public
key pkU , a transaction T, and a set of the user’s personal data and corresponding
IDs {(idn, bn)}, then outputs an index I, an oblivious database ODB that consists of a
set of encrypted data {Bn}, a signature of the transaction σ, and a verification of the
transaction v.

• IDHiding(1λ, tid): This algorithm takes as input the security parameter 1λ and the
target data’s ID tid, then outputs a hidden ID OID.

• DataAccess(skU , pkU , T, OID, I, ODB): This algorithms takes as input the user’s private
key skU and the user’s public key pkU , the target data’s ID tid, the oblivious index I, a
transaction T, and the oblivious database ODB, then outputs a set of the encrypted
data {Bi}, a signature of the transaction σ, and a verification of the transaction v.

• DataRecovery(k, {Bi}, tid): This algorithm takes as input the secret key k and a set of
the encrypted data {Bi}, then outputs a set of plaintext data and corresponding IDs
{(idi, bi)}.

• DataUpload(skU , pkU , k, {(idi, bi)}, T, p∗): This algorithm takes as input the user’s pri-
vate key skU , the user’s public key pkU , the secret key k, a set of plaintext data and
corresponding IDs {(idi, bi)}, a transaction T, and a random number p∗, then outputs
the re-encrypted data

{
B∗i
}

, an updated oblivious index I∗, an updated oblivious
database ODB∗, a signature of the transaction σ, and a verification of the transaction v.

4.2. Security Definition

We now define the security of a decentralized database system with oblivious access
(DDOA) in the presence of semi-honest adversaries. There are two entities in this system:
user and smart contract. We assume that the smart contract is an honest party and will
not be corrupted by any adversary A. In addition, A follows the rules of not obtaining the
source code of the smart contract.

To define the security of this system, we design the following game between a chal-
lenger C and a probabilistic polynomial-time adversary A, as shown in Figure 4. First, A
chooses and sends two IDs of data, id0 and id1, to C for a challenge, and then C selects

Symmetry 2022, 14, 680 8 of 20

b ∈ {0, 1} and sends the corresponding sequence of data blocks {B} back to A. Finally, A
outputs b′ ∈ {0, 1}. In the case of b′ = b, A wins this game and outputs 1; otherwise, it
outputs 0.

The security of the decentralized database system with oblivious access is formally
defined as follows:

Definition 3. The decentralized database system with oblivious access is secure if for any prob-
abilistic polynomial-time adversary A such that the following distributions are computationally
indistinguishable:

ViewA(DDOA(id0)) ≈ ViewA(DDOA(id1))

Figure 4. Game-based security of the decentralized database system with oblivious access.

5. The Proposed System
5.1. Building Blocks
5.1.1. Data Block Format

Similar to existing ORAMs, we handle data with blocks as units. A data block can be
accessed with read or write operations offered by the user. A plaintext data block consists
of the ID of the data block and the content of the data block. Before being uploaded to the
service side, the plaintext data block is encrypted with the secret key k by a symmetric
encryption. Thus, the encrypted data block is denoted as Bn = (idn, bn), where idn and bn
are the encrypted ID and the content of the data block, respectively.

5.1.2. Service-Side Storage

We follow the tree-based ORAMs structure and take it as our oblivious structure. The
service-side storage is organized into a binary tree of height H = dlog2 Ne+ 1, where N is
the number of leaf nodes. Each node in the binary tree is a data bucket that stores up to
O(log N) data blocks, and each bucket may have a dummy block. However, each real data
block exists in only one bucket.

In order to access the data from the service side, the user must create a table that is
related to the data position. We call this table position map pos. It consists of two fields: ID
of the data block and path of the data block. The variables stored in the two fields are plaintext,
and the user accesses the data through the ID of the data block. Assume the user accesses
the data whose ID is I5, and the system will find the corresponding path 5. The path means
that the target data are stored on the path from the leaf node bucket l to the root bucket.
After that, the user will get a sequence of data blocks along 5. The illustration of data access
is shown in Figure 5.

For the purpose of information security, the user needs to perform garbling on the
position map. The user generates garbled labels based on IDs of data blocks using a security
parameter λ. The ID field will be replaced by garbled labels, i.e., I1, ..., In are replaced by
W1, ..., Wn. Consequently, the service side cannot identify the ID of the data block the user
accessed. After creating and garbling the position map, the user has to upload it to the
service side as an initialization.

Symmetry 2022, 14, 680 9 of 20

Figure 5. Accessing data from the service-side storage.

5.1.3. User-Side Storage

The user-side storage is organized into two parts: temporary storage and permanent stor-
age. Temporary storage is used to buffer and process the data blocks that are downloaded
from the service side. Permanent storage stores the user’s private information, including
(1) a secret key k for data encryption and decryption, (2) a pair of the user’s private key skU
and public key pkU for signing and verifying, respectively, (3) a security parameter λ for
generating garbling labels, and (4) a set of the data’s ID {Bn} for accessing data.

5.1.4. Algorithms on Service Side

Here, the smart contract is the service side. The user has the following list of trans-
actions (Tinitialize, Teval , Tread, Twrite, Treplace and Tupdate) that are used to communicate and
interact with the SC. The specific functions are formally described as follows:

• Tinitialize({Bn}, p̃os, C̃eval , C̃replace): This algorithms takes as input a set of ciphertext
data blocks {Bn}, the garbled position map p̃os, a garbled circuit C̃eval for evaluation,
and a garbled circuit C̃replace for replacing labels, then outputs a transaction TI and an
oblivious database ODB.

• Teval(w̃id, p̃os, C̃eval): This algorithm takes as input a garbled label of the target data’s
ID w̃id, the garbled position map p̃os, and a garbled circuit C̃eval for evaluation, then
outputs a transaction TE and locid, which is the location of the target data’s ID on the
position map.

• Tread(locid): This algorithm takes as input the location of the target data’s ID on the
position map locid, then outputs a transaction TR and a set of the ciphertext data blocks
{Bi} based on the path on the position map.

• Twrite(
{

B∗i
}

, p): This algorithm takes as input re-encrypted data blocks
{

B∗i
}

and a
random path p, then outputs a transaction TW and an updated oblivious database ODB∗.

• Treplace(p̃os, C̃replace): This algorithm takes as input the garbled position map p̃os and
a garbled circuit C̃replace for replacing the label, then outputs a transaction TRP and
p̃os∗ as the garbled position map to the next round.

• Tupdate(C̃∗eval , C̃∗replace): This algorithm takes as input a garbled circuit C̃∗eval for updating

the old one and a garbled circuit C̃∗replace for updating the old one, then outputs a
transaction TU .

5.1.5. Algorithms on User Side

The user has two kinds of circuits. One is the evaluation circuit Ceval , which is shown
in Algorithm 1 for evaluating the location of the target data’s ID. The other is the replacing

Symmetry 2022, 14, 680 10 of 20

circuit Creplace, which is shown in Algorithm 2 for replacing the label on the position map.
The specific functions are formally described as follows:

• KeyGen(1δ): This algorithm takes as input a security parameter 1δ, then outputs a
secret key k.

• DataRec(k, {Bn}, tid): This algorithm takes as input a secret key k, a set of ciphertext
data blocks {Bn}, and the target data’s ID tid, then outputs a set of the user’s personal
data and the corresponding IDs {(idn, bn)}.

• DataEnc(k, {(idn, bn)}): This algorithm takes as input a secret key k, a set of plaintext
data blocks and corresponding IDs {(idn, bn)}, then outputs a set of ciphertext data
blocks {Bn}.

• CreateGC(1λ, C): This algorithm takes as input a security parameter λ and a circuit C,
then outputs a garbled circuit C̃ and w̃, which is a set of input labels for each input
wire of C.

• IDGarble(tid, w̃): This algorithm takes as input the target data’s ID tid and a set of
labels w̃, then outputs a garbled ID w̃id.

• PosRefresh(1γ, n) : This algorithm takes as input a security parameter γ and the
number n of path, then outputs a set of random paths {pn} where 1 ≤ {pn} ≤ N and
N is the number of the leaf nodes.

• PosCreate({idn}, {pn}) : This algorithm takes as input the IDs of the user’s data {idn}
and a set of random paths {pn}, then outputs a position map pos.

• PosGarble(pos, w̃): This algorithm takes as input the position map pos and a set of
labels w̃, then outputs the garbled position map p̃os.

Algorithm 1: Evaluation circuit
Input: p̃os[] = {w̃i}, w̃id
Output: locid
for i = 0; i ≤ size(p̃os[]); do

if w̃id = w̃i then
return locid;

Algorithm 2: Replacing circuit

Input: p̃os[] = {w̃i}, w̃∗eval = {(w̃
∗
i)0, (w̃∗i)1}, x0

i , x1
i

Output: p̃os∗[] = {w̃∗i }
for i = 0; i ≤ size(p̃os[]); do

if w̃i = x0
i then

p̃os∗[i].id = (w̃∗i)0;

if w̃i = x1
i then

p̃os∗[i].id = (w̃∗i)1;

return p̃os∗[];

5.2. Full Construction

Combining the techniques above, we propose a decentralized database system with
oblivious access in a (parallel) smart contract model. The system consists of the following
functions: KeyGeneration refers to generation of keys that are used to encrypt the data,
verify the transaction, and sign on the transaction; Initialization refers to initialization of
the entire system; IDHiding refers to hiding of the target data’s ID; DataAccess refers to
accessing of the user’s data; DataRecovery refers to recovery of the user’s data; DataUpload
refers to uploading of the user’s data. The construction of this system is shown in Figure 6.
The details of the proposed system are elaborated as follows:

• KeyGeneration:

Symmetry 2022, 14, 680 11 of 20

1. The user invokes KeyGen with the security parameter 1δ to generate the secret
key k for encryption and decryption of the data blocks.

KeyGen(1δ)→ k

• Initialization:

1. The user invokes DataEnc with the secret key k to encrypt the user’s data and the
corresponding IDs {(idn, bn)} and generates the ciphertext data blocks {Bn}.
Following this, the ciphertext data blocks {Bn} are ready to upload to the
smart contract.

DataEnc(k, {(idn, bn)})→ {Bn}

2. After generating the ciphertext data blocks, the user has to build the position
map. First, the user invokes PosRefresh with the security parameter 1γ to generate
a set of the random paths {pn} based on the number of the ciphertext data
blocks {Bn}.

PosRefresh(1γ, n)→ {pn}

Second, the user invokes PosCreate with the data’s ID and a set of random paths
{pn} to create the position map pos.

PosCreate({idn}, {pn})→ pos

3. In order to use the scheme of garbled circuits on the smart contract, the user
has to perform some preprocessing locally. The user invokes CreateGC with the
security parameter 1λ and the evaluation circuit Ceval to generate the garbled
circuit C̃eval for evaluation and the corresponding garbled labels w̃eval . The design
of the evaluation circuit is shown in Figure 7.

CreateGC(1λ, Ceval)→ (C̃eval , w̃eval)

4. After generating the garbled labels w̃eval , the user invokes PosGarble to garbled
the position map pos. The ID field of pos will be replaced by w̃eval and the
position map pos will become the garbled position map p̃os. Thus, the data’s ID
will not be learned by the smart contract.

PosGarble(pos, w̃eval)→ p̃os

5. As the garbled circuit can only be used once, the user has to update the labels
on the garbled position map p̃os. The user invokes CreateGC with the security
parameter 1λ and the replacing circuit Creplace to generate the garbled circuit
C̃replace for replacing labels and the corresponding garbled labels w̃replace. The
design of the replacing circuit is shown in Figure 8.

CreateGC(1λ, Creplace)→ (C̃replace, w̃replace)

6. The user builds the oblivious structure on the smart contract and stores the
ciphertext data blocks {Bn} in it based on the position map pos. The user de-
ploys the smart contract to the Ethereum blockchain by sending the transaction
Tinitialize, which contains the ciphertext data blocks {Bn}, the garbled position

Symmetry 2022, 14, 680 12 of 20

map p̃os, and the garbled circuits C̃eval and C̃replace. Next, it will generate the
corresponding transaction TI and the oblivious database ODB.

Tinitialize({Bn}, p̃os, C̃eval , C̃replace)→ (TI , ODB)

• IDHiding:

1. After the oblivious database ODB is built on the smart contract, the user is ready
to access the data. Before that, the user must invoke IDGarble with w̃eval to garble
the target data’s ID tid into w̃id. Therefore, the target data’s ID tid will not be
learned by the smart contract.

IDGarble(tid, w̃eval)→ w̃id

• DataAccess:

1. As the garbled position map p̃os and garbled circuit C̃eval have been uploaded to
the smart contract, the user invokes Teval with the target data’s garbled ID w̃id to
generate the corresponding transaction TE and the target data’s location locid on
the garbled position map p̃os.

Teval(w̃id, p̃os, C̃eval)→ (TE, locid)

2. The user invokes Tread with locid to generate the corresponding transaction TR
and gets a set of ciphertext data blocks {Bi} that contains the target data.

Tread(locid)→ (TR, {Bi})

3. After the garbled position map p̃os is used by the evaluation circuit, the user has
to replace the labels by invoking Treplace with C̃replace. Next, it will generate the
corresponding transaction TRP and the updated garbled position map p̃os∗.

Treplace(p̃os, C̃replace)→ (TRP, p̃os∗)

• DataRecovery:

1. After getting a set of ciphertext data blocks {Bi}, the user invokes DataRec with
the secret key k and target data’s ID tid to recover the data blocks and gets a set
of the user’s personal data and corresponding IDs {(idn, bn)}. Next, the user
obtains target data based on the target data’s ID tid.

DataRec(k, {Bi}, tid)→ {(idi, bi)}

• DataUpload:

1. After getting the target data, the user invokes DataEnc with the secret key k to
re-encrypt a set of plaintext data blocks and corresponding IDs {(idi, bi)}. Next,
it will generate a set of re-encrypted data blocks

{
B∗i
}

, which is ready to be
uploaded to the smart contract.

DataEnc(k, {(idi, bi)})→ {B∗i }

2. In order to hide the data access pattern, the user has to refresh the path on the
position map. Therefore, the user invokes PosRefresh to generate the random
path p∗, which is ready to be uploaded to the smart contract.

PosRefresh(1γ, 1)→ p∗

Symmetry 2022, 14, 680 13 of 20

3. After re-encrypting the data and generating the random path, the user invokes
Twrite to upload a set of re-encrypted data blocks

{
B∗i
}

and the random path
p∗. The target data block will be put in the child node of the previous path and
the updated path. Other data blocks will be put back to the original node. It
will then generate the corresponding transaction TW and the updated oblivious
database ODB∗.

Twrite({B∗i }, p∗)→ (TW , ODB∗)

4. Because the garbled circuit C̃eval on the smart contract has been used by the user,
the user has to re-generate the garbled circuit for the next round. Thus, the user
invokes CreateGC with the security parameter 1λ and the evaluation circuit Ceval
to generate the next round garbled circuit C̃∗eval and the corresponding garbled
labels w̃∗eval .

CreateGC(1λ, Ceval)→ (C̃∗eval , w̃∗eval)

5. As noted above, because the garbled circuit C̃replace on the smart contract has
been used by the user, the user has to re-generate the garbled circuit for the
next round. Thus, the user invokes CreateGC with the security parameter 1λ

and the circuit Creplace to generate the next round garbled circuit C̃∗replace and the
corresponding garbled labels w̃∗replace.

CreateGC(1λ, Creplace)→ (C̃∗replace, w̃∗replace)

6. After re-generating the garbled circuits for the next round, the user invokes
Tupdate to upload garbled circuits C̃∗eval and C̃∗replace. Next, it will generate the
corresponding transaction TU .

Tupdate(C̃∗eval , C̃∗replace)→ TU

Figure 6. Construction of the decentralized database system with oblivious access.

Symmetry 2022, 14, 680 14 of 20

Figure 7. The design of the evaluation circuit with tree height H = 3.

Figure 8. The design of the replacing circuit with tree height H = 3.

5.3. Security Proof

In this section, we will show the security proof of the decentralized database system
with oblivious access (DDOA) based on the formal security definition proposed in the
previous section. In Definition 3, we convert the view to the following distributions:

ViewA(DDOA(id0)) ≡ 〈w̃id, p̃os, C̃eval , C̃replace, locid, {Bi}〉

ViewA(DDOA(id1)) ≡ 〈w̃id′ , p̃os, C̃eval , C̃replace, locid′ , {B′i}〉

Therefore, our goal is to prove the following distributions are computationally indis-
tinguishable for any probabilistic polynomial-time adversary A:

〈w̃id, p̃os, C̃eval , C̃replace, locid, {Bi}〉 ≈ 〈w̃id′ , p̃os, C̃eval , C̃replace, locid′ , {B′i}〉

Subsequently, we propose the following lemmas to prove the security of the system:

Lemma 1. The DDOA system is secure if for any probabilistic polynomial-time adversary A such
that the following distributions are computationally indistinguishable:

〈w̃id, p̃os, C̃eval , C̃replace, locid, {Bi}〉 ≈ 〈w̃Sid, p̃osS , C̃Seval , C̃Sreplace, locid, {Bi}〉

Proof. Based on the security of garbled circuit we defined earlier, we know that for any
adversary A, there is a probabilistic polynomial-time simulator S such that the following
distributions are computationally indistinguishable:

Symmetry 2022, 14, 680 15 of 20

- RealA(λ) : In the phase of Initialization, A chooses circuit Ceval and Creplace to generate
the garbled circuit. The experiment runs the following algorithms and sends C̃eval and
C̃replace to A.

CreateGC(1λ, Ceval)→ (C̃eval , w̃eval) CreateGC(1λ, Creplace)→ (C̃replace, w̃replace)

In order to hide the data’s ID on the position map, A outputs pos as input. The
experiment then runs the following algorithm to generate p̃os.

PosGarble(pos, w̃eval)→ p̃os

In the phase of IDHiding, in order to hide the target data’s ID, A outputs tid as input.
The experiment then runs the following algorithm to generate w̃id.

IDGarble(tid, w̃eval)→ w̃id

In the phase of DataAccess, the experiments runs the following algorithms to get the
target data from the smart contract.

Teval(w̃id, p̃os, C̃eval)→ (TE, locid)
Tread(locid)→ (TR, {Bi})

Treplace(p̃os, C̃replace)→ (TRP, p̃os∗)

- IdealA,S (λ) : In the phase of Initialization,A chooses circuit Ceval and Creplace to generate
the garbled circuit. The experiment runs the following algorithms and sends C̃eval and
C̃replace to A.

S(1λ)→ (C̃Seval , w̃Seval)

S(1λ)→ (C̃Sreplace, w̃Sreplace)

In order to hide the data’s ID on the position map, A outputs pos as input. The
experiment then runs the following algorithm to generate p̃os.

PosGarble(pos, w̃Seval)→ p̃osS

In the phase of IDHiding, in order to hide the target data’s ID, A outputs tid as input.
The experiment the runs the following algorithm to generate w̃id.

IDGarble(tid, w̃Seval)→ w̃Sid

In the phase of DataAccess, the experiments runs the following algorithms to get the
target data from the smart contract.

Teval(w̃Sid, p̃osS , C̃Seval)→ (TE, locid)
Tread(locid)→ (TR, {Bi})

Treplace(p̃os, C̃Sreplace)→ (TRP, p̃os∗)

Hence, according to the security of garbled circuit, the above distributions are compu-
tationally indistinguishable for any probabilistic polynomial-time adversary A. Finally, the
proof of this lemma is done.

Lemma 2. The DDOA system is secure if for any probabilistic polynomial-time adversary A such
that the following distributions are computationally indistinguishable:

〈w̃Sid, p̃osS , C̃Seval , C̃Sreplace, locid, {Bi}〉 ≈ 〈w̃Sid′ , p̃osS , C̃Seval , C̃Sreplace, locid′ , {B′i}〉

Proof. Based on the security of ORAM we defined earlier, we know that for any two equal-
length private sequences of the intended data requests, their corresponding observable
access sequences are computationally indistinguishable. Therefore, accessing data with
id and id′, respectively, their corresponding observable access sequences {Bi}, {B′i} are
computationally indistinguishable. Finally, the proof of this lemma is done.

Symmetry 2022, 14, 680 16 of 20

Lemma 3. The DDOA system is secure if for any probabilistic polynomial-time adversary A such
that the following distributions are computationally indistinguishable:

〈w̃Sid′ , p̃osS , C̃Seval , C̃Sreplace, locid′ , {B′i}〉 ≈ 〈w̃id′ , p̃os, C̃eval , C̃replace, locid′ , {B′i}〉

Proof. The proof process is identical to Lemma 1. By the security of garbled circuit, the
above distributions are computationally indistinguishable for any probabilistic polynomial-
time adversary A. Finally, the proof of this lemma is done.

Consequently, the following distributions are computationally indistinguishable for
any probabilistic polynomial-time adversary A:

〈w̃id, p̃os, C̃eval , C̃replace, locid, {Bi}〉 ≈ 〈w̃id′ , p̃os, C̃eval , C̃replace, locid′ , {B′i}〉

In conclusion, the DDOA system is secure if the garbled circuit and ORAM are secure.

6. Implementations and Discussion
6.1. Garbled Circuit Implementations

In this section, we will demonstrate the design of garbled circuits. We have two kinds
of garbled circuits in this paper. One is evaluation circuit C̃eval for evaluating the location
of the target data’s ID; the other is replacing circuit C̃replace for replacing the label on the
position map. The evaluation circuit C̃eval with tree height H = 3 is shown in Figure 7.
Moreover, the input of the evaluation circuit is the target data’s garbled ID w̃id and garbled
position map p̃os, and the output of the evaluation circuit is the location locid to which
ID belongs. The replacing circuit C̃replace with tree height H = 3 is shown in Figure 8.
Furthermore, the input of the evaluation circuit is p̃os,x0

n and x1
n, and the output of the

evaluation circuit is the next round of garbled position map p̃os∗. Significantly, we put the
next round of garbled labels in the replacing circuit. Therefore, the user may update the
labels on the service side without retrieving the position map back. The components of
the garbled circuit are relevant to different types of transactions, and thus we show some
experiments in the next subsection.

6.2. Smart Contract Implementation and Experiments

In this section, we will demonstrate the performance analysis of the smart contract.
There are many blockchain networks that can support smart contracts, such as Ethereum,
EOS, Hyperledger, RSK RBTC, etc. The smart contract on RSK RBTC and Ethereum are
mainly programmed with solidity language, that on EOS is with C++ language, and
that on Hyperledger is with Go language. Although they are programmed by different
program languages, the logic of the smart contracts remains the same. As long as the
program syntax is converted, the smart contract can be deployed on different blockchain
networks intuitively. In this implementation, we deploy the smart contract on the Ethereum
blockchain. Ganache is chosen to simulate the blockchain environment and JavaScript is
chosen to implement experiments, with Intel i5 8500 3.0GHz and 8GB of memory running
on Windows 10.

As we noted above, every transaction sent in Ethereum requires its dedicated cryp-
tocurrency: ETH and gas. Therefore, when executing any operation on the Ethereum
blockchain, we must pay a transaction fee that depends on the complexity of the in-
ternal structure. The transaction fee is calculated by gas and is paid by ETH. In June
2020, 1 ETH ≈ 235.92 USD, and 1 gas ≈ 1 wei (0.000000001 ETH). The costs of exe-
cuting transactions in this system with tree height H = 3 are shown in Table 2. As
can be seen from Table 2, Tinitialize, which is the deployment of the smart contract, is
the most expensive, but this is a one-off that differs from other transactions. The trans-
actions Tread and Twrite are related to the downloading and uploading of data blocks,
respectively. Moreover, Teval and Treplace are related to the decryption of garbled cir-
cuits, and Tupdate is related to the update of garbled circuits. However, our smart con-
tract codes follow some secure programming tutorials carefully. (We refer to the works

Symmetry 2022, 14, 680 17 of 20

of [42,43] and the following on-line resources to develop the secure codes of smart con-
tracts: https://consensys.github.io/smart-contract-best-practices/, https://ethernaut.
openzeppelin.com/, https://docs.soliditylang.org/en/develop/security-considerations.
html, https://ethereum.org/en/developers/docs/smart-contracts/security/, accessed on
7 March 2022.)

Table 2. Costs of transactions in this system with tree height H = 3.

Transaction Gas Used Transaction Fees (ETH) Execution Time (ms)

Tinitialize 4,607,129 0.0741 125

Teval 483,250 0.0077 329

Treplace 483,250 0.0077 79

Tread 295,445 0.0047 69

Twrite 295,445 0.0047 70

Tupdate 2,877,953 0.0463 518

6.3. Discussion of the Proposed System

In this section, we will give some analysis and discussion of the oblivious access system.
According to the experiments, our observation includes a few results. The consumption
of gas is mainly proportional to the number of logic gates in circuits. In addition, the
transactions sent first will consume more gas, which is more than three times that of
other sequences, as shown in Figure 9. In practice, the tutorial from the Ethereum Yellow
Paper [30] has indicated such implementation scenarios. If the storage value of the smart
contract is written for the first time (the value changes from zero to non-zero), it will charge
20,000 gas; if the storage value of the smart contract is modified (the value changes from
non-zero to non-zero), it will charge 5000 gas. Finally, we implemented the garbled circuit
in the smart contract, so the limitation is one-time use only. Hence, the user must update the
garbled circuit by Tupdate after access. This transaction requires the highest gas, except for
initialization. With the price of Ethereum mainnet, the cost of using the proposed system
may not be practical. However, we suggest that the system can be abstracted and converted
to the other smart contract-enabled blockchains with lower prices and also can be applied
in private blockchain to avoid the cost concern.

Figure 9. The relationship between execution sequences and gas used.

https://consensys.github.io/smart-contract-best-practices/
https://ethernaut.openzeppelin.com/
https://ethernaut.openzeppelin.com/
https://docs.soliditylang.org/en/develop/security-considerations.html
https://docs.soliditylang.org/en/develop/security-considerations.html
https://ethereum.org/en/developers/docs/smart-contracts/security/

Symmetry 2022, 14, 680 18 of 20

6.4. Extension on Parallel Smart Contract Model (If Possible)

The parallel smart contract model has a better performance in transaction processing.
It uses multi-thread technology to implement the proposed model where transactions are
executed in parallel. The differences between the original smart contract model and the
parallel smart contract model are shown in Figure 10. This model consists of two phases
as follows.

Figure 10. Original smart contract model vs. parallel smart contract model.

• TransSplit(T1, . . . , Tn): This algorithm groups the transactions and leaves no shared
variables for each transaction group. It takes as input the transactions T1, . . . , Tn, then
outputs the transaction sets TSet1 , . . . , TSetp .

• MultiProcess(TSet1 , . . . , TSetp): This algorithm takes as input the transaction sets TSet1 ,
. . . , TSetp , then outputs the threads th1, . . . , thp to execute the transaction sets in parallel.

This model invokes TransSplit to generate the transaction sets TSet1 , . . . , TSetp and
generates the threads th1, . . . , thp to execute TSet1 , . . . , TSetp in parallel by MultiProcess. If
each transaction on the blockchain is compiled with the PSC model, it will improve the
performance of processing transactions and reduce the average time cost. The decentralized
database system with oblivious access in the parallel smart contract model is shown in
Figure 11.

Figure 11. Model framework of the decentralized database system with oblivious access.

7. Conclusions

In this paper, we propose an oblivious access system on a decentralized database over
a (parallel) smart contract model to address the problems on centralized cloud servers.
This system combines smart contracts with garbled circuits and ORAM to provide a
decentralized cloud storage service. More importantly, its security by the formal proof can
hide the data access pattern. Finally, we deploy the proposed system on the blockchain,

Symmetry 2022, 14, 680 19 of 20

and it avoids the leakage of data access patterns. We expect the system can be applied
with the parallel smart contract model in the future, which can significantly improve the
efficiency. Also, it might be able to keep privacy about query over blockchain; for example,
a document is frequently accessed, and then the attacker considers that it is very crucial.
In our future work, our next goal is to break the one-time restriction and minimize the
gas used.

Author Contributions: Conceptualization, Z.-Y.G., Y.-C.C. and H.-P.L.; Formal analysis, Z.-Y.G.
and H.-P.L.; Investigation, H.-P.L.; Methodology, Z.-Y.G. and Y.-C.C.; Software, Z.-Y.G. and H.-P.L.;
Validation, Y.-C.C.; Writing—original draft, Z.-Y.G.; Writing—review & editing, Y.-C.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology of Taiwan, grant numbers
109-2628-E-155-001-MY3 and 110-2218-E-004-001-MBK.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their comments
that helped to improve the presentation of the paper, and acknowledge Wordvice for editing this
manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dorri, A.; Kanhere, S.S.; Jurdak, R. Towards an optimized blockchain for IoT. In Proceedings of the 2017 IEEE/ACM Second

International Conference on Internet-of-Things Design and Implementation (IoTDI), Pittsburgh, PA, USA, 18–21 April 2017;
pp. 173–178.

2. Nakamoto, S.; Bitcoin, A. A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf
(accessed on 17 March 2022).

3. Szabo, N. Formalizing and securing relationships on public networks. First Monday 1997, 2. [CrossRef]
4. Zhou, L.; Wang, L.; Sun, Y.; Lv, P. Beekeeper: A blockchain-based iot system with secure storage and homomorphic computation.

IEEE Access 2018, 6, 43472–43488. [CrossRef]
5. Goldreich, O.; Ostrovsky, R. Software protection and simulation on oblivious RAMs. J. ACM (JACM) 1996, 43, 431–473. [CrossRef]
6. Stefanov, E.; Van Dijk, M.; Shi, E.; Fletcher, C.; Ren, L.; Yu, X.; Devadas, S. Path ORAM: An extremely simple oblivious RAM

protocol. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 4–8
November 2013; pp. 299–310.

7. Wang, X.; Chan, H.; Shi, E. Circuit oram: On tightness of the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 850–861.

8. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (SFCS 1982), Chicago, IL, USA, 3–5 November 1982; pp. 160–164.

9. Yu, W.; Luo, K.; Ding, Y.; You, G.; Hu, K. A Parallel Smart Contract Model. In Proceedings of the 2018 International Conference
on Machine Learning and Machine Intelligence, Stockholm, Sweden, 10–15 July 2018; pp. 72–77.

10. Arora, N.S.; Blumofe, R.D.; Plaxton, C.G. Thread scheduling for multiprogrammed multiprocessors. Theory Comput. Syst. 2001,
34, 115–144. [CrossRef]

11. Devadas, S.; van Dijk, M.; Fletcher, C.W.; Ren, L.; Shi, E.; Wichs, D. Onion ORAM: A constant bandwidth blowup oblivious RAM.
In Proceedings of the Theory of Cryptography Conference, Beijing, China, 1–3 November 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 145–174.

12. Moataz, T.; Mayberry, T.; Blass, E.O. Constant communication ORAM with small blocksize. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 862–873.

13. Goldreich, O. Towards a theory of software protection and simulation by oblivious RAMs. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing, New York, NY, USA, 25–27 May 1987; pp. 182–194.

14. Ostrovsky, R. Efficient computation on oblivious RAMs. In Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, 14–16 May 1990; pp. 514–523.

15. Goodrich, M.T.; Mitzenmacher, M. Privacy-preserving access of outsourced data via oblivious RAM simulation. In Proceedings
of the International Colloquium on Automata, Languages, and Programming, Zurich, Switzerland, 4–8 July 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 576–587.

16. Goodrich, M.T.; Mitzenmacher, M.; Ohrimenko, O.; Tamassia, R. Privacy-preserving group data access via stateless oblivious
RAM simulation. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan,
17–19 January 2012; pp. 157–167.

https://bitcoin.org/bitcoin.pdf
http://doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.1109/ACCESS.2018.2847632
http://dx.doi.org/10.1145/233551.233553
http://dx.doi.org/10.1007/s002240011004

Symmetry 2022, 14, 680 20 of 20

17. Kushilevitz, E.; Lu, S.; Ostrovsky, R. On the (in) security of hash-based oblivious RAM and a new balancing scheme. In
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan, 17–19 January 2012;
pp. 143–156.

18. Lu, S.; Ostrovsky, R. Distributed oblivious RAM for secure two-party computation. In Proceedings of the Theory of Cryptography
Conference, Tokyo, Japan, 3–6 March 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 377–396.

19. Stefanov, E.; Shi, E.; Song, D. Towards practical oblivious RAM. arXiv 2011, arXiv:1106.3652.
20. Shi, E.; Chan, T.H.H.; Stefanov, E.; Li, M. Oblivious RAM with O ((logN) 3) worst-case cost. In Proceedings of the International

Conference on The Theory and Application of Cryptology and Information Security, Seoul, Korea, 4–8 December 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 197–214.

21. Dubovitskaya, A.; Xu, Z.; Ryu, S.; Schumacher, M.; Wang, F. Secure and trustable electronic medical records sharing using
blockchain. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 4–8 November 2017; American
Medical Informatics Association: Washington, DC, USA, 2017; Volume 2017, p. 650.

22. Tian, F. An agri-food supply chain traceability system for China based on RFID & blockchain technology. In Proceedings of the
2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016;
pp. 1–6.

23. Raju, S.; Boddepalli, S.; Gampa, S.; Yan, Q.; Deogun, J.S. Identity management using blockchain for cognitive cellular networks.
In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.

24. Dwork, C.; Naor, M. Pricing via processing or combatting junk mail. In Proceedings of the Annual International Cryptology
Conference, Santa Barbara, CA, USA, 16–20 August 1992; Springer: Berlin/Heidelberg, Germany, 1992; pp. 139–147.

25. Jakobsson, M.; Juels, A. Proofs of work and bread pudding protocols. In Secure Information Networks; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 258–272.

26. Castro, M.; Liskov, B. Practical Byzantine fault tolerance. In Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), New Orleans, LA, USA, 22–25 February 1999; Volume 99; pp. 173–186.

27. King, S.; Nadal, S. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-Publ. Pap. August 2012, 19. Available online:
https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf (accessed on 6 March 2022).

28. Larimer, D. Delegated proof-of-stake (dpos). Bitshare Whitepaper 2014, 81, 85.
29. Buterin, V. A next-generation smart contract and decentralized application platform. White Paper 2014, 3. Available online:

https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_
platform-vitalik-buterin.pdf (accessed on 6 March 2022).

30. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
31. Daniel Larimer, B.B. EOS.IO’s White Paper. 2017. Available online: https://github.com/EOSIO/Documentation/blob/master/

TechnicalWhitePaper.md (accessed on 6 March 2022).
32. Cachin, C. Architecture of the hyperledger blockchain fabric. In Proceedings of the Workshop on Distributed Cryptocurrencies

and Consensus Ledgers, Chicago, IL, USA, 25 July 2016; Volume 310, p. 4.
33. Salah, K.; Rehman, M.H.U.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and open research challenges. IEEE Access

2019, 7, 10127–10149. [CrossRef]
34. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Blockchain empowered asynchronous federated learning for secure data

sharing in internet of vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4298–4311. [CrossRef]
35. Ouaddah, A.; Abou Elkalam, A.; Ait Ouahman, A. FairAccess: A new Blockchain-based access control framework for the Internet

of Things. Secur. Commun. Netw. 2016, 9, 5943–5964. [CrossRef]
36. Bera, B.; Saha, S.; Das, A.K.; Kumar, N.; Lorenz, P.; Alazab, M. Blockchain-envisioned secure data delivery and collection scheme

for 5G-based IoT-enabled Internet of drones environment. IEEE Trans. Veh. Technol. 2020, 69, 9097–9111. [CrossRef]
37. Zhang, S.; Yao, T.; Arthur Sandor, V.K.; Weng, T.H.; Liang, W.; Su, J. A novel blockchain-based privacy-preserving framework for

online social networks. Connect. Sci. 2021, 33, 555–575. [CrossRef]
38. Xie, L.; Ding, Y.; Yang, H.; Wang, X. Blockchain-based secure and trustworthy Internet of Things in SDN-enabled 5G-VANETs.

IEEE Access 2019, 7, 56656–56666. [CrossRef]
39. Steichen, M.; Fiz, B.; Norvill, R.; Shbair, W.; State, R. Blockchain-based, decentralized access control for IPFS. In Proceedings

of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada,
30 July–3 August 2018; pp. 1499–1506.

40. Dai, Y.; Li, G.; Xu, B. Study on learning resource authentication in MOOCs based on blockchain. Int. J. Comput. Sci. Eng. 2019,
18, 314–320. [CrossRef]

41. Lou, J.; Zhang, Q.; Qi, Z.; Lei, K. A blockchain-based key management scheme for named data networking. In Proceedings of the
2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, China, 17–19 August 2018;
pp. 141–146.

42. Pierro, G.A.; Tonelli, R.; Marchesi, M. An organized repository of ethereum smart contracts’ source codes and metrics. Future
Internet 2020, 12, 197. [CrossRef]

43. Pierro, G.A.; Tonelli, R. Paso: A web-based parser for solidity language analysis. In Proceedings of the 2020 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), London, ON, Canada, 18 February 2020; pp. 16–21.

https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
http://dx.doi.org/10.1109/ACCESS.2018.2890507
http://dx.doi.org/10.1109/TVT.2020.2973651
http://dx.doi.org/10.1002/sec.1748
http://dx.doi.org/10.1109/TVT.2020.3000576
http://dx.doi.org/10.1080/09540091.2020.1854181
http://dx.doi.org/10.1109/ACCESS.2019.2913682
http://dx.doi.org/10.1504/IJCSE.2019.098548
http://dx.doi.org/10.3390/fi12110197

	Introduction
	Contributions
	Organization

	Related Work
	Oblivious Random Access Machine (ORAM)
	Blockchain and Smart Contract
	Applications of Blockchain

	Preliminaries
	Garbled Circuits
	ORAM

	System Framework
	Model
	Security Definition

	The Proposed System
	Building Blocks
	Data Block Format
	Service-Side Storage
	User-Side Storage
	Algorithms on Service Side
	Algorithms on User Side

	Full Construction
	Security Proof

	Implementations and Discussion
	Garbled Circuit Implementations
	Smart Contract Implementation and Experiments
	Discussion of the Proposed System
	Extension on Parallel Smart Contract Model (If Possible)

	Conclusions
	References

