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Abstract: To solve the problem of transient control design with uncertainties and degradation in
the life cycle, a design method for a turbofan engine’s transient controller based on reinforcement
learning is proposed. The method adopts an actor–critic framework and deep deterministic policy
gradient (DDPG) algorithm with the ability to train an agent with continuous action policy for the
continuous and violent turbofan engine state change. Combined with a symmetrical acceleration
and deceleration transient control plan, a reward function with the aim of servo tracking is proposed.
Simulations under different conditions were carried out with a controller designed via the proposed
method. The simulation results show that during the acceleration process of the engine from idle
to an intermediate state, the controlled variables have no overshoot, and the settling time does
not exceed 3.8 s. During the deceleration process of the engine from an intermediate state to idle,
the corrected speed of high-pressure rotor has no overshoot, the corrected-speed overshoot of the
low-pressure rotor does not exceed 1.5%, and the settling time does not exceed 3.3 s. A system with
the designed transient controller can maintain the performance when uncertainties and degradation
are considered.

Keywords: turbofan engine; transient control; reinforcement learning; deep deterministic policy
gradient (DDPG)

1. Introduction

A turbo engine, which is a classical type of aero engine, is a sophisticated piece of thermal
equipment with symmetrical geometry. In recent years, with the rapid development of the
aerospace industry, the capacity for supersonic and hypersonic flight over a wider flight
envelope has been demanded for aero engines [1]. To achieve these goals, more and more
complex structures—such as variable cycle, adaptive cycle and turbine-based combined
cycle (TBCC) systems—are applied to aero engines, making their modeling and control
design more difficult [2]. The control design plays an essential role in the integral aero
engine system for a controller, which is responsible for keeping the system asymptotically
stable, minimizing the transient process time, and maintaining enough margin to keep the
engine working in the event of a surge, extreme temperatures, or excess revolutions.

However, control design is becoming more challenging with modern control theory,
making engines so sophisticated that they cannot be modeled accurately. One of the challenges
is the existence of disturbances and uncertainties in the aero engine system, which can
affect the performance and stability of the system. Therefore, rejection of disturbances
and uncertainties has been a critical design objective, which is traditionally achieved by
observer and robust control design methods. Observer control is widely used to reject
the disturbance [3,4], while robust control can be applied with model uncertainties [5–7].
Both observer and robust control design depend on an accurate linear model, where the
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uncertainties are introduced into the system via linearization. When an accurate linear
model is unable to be obtained, these methods design controllers with the idea of sacrificing
some performance for robustness. Another challenge is that control parameters should be
changed when the components degrade after operating under tough working conditions for
a long period of time throughout the whole asymmetrical life cycle [8,9]. When performance
degrades, a system with traditional controllers will be vulnerable [10].

Therefore, reinforcement learning is taken into consideration, because it combines
the advantages of optimal control and adaptive control [11], meaning that the desired
performance can be achieved and the parameters can be adjusted to obtain the required
robustness. This is critical because the optimal controller can be obtained without knowing
the full system dynamics. As a branch of artificial intelligence, the key to reinforcement
learning in feedback control is training the agent with a policy deciding the action of
the system. Many algorithms—such as policy iteration, value iteration, Q-learning, deep
Q-networks (DQNs), and deep deterministic policy gradient (DDPG)—have been proposed
to learn the parameters under different conditions. Policy iteration and value iteration are
basic methods of finding optimal values and optimal policy by solving the Bellman equation
where policy iteration converges to the optimal value in fewer steps, making value iteration
easier to implement [12]. Q-learning methods are based on the Q-function, which is also
called the action-value function [13]. The Q-function designs an adaptive control algorithm
that converges online to the optimal control solution for complete unknown systems. The
DQN is capable of solving problems of high-dimensional observation space, but it cannot be
straightforwardly applied to continuous domains, since it relies on finding the action that
maximizes the action-value function [14]. The development of DDPG, which is a method of
learning continuous action policy, originates from the policy gradient (PG) method developed
in 2000 [15]. In 2014, Silver presented deterministic policy gradient (DPG) [16]. More details
about the development of DDPG from DPG were given by Lillicrap [13]. Studies using the
reinforcement learning method described above have been carried out in the aeronautics
and aerospace control industry for learning policies for autonomous planetary landing [17]
and unmanned aerial vehicle control [18]. In [19], a deep reinforcement learning technique
is applied to a conventional controller for spacecraft. The author of [20] demonstrated
that deep reinforcement learning has a possibility to exceed the conventional model-based
feedback control in the field of flow control. The DPG algorithm has been adopted to
design coupled multivariable controllers for variable cycle engines at set points [21]. The
DDPG algorithm has been used to adjust the engine pressure ratio control law online
in order to decrease fuel consumption for an adaptive cycle engine [22]. Reinforcement
learning is also applied to prediction of aero engines’ gas path health state [23] and life-cycle
maintenance [24]. However, few applications of reinforcement learning have been directly
used for aero engine control design—especially the transient control design. Turbofan
engines take action continuously, with states changing quickly in a wide range of working
conditions with uncertainties and degradation. Reinforcement learning is likely to be an
ideal way to design the controller for a turbofan engine, since its optimal design procedure
is independent of the knowledge of full system dynamics. Therefore, a reinforcement-
learning-based controller design method with the agent trained with the DDPG algorithm
is proposed in this paper. This is achieved with the turbofan engine nonlinear model,
which reduces the uncertainties introduced into the system via linearization. Moreover, this
approach has the advantage of designing the set point controller and transient controller
together with the same policy, which will restrain the jump from one to the other. A series of
improvements are proposed to improve the stability of the closed-loop system, making the
training process achievable with a nonlinear model by solving the problem of divergence.
Symmetrical performance is achieved in the acceleration and deceleration process of the
engine with the designed controller.

The rest of this paper is organized as follows: In Section 2, a nonlinear model of a
dual-spool turbofan engine is built and linearized. In Section 3, a brief background of
reinforcement learning and DDPG is given. In Section 4, the method of designing the
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controller for a turbofan engine with reinforcement learning is presented. In Section 5,
a series of simulations are applied in different conditions. The simulation results are
compared with a traditional gain-scheduled controller, which is designed with linear
matrix inequality (LMI) based on an LPV model. Finally, conclusions are given in Section 6.

2. System Uncertainties Analysis

Consider the follow nonlinear system:{ .
x(t) = f (x(t), u(t), d(t))
y(t) = g(x(t), u(t), d(t))

(1)

where x(t) ∈ Rx is the state vector of the system, u(t) ∈ Ru is the input vector of the system,
y(t) ∈ Ry is the output vector of the system, and d(t) ∈ Rd is the disturbance vector.

Moreover, a linear system is proposed to approximate the dynamic of the nonlinear
system for decreasing the nonlinear complexity and making it easier to design the controller
k(t), which regulates the y(t) to the desired outputs r(t), based on classic control theory or
modern control theory. This can be described as follows:{

δ
.
x = A(x− xe) + B(u− ue) + G(d− de)

δy = C(x− xe) + D(u− ue) + H(d− de)
(2)

where xe is the steady-state vector of the system, ue is the input vector that keeps the
system working at xe, ye is the steady output vector of the system at state xe with input
ue, and de is the disturbance vector at xe. For a stable system, (xe, ue, de), which keeps the
system working at steady state, always exists. The nonlinear system at steady state can be
described as follows: {

0 = f (xe, ue, de)
ye = g(xe, ue, de)

(3)

Matrices of the linear system are usually obtained by linearizing at steady points. A is
the state matrix, B is the input matrix, C is the output matrix, D is the feedforward matrix,
G is a disturbance matrix, and H is a disturbance matrix. They are obtained as follows:

A = ∂ f
∂x

∣∣∣
(xe ,ue ,de)

, B = ∂ f
∂u

∣∣∣
(xe ,ue ,de)

, G = ∂ f
∂d

∣∣∣
(xe ,ue ,de)

, C = ∂g
∂x

∣∣∣
(xe ,ue ,de)

, D = ∂g
∂u

∣∣∣
(xe ,ue ,de)

,

H = ∂g
∂d

∣∣∣
(xe ,ue ,de)

.

As a result, uncertainties are introduced into the system. This is described as follows:{
ω(

.
x) = f (x, u, d)− f (xe, ue, de)−A(x− xe)− B(u− ue)−G(d− de)

ω(y) = g(x, u, d)− g(xe, ue, de)− C(x− xe)−D(u− ue)−H(d− de)
(4)

The uncertainties depend on the difference between the current state x and the linearized
steady state xe. In order to reduce the uncertainties of the linear system when it is used to
approximate the nonlinear system over the whole working condition, the linear parameter-
varying (LPV) model, which is widely used in modern control theory, is introduced.

For the nonlinear system shown in Equation (1), the LPV model can be obtained by
linearizing at n different equilibrium points shown in Equation (3) and scheduling with a
parameter. Then, the nonlinear system can be approximated with the LPV model as follows:{ .

x = A(p)x + B(p)u
y = C(p)x + D(p)u

(5)
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where p =
[

p1 p2 p3 · · · pn
]

are the scheduled parameters and
n
∑

j=1
pj = 1, pj ≥ 0.

System matrices are defined as follows:
A(p) =

n
∑

j=1
pjA(j) B(p) =

n
∑

j=1
pjB(j)

C(p) =
n
∑

j=1
pjC(j) D(p) =

n
∑

j=1
pjD(j)

(6)

where A(j), B(j), C(j), and D(j) are the jth matrices obtained by linearizing the nonlinear
system at equilibrium points (xe(j), ue(j), de(j)).

Although the LPV model is proposed with the idea of reducing the uncertainties by
reducing the difference between x and xe, the uncertainties introduced into the system in
the linearization still exist, and are very hard to calculate.

Moreover, the dynamics and uncertainty of the actuators cannot be ignored in the
transient process of an aero engine, and this is usually simplified as a first-order function,
which is defined as follows:

u = τav ≈ τav =


k1

τa1s+1 0 · · · 0

0 k2
τa2s+1 · · · 0

...
...

. . .
...

0 0 · · · ku
τaus+1

v (7)

where u represents the inputs of the engine and v represents the control signals given by
the controller. As a result, uncertainties will be introduced into the system again.

The augmented nonlinear system can be described as follows:{ .
x(t) = f (x, v, τa, d)
y(t) = g(x, v, τa, d)

(8)

The augmented LPV linear model is described as follows:
A(p) =

n
∑

j=1
pjA(j) B(p)= (

n
∑

j=1
pjB(j))τa

C(p) =
n
∑

j=1
pjC(j) D(p)= (

n
∑

j=1
pjD(j))τa

(9)

Controller design with reinforcement learning is based on the augmented nonlinear
model denoted in Equation (8), while controller design with modern control theory relies
on the augmented LPV model with uncertainties denoted in Equation (9).

3. Reinforcement Learning Algorithm
3.1. Preliminaries

Definition 1. The Markov decision process (MDP), which is one of the bases of reinforcement
learning, is a memoryless stochastic process denoted with a tuple <S, A, P, R, γ>, where S is a
finite set of state, A is the set of action, P is the state transition probability matrix, R is the reward
function, and γ is the discounted factor.

Definition 2. Cumulative reward represents the sum of discounted future reward:

rγ
t =

∞

∑
i=t

γ(i−t)r(si, ai) (10)

where discounted factor γ ∈ [0, 1], state si ∈ S, action ai ∈ A, and reward function r : S× A→ R .
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Theorem 1. Supposing that the gradient of deterministic policy ∇θµθ(s) and the gradient of
action-value function ∇aQµ(s, a) exist, the parameter θ of the policy is adjusted in the direction of
the performance gradient defined as follows:

∇θ J(µθ) =
∫

S ρµ(s)∇θµθ(s)∇aQµ(s, a)|a=µθ(s)ds

= Es∼ρµ [∇θµθ(s)∇aQµ(s, a)
∣∣∣a=µθ(s)]

(11)

where µθ is a deterministic policy with parameter θ, ρµ is the discounted state distribution with
policy µ, Qµ is the action-value function with policy µ, and J is the performance objective s ∈ S,
a ∈ A [15].

3.2. Framework of Reinforcement Learning

The structure of reinforcement learning consists of an agent and an environment. At
time t, the agent observes the state st and reward rt of the environment, and executes action
at following the internal policy πθ. Then, the environment outputs the next state st+1 and
reward rt+1. This is shown in Figure 1.
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Figure 1. The structure of reinforcement learning.

The purpose of reinforcement learning is to obtain the agent that contains a policy
πθ maximizing the cumulative reward defined in Equation (10) by interacting with the
environment. The procedure of training the agent with DDPG is shown in Figure 2.

In this procedure, the DDPG algorithm trains the agent with the actor–critic framework
shown in Figure 3. Both critic and actor combine two neural networks: the estimation network,
and the target network. The four neural networks are denoted as µ(s|θµ), Q(s, a|θQ),
µ′(s|θµ′), and Q′(s, µ′(s|θµ′)|θQ′), with weights θµ, θQ, θµ′ , and θQ′ , respectively.

(1) The actor network µ(s|θµ) represents the optimal action policy. It is responsible for
iteratively updating the network weights θµ, choosing the current action ai based on
the current state si, and obtaining the next state si+1 and the reward ri;

(2) The critic network Q(s, a|θQ) represents the Q-value obtained after taking action
following the policy defined with the actor network at every state s. It is used to
update the network weights θQ and calculate the current Q(si, ai|θQ);

(3) The target actor network µ′(s|θµ′) is a copy of actor network µ(s|θµ). The weights of
the target actor network are updated with the following soft update algorithm:

θµ′ ← τθµ+(1− τ)θµ′ (12)

where τ is the updating factor;
(4) The target critic network Q′(s, µ′(s

∣∣∣θµ′)
∣∣∣θQ′) is a copy of the critic network, and is

used to calculate yi. Similarly, the weights are updated with the following soft update
algorithm:

θQ′ ← τθQ+(1 − τ)θQ′ (13)

where τ is the updating factor.
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Figure 3. Actor–critic reinforcement learning framework.

With a relatively small τ, the weight of the target network will change slowly, increasing
the stability of the system and making the training process easier to converge. The relationships
of the four networks are shown in Figure 4. The purpose of the training process is to find the
optimal weights of the networks.

Finally, the optimal weights of the actor network and critic network are obtained.
Therefore, the actor and critic networks will work together to achieve the user-prescribed goal.
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4. Reinforcement Learning Controller Design Procedure for Turbofan Engines

In this section, the procedure of how to apply reinforcement learning to turbofan
engines’ transient control design is provided.

4.1. Framework Definition

As an example of the nonlinear system described in Equation (1), the dynamic of a
two-spool turbofan engine can be modeled as follows [24]:{ .

n1 = f1(n1, n2, v, d)
.
n2 = f2(n1, n2, v, d)

(14)

where n1 is the low-pressure rotor speed, n2 is the high-pressure rotor speed, v is the control
variable vector, and d is the disturbance vector.

Because the corrected rotor represents the characteristic of the turbofan better, the
outputs of the nonlinear system can be denoted as y =

[
n1cor n2cor

]T , and the states of

the nonlinear system can be denoted as x =
[

n1cor n2cor
]T . n1cor = n1

√
288.15

T1

n2cor = n2

√
288.15

T2

(15)

where T1 is the temperature before the fan, and T2 is the temperature before the compressor.
Moreover, the control value could be defined as v(t) =

[
A8(t) W f (t)

]T in general,
where A8 is the throat area of the nozzle, and Wf is the fuel flow in the burner.

Ways to implement the desired objectives during the transient process could include
open-loop fuel–air ratio control or closed-loop

.
n control. For the fuel–air ratio command to

be transformed into rotor speed, the trajectory of n1 and n2 was selected as the command
in this paper. This is defined as r(t) =

[
n1cor(t) n2cor(t)

]T .
The simplest structure of a closed-loop output feedback control system is shown in

Figure 5. In order to implement transient control with a reinforcement learning method
with the set command and control values above, the controller module is replaced with
observations, reward, and agent modules.
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Figure 5. Framework of a traditional feedback control system and a feedback control system based
on reinforcement learning.

The inputs of observation are system output y and the error between reference com-
mand r and system outputs e = r − y. The output of observation is the observed signal
o = [

∫
edt e y ]

T . The inputs of reward are e and u, which are related to the accuracy
and energy of the control. The output of reward is the cumulative reward rt. The input of
the agent is o and the output of the agent is v.

4.2. DDPG Agent Creation

The agent is trained with the aforementioned DDPG algorithm and actor–critic
structure. Value functions are approximated with neural networks. This process is called
representation. The number of layers, the number of neurons, and the connection of each
layer should be defined based on the complexity of the problem. Moreover, both critic and
actor representation options consist of learning rate and gradient threshold. The DDPG
agent options include sample time, target smooth factor, discount factor, mini-batch size,
experience buffer length, noise options variance, and noise options’ variance decay rate. Then,
the DDPG agent can be created with the specified critic representation, actor representation,
and agent options.

4.3. Reward Function

In order to track the trajectory that contains the prescribed performance of the transient
process of the engine, the reward function should reflect the error between the command and
the output of the engine. Moreover, the error in the past should be taken into consideration,
because the transient process is a continuous process where the state changes rapidly.
Finally, a positive constant value should be given to keep the training process working
from start to finish, because the agent will have the tendency to stop early with the purpose
of not counting the cumulative error. Therefore, the reward function is set as follows:

rt = 1− |et| − 0.1|et−1| (16)

4.4. Problems and Solutions

After applying the aforementioned settings, the reinforcement learning method can be
preliminarily introduced into the controller design process for a turbofan engine. However,
some problems still need to be solved. One of the most important problems is how to keep
the environment convergent when the agent is trained. The turbofan engine model used in
this paper in the training process was solved with the Newton–Raphson method, which
means that the initial conditions cannot be far away from reasonable values. Otherwise,
the engine model will be divergent and the reward will be uncontrolled and unbelievable.
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Moreover, the training results will be invalid, and a lot of time will be wasted calculating the
meaningless results. Therefore, some improvements must be added to the design process.

First of all, the initial parameters of the engine must be scheduled with the state
n2cor. When the reinforcement learning explores the performance of the environment,
n2cor represents the state of the engine. n1cor should match n2cor, as well as other coupled
parameters, such as temperature and internal pressure. The initial condition of the nonlinear
model is defined with the following parameters: mass flow of air, bypass ratio, pressure
ratio of the compressor, pressure of the fan, and pressure ratio of the turbine.

Secondly, the control structure should be added into the closed-loop system between
the agent and the engine. If the controller is designed with the traditional reinforcement
learning method, meaning that the outputs of the agent are control actions, it will be very
hard for the turbofan engine to be convergent. Therefore, a more efficient control structure
should be introduced. With the new structure shown in Figure 6, the outputs become the
parameters of the controller rather than the control value. For example, if the controller
adopts the PI control law, the outputs of the agent are parameters Kp and Ki, which are
scheduled with neural networks within the agent.
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Thirdly, the stop simulation module should be adopted. The convergent condition is
defined as |ε| < 10−6 in the engine model. The termination signal is configured as follows:

isdone =

{
0 max(|ε|) ≥ 1
1 else

(17)

where ε is the iteration error vector of the engine model, which implies the astringency of
the model.

With the termination signal, the training during an episode will stop in a timely
manner when the model becomes divergent and the outputs become invalid.

4.5. Training Options

Training options specify the parameters in the process of agent training. These include
the maximum number of episodes, the maximum steps per episode, the score-averaging
window length, and the stop training value.

In conclusion, the process of designing a controller for a turbofan engine can be listed
as follows:
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Step 1: Set up the training framework by setting the inputs and outputs of the observation,
reward, and agent;

Step 2: Create the DDPG agent by specifying critic representation, actor representation,
and agent options;

Step 3: Set the reference signal that represents the desired performance for the turbofan
engine, and define the reward function according to the purpose of the training process;

Step 4: Modify the structure with the aim of improving the convergence of the system;
Step 5: Train the agent with the DDPG algorithm.

5. Simulation and Verification

In this section, an example of designing a controller for a dual-spool turbofan engine
using reinforcement learning is given, and it is compared with the gain-scheduled proportion
integral (GSPI) controller designed with LMI in reference [25]. In order to validate the
effectiveness of the reinforcement learning design method, the chosen control structure is
also PI, which is widely used in turbofan engine control. The structure of the reinforcement
learning proportion integral (RLPI) controller is shown in Figure 6, where a = [Kp Ki].

5.1. Options Specification

Training options are set with the parameters in Table 1. Training scope includes
conditions from the idle to intermediate states, where n1cor ranges from 7733 r/min to
10,065 r/min, and n2cor ranges from 9904 r/min to 10,588 r/min.

Table 1. Training options.

Function Description Value

Critic Representation Options Learn Rate 0.001
Gradient Threshold 1

Actor Representation Option Learn Rate 0.0001
Gradient Threshold 1

DDPG Agent Options

Sample time 0.01
Target Smooth Factor 0.003

Discount Factor 1
Mini-Batch Size 64

Experience Buffer Length 1,000,000
Noise Options Variance 0.3
Noise Options’ Variance

Decay Rate 0.00001

Training Options

Sample time 0.01
Maximum Episodes 20,000

Maximum Steps per Episode 1000
Score-Averaging Window

Length 2

Stop Training Value 996

5.2. Simulation Results in Ideal Conditions and with Uncertainties

The performance of the system with the RLPI controller is validated with the step
response of acceleration from idle to intermediate and deceleration from intermediate to
idle. Meanwhile, the reinforcement learning design method is only applied to the fuel flow
control loop, with the purpose of minimizing the disturbance. Parameters of the nozzle
area are shown in Figure 7. As mentioned in Section 2, the uncertainties of the actuators
result from the order uncertainty or the dynamic uncertainty. In this section, the time
constant of the actuator is changed from 0.1 to 0.2. Simulation results are shown in Figure 8
and Table 2. It is illustrated in Figure 8 that the controllers have the ability to track the
command with a settling time of no more than 3.8 s and overshooting by no more than
1.5% when τa = 0.1, which are defined as ideal conditions. The performances are very close
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to one another when the time constant of the actuator changes. This means that when the
uncertainties of the actuator exist, the RLPI controller still maintains the performance of
the closed-loop system. It is illustrated in Table 3 that the settling time changes by no more
than 0.7 s and the overshooting increases by 0.73% when the time constant of the actuator
increases.
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Table 2. Performance of the system with an RLPI controller in different conditions.

τa Speed Ts/s σ% State

0.1
n1cor

1.43 0 Acceleration
2.23 1.50 Deceleration

n2cor
3.84 0 Acceleration
3.33 0 Deceleration

0.2
n1cor

1.18 0 Acceleration
2.90 2.23 Deceleration

n2cor
3.71 0 Acceleration
3.15 0 Deceleration
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Table 3. Performance of the systems with GSPI and RLPI controllers when degradation takes place.

Controller Speed Ts/s σ% State

GSPI
n1cor

2.67 0 Acceleration
3.78 0.39 Deceleration

n2cor
5.31 0 Acceleration
3.17 0 Deceleration

RLPI
n1cor

2.53 0 Acceleration
4.40 0.75 Deceleration

n2cor
5.27 0 Acceleration
4.50 0 Deceleration

5.3. Simulation Results with Degradation

Degradation occurs inevitably with the life cycle of the turbofan engine, meaning the
system cannot work as effectively as before. Traditionally, more fuel will be consumed to
obtain the desired performance.

In this section, the degradation is simulated by reducing the compressor efficiency by
5%. Simulation results are shown in Figures 9–11 and Table 3. It can be concluded that
the transient performance of the system decreases when the efficiency of the compressor
decreases for both deceleration and acceleration processes compared with ideal conditions.
It is shown in Figure 10 that the maximum difference in n1cor is about 300 r/min and the
maximum difference in n2cor is about 100 r/min. The n1cor change with GSPI is smaller than
that with RLPI, and the n2or change with RLPI is smaller than that with GSPI. Moreover, it
is shown in Figure 9 that the response of the corrected rotor speed is smoother with RLPI,
due to the nonlinearity of RLPI. The transient process with RLPI also has faster transient
response and smaller transient error.
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(a) Comparison of n1cor response error. (b) Comparison of n2cor response error.

Cumulative error is used as a criterion of servo tracking, which represents the performance
of transient control. The result is shown in Figure 12, where cumulative error (CE) is defined
as follows:

CE = (n− ncmd)/n (18)

where ncmd is the command. The results show that the cumulative error of both GSPI and
RLPI increases, but the cumulative error of RLPI is much better. For n1cor, the performance
of the turbofan controlled with the RLPI controller after degradation is almost equal to the
performance of the turbofan controlled with the GSPI controller before degradation.
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The results in Figure 13 show that when the components’ efficiency decreases, more
fuel is needed to keep the engine working at the desired speed. It is also illustrated in
Figure 13 that the system with RLPI reduces fuel flow faster during deceleration, and adds
fuel faster during acceleration. This explains the results, where RLPI tracked the command
better in all conditions. It should also be noted that the surge margin (SM) [26] reduces
from 17.17 to 12.19 when the degradation takes place.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 12. Cumulative error in the transient process under different conditions. 

The results in Figure 13 show that when the components’ efficiency decreases, more 
fuel is needed to keep the engine working at the desired speed. It is also illustrated in 
Figure 13 that the system with RLPI reduces fuel flow faster during deceleration, and adds 
fuel faster during acceleration. This explains the results, where RLPI tracked the command 
better in all conditions. It should also be noted that the surge margin (SM) [26] reduces 
from 17.17 to 12.19 when the degradation takes place. 

 
Figure 13. Comparison of Wf with the GSPI and RLPI controllers under different conditions. 

The comparison of settling time under different conditions is shown in Figure 14, 
where the solid lines represent the performance with GSPI and the dotted lines represent 
the performance with RLPI. In the case of settling time, the RLPI has similar performance 
to GSPI. However, as noted above, the GSPI has better ability in terms of command track-
ing. 

Figure 13. Comparison of Wf with the GSPI and RLPI controllers under different conditions.

The comparison of settling time under different conditions is shown in Figure 14,
where the solid lines represent the performance with GSPI and the dotted lines represent
the performance with RLPI. In the case of settling time, the RLPI has similar performance to
GSPI. However, as noted above, the GSPI has better ability in terms of command tracking.
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6. Conclusions

This paper presents a method of designing a reinforcement learning controller for
turbofan engines. A nonlinear model of the engine was developed as the environment for
the reinforcement training process. A DDPG algorithm with actor–critic architecture and a
traditional control structure—which was PI in this paper—is presented. The performance
of the designed RLPI controller was verified under the chosen conditions and compared
with GSPI controllers. The simulation results show that the closed-loop system with the
RLPI controller has the desired performance in the transient process. Additionally, the RLPI
controller’s ability to deal with large uncertainties and degradation is proven by comparing
the simulation results of actuators’ uncertainties, and by compressor efficiency decreasing
with the ideal condition.

Studies that should be carried out in the future are as follows: Firstly, the fuel flow
and nozzle area need to be trained together in order to achieve better performance, but the
training process will be harder to converge. Secondly, different working conditions in the
flight envelope should be considered with all-round simulation. Thirdly, control structures
other than PI should also be validated in the future. Finally, it is expected that experiments
could be carried out with real engines in the future.
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