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Abstract: When studying the control problems of nonlinear systems, there are always uncertainties
and disturbances. The existence of this phenomenon will increase the error in production engineering
and reduce work efficiency. In order to reduce the nonlinear asymmetric control, the control method
of a laser hyperchaotic system is designed in this paper. The system is a complex number system,
with remarkable nonlinear characteristics. The system is divided into two parts by calculating the
state transformation matrix, which shows that the system can realize simultaneous synchronization
and anti-synchronization. Firstly, in the ideal case, the stabilization, synchronization, and anti-
synchronization of the system are studied by using the dynamic gain feedback method, and a
dynamic feedback controller is designed. Secondly, in the case of uncertainty and disturbance, a
dynamic feedback control strategy based on uncertainty and disturbance estimator (UDE) is proposed.
With the aim to solve the control problem of the system, the corresponding controller is designed to
modify the system. Finally, through simulation and comparison, it is verified that the effect of this
method is remarkable.

Keywords: nonlinear; stabilization; synchronization; anti-synchronization; dynamic feedback control;
UDE

1. Introduction

Nonlinearity is a common phenomenon in nature, such as laser generation, subhar-
monic oscillation, self-excited oscillation, frequency capture, the development of human
society, people’s thinking process, etc. [1–4]. These are nonlinear changes with time. With
the development of science and technology, nonlinear problems appear in many disciplines.
Chaos is a very important aspect of nonlinear dynamics. It is of great significance in the
study of various problems.

In nature and human society, synchronization and anti-synchronization refer to the
coordination between the phases of at least two vibration systems or the opposite trajectory
(or beat). This is a natural phenomenon in nonlinear systems. In the hyperchaotic system
studied in this paper, there are simultaneous synchronization and anti-synchronization
phenomena. In the realization of chaos control, making full use of the characteristics
of chaos is very important for determining the control target and selecting the control
method [4]. In modern industrial production, mobile robots and UAVs can be described
using nonlinear systems. There are always uncertainties and external disturbances in the
system. These problems will lead to the asymmetry of the system. In practical problems,
the movement of multiple robots cannot be coordinated, and the industrial production
efficiency is low. In order to reduce the asymmetric control problem in nonlinear systems,
a dynamic control method based on uncertainty and disturbance is proposed in this
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paper. The essence of UDE is to establish an interference estimator to estimate unknown
interference variables. Based on the UDE control method and dynamic gain control method,
the stabilization, synchronization, and anti-synchronization of hyperchaotic systems are
studied in this paper.

Chaos has its applications in many fields. With the rapid development of modern
communication technology, optical chaos and its secure communication technology have
received extensive attention from researchers because of their unique advantages. The
introduction of additional degrees of freedom into semiconductor lasers can produce rich
nonlinear dynamic behavior [5,6]. If appropriate control parameters are selected, high-
dimensional chaotic optical signals can be output. A chaotic optical signal is especially
suitable for chaotic secure communication [7–10]. In addition, in 2001, Nakamur et al. first
proposed chaotic paths and applied them to mobile robots to achieve full coverage of the
area [11]. This has led to the application of chaos in the field of robotics. For different occa-
sions, Chaos mobile robots can work with different sensors to meet different needs [12–14].

In this paper, the dynamic feedback control method based on UDE is applied to
plural systems. The 4D laser system has two positive Lyapunov functions and is hyper-
chaotic. The system is more complex than the real number system, and the nonlinear
characteristics are more obvious. Therefore, the study of this system can well verify the
effectiveness of this method, and the research problems of this system can provide a theo-
retical basis for the study of chaotic mobile robots. The simultaneous synchronization and
anti-synchronization [15] of a system mean that some states of a system can be synchronized,
while other states can be anti-synchronized under the action of an appropriate controller.
The study of this problem provides a theoretical basis for the subsequent implementation
of multiple chaotic mobile robots to achieve difficult maneuvers. It enables multiple robots
to achieve the same or opposite actions simultaneously. The study of the stabilization
problem can improve the coverage and stability of chaotic mobile robots in path planning.
By studying the control problem of nonlinear systems, the asymmetric control phenomenon
of the system is reduced, and the stability of nonlinear systems is improved.

2. Preliminary

Lemma 1. Consider the following system:

.
z = f (z) + bu (1)

where z ∈ Rn is the state vector, f (z) ∈ Rn is vector function, b ∈ Rn×r is the constant matrix,
and r ≥ 1, u ∈ Rr is the controller to be designed. According to results in Refs. [2,16], if ( f (z), b)
is stabilizable, then the designed dynamic gain feedback controller [16,17] is

u = kz (2)

where k = k(t)bT , and feedback gain k(t) update law is as follows:

.
k(t) = −‖z(t)‖2 (3)

Lemma 2. A chaotic system with model uncertainty and external disturbance can be expressed as

.
z = f (z) + bud + Bu (4)

ud = ∆ f (z) + d(t) (5)

where z is the state, ∆ f (z) is model uncertainty, and d(t) is an external disturbance. ud meets the
following structural constraints: [

I − BB+
]
ud ≡ 0 (6)

where I is an n-order identity matrix; B+ = (BT B)−1BT .
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The filter g(t) to be designed needs to satisfy the following conditions:

∼
u =

∧
ud − ud → 0, t→ ∞ (7)

where
∧
ud = (

.
z− f (z)− Buude) ∗ g f (t), and

∧
ud is ud estimate.

Therefore, it can be obtained that the controller u to be designed is [15,18]: u = ua + uude,
where ua is a controller designed by using the dynamic gain control method.

ua = k(t)BTz(t) (8)

uude = b
{
−`−1

[
sG(s)

1− G(s)

]
∗ z(t) + `−1

[
G(s)

1− G(s)

]
∗ F(z)

}
(9)

where G(s) = `[g(t)], `−1 is inverse Laplace transform, ∗ is convolution, and
.
k(t) = −‖z(t)‖2.

Definition 1. For the Lorenz system (10) and its slave system (11),

x = h(x) =

 a(x2 − x1)
bx1 − x2 − x1x3

cx3 + x1x2

 (10)

q = h(q) + BU (11)

If variables x1, x2 of the system (10) are anti-synchronous with two variables q1, q2 of another
system (11), at the same time, x3 is synchronous with q3 , the master system (10) and the slave
system (11) realize simultaneous synchronization and anti-synchronization.

3. Problem Formulation

In this paper, a multi-winged butterfly laser complex chaotic system is studied. The
model of a 4D laser hyperchaotic system is as follows:

.
x1 = − f1x1 + x1x2 + x3x4 + f0[1 + sin(Ωt)]
.

x2 = − f2x2 − 0.5
(

x2
1 − x2

3
)

.
x3 = − f1x3 + x1x4 − x2x3
.

x4 = − f2x4 − x1x3

(12)

where x1,2,3 ∈ C, x4 ∈ R. When f0 = f1 = f2 = 0.01, Ω > 0.22 or 0.45 < Ω < 0.98,
system (12) has two positive Lyapunov functions, which are hyperchaotic. System (12)
first appeared in [19]. Based on this model, the stabilization problem and simultaneous
synchronization and anti-synchronization problems are studied in this paper.

Let x1 = z1 + jz2, x2 = z3 + jz4, x3 = z5 + jz6, x4 = z7, j =
√
−1; through the

transformation, the complex system is transformed into a 7D real system, as shown below.

.
z = f (z) (13)

f (z) =



− f1z1 + z2z3 + z5z7 + f0[1 + sin(Ωt)]
− f1z2 + z2z4 + z6z7

− f2z3 − 0.5
(
z2

1 − z2
5
)

− f2z4 − 0.5
(
z2

2 − z2
6
)

− f1z5 + z1z7 − z3z5

− f1z6 + z2z7 − z4z6

− f2z7 − z1z5


(14)
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where z ∈ R7 is the state vector; f0, f1 and f2 are given in Equation (10), and when Ω = 0.6,
the phase diagram of the system (14) has butterfly chaotic attractor. The vector field
divergence of the system is

∇V =

.
∂z1

.
z1

+

.
∂z2

.
z2

+

.
∂z3

.
z3

+

.
∂z4

.
z4

+

.
∂z5

.
z5

+

.
∂z6

.
z6

+

.
∂z7

.
z7

= −4 f1 − 3 f2

When ∇V < 0, the system is dissipative; as ∇V = −0.07 < 0 in this paper, it satisfies
the dissipative condition; the motion of the system (14) is eventually fixed to the attractor.
The phase diagram of chaotic attractor was shown in Figure 1.
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In this paper, the suitable controllers are designed by using the control method of
dynamic gain feedback. Then, this method is combined with the control method based on
UDE to design more reasonable controllers.

4. Methods and Materials
4.1. Stabilization Problem

Before studying the simultaneous synchronization and anti-synchronization of the
system, in this part, the stabilization of the system is first discussed. Firstly, the dynamic
gain control method [20–22] was used to study the nominal system.

Theorem 1. First, the nominal system is as follows:

.
z = f (z) + Bua (15)

where z is the state vector, B is given as

BT =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

 (16)

and ua is the designed controller; ua is presented as

ua = K(t)BTz(t) (17)
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where K(t) the designed dynamic gain feedback, and it is updated by

.
K(t) = −‖z(t)‖2 (18)

by which system (15) achieves stabilization.

Proof of Theorem 1. When z1 = z3 = z4 = z7 = 0, the following subsystem

.
z2 = − f1z1 (19)

.
z5 = − f1z5 (20)
.
z6 = − f1z6 (21)

is asymptotically stable; then, ( f (z), B) is stabilized. According to Lemma 1, the controller
ua is given in (17), which completes the proof. �

The system can be expressed as follows:

.
z1 = − f1z1 + z1z3 + z5z7 + f0[1 + sin(Ωt)] + Kz1
.

z2 = − f1z2 + z2z4 + z6z7
.

z3 = − f2z3 − 0.5
(
z2

1 − z2
5
)
+ Kz3

.
z4 = − f2z4 − 0.5

(
z2

2 − z2
6
)
+ Kz4

.
z5 = − f1z5 + z1z7 − z3z5
.

z6 = − f1z6 + z2z7 − z4z6
.

z7 = − f2z7 − z1z5 + Kz7

(22)

Next, the stabilization of the system (4) was studied.
Let bT = ( 0 0 0 0 0 0 1 ), that is, the disturbance is added to the state z7.

∆ f (z) =



0
0
0
0
0
0
0.1z1

2


, d(t) =



0
0
0
0
0
0
2


(23)

According to Lemma 2, we can obtain uude, and filter selection is as follows [23,24]:

G(s) =
10ω0s + (a−ω0

2)

s2 + 10ω0s + a
(24)

where ω0 = 4π, a = 100ω0
2. The controlled chaotic system is

.
z1 = − f1z1 + z1z3 + z5z7 + f0[1 + sin(Ωt)] + Kz1
.

z2 = − f1z2 + z2z4 + z6z7
.

z3 = − f2z3 − 0.5
(
z2

1 − z2
5
)
+ Kz3

.
z4 = − f2z4 − 0.5

(
z2

2 − z2
6
)
+ Kz4

.
z5 = − f1z5 + z1z7 − z3z5
.

z6 = − f1z6 + z2z7 − z4z6
.

z7 = − f2z7 − z1z5 + Kz7 + 0.01z1
2 + 2 + uude

(25)
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4.2. Simultaneous Synchronization and Anti-Synchronization Problem

In this part, the simultaneous synchronization and anti-synchronization of the laser
system (15) are discussed, the study of which is mainly divided into two steps.

First, the nominal system was studied by using the method of dynamic gain feedback [20–22].

Theorem 2. System (15) has the following transformations, which can divide the system into
two parts:

Z =

(
ZE
Ze

)
= Nz (26)

where matrix N is

N =



0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0


(27)

Under this transformation, chaotic system (15) can be transformed into the following two parts:

.
ZE = FE(Z) = H(Ze)ZE (28)

.
Ze = Fe(Z) = G(ZE)Ze (29)

where ZE ∈ R3, Ze ∈ R4.

H(Ze)ZE =

 − f1 + Ze4 0 Ze6
0 − f1 − Ze3 Ze1
0 −Ze1 − f2

 ZE2
ZE5
ZE7

 (30)

G(ZE)Ze =


− f1 ZE2 0 0
−0.5Ze1 − f2 0 0

0 0 − f2 0.5Ze6
0 0 0 − f1 − Ze4




Ze1
Ze3
Ze4
Ze6

 (31)

This indicates that there is simultaneous synchronization and anti-synchronization problem in
the system.

Proof of Theorem 2. The state of system (15) is z. Additionally, F(z) is a continuous vector
function. Let ϕ = diag{ϕ1, . . . , ϕ7}, where |ϕm|= 1 , m = 1, 2, . . . , 7. Due to F(ϕz) = ϕF(z),
we can obtain the following equation and solution of z:

(ϕ1 ϕ3 − ϕ1)z1z3 + (ϕ5 ϕ7 − ϕ1)z5z7 = 0

(ϕ2 ϕ4 − ϕ2)z2z4 + (ϕ6 ϕ7 − ϕ2)z6z7 = 0(
−ϕ2

1 + ϕ3
)
z2

1 +
(

ϕ2
5 − ϕ3

)
z2

5 = 0(
−ϕ2

2 + ϕ4
)
z2

2 +
(

ϕ2
6 − ϕ4

)
z2

6 = 0

(ϕ1 ϕ7 − ϕ5)z1z7 + (ϕ5 − ϕ3 ϕ5)z3z5 = 0

(ϕ2 ϕ7 − ϕ6)z2z7 + (ϕ6 − ϕ4 ϕ6)z4z6 = 0

(ϕ7 − ϕ1 ϕ5)z1z5 = 0

(32)
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

ϕ1 = ϕ5 ϕ7

ϕ2 = ϕ6 ϕ7

ϕ3 = 1

ϕ4 = 1

ϕ5 = ϕ1 ϕ7

ϕ6 = ϕ2 ϕ7

ϕ7 = ϕ1 ϕ5

(33)

Make ϕ2 = −1, and we can calculate a set of solutions as follows:

ρ(3) =



ϕ2
ϕ5
ϕ7
ϕ1
ϕ3
ϕ4
ϕ6


=



−1
−1
−1
1
1
1
1


(34)

Thus, the N given in Equation (27) is obtained, which completes the proof. �
According to this transformation, system (15) is divided into two systems. Make the

main system as follows:
.
Z =

( .
ZE.
Ze

)
(35)

where .
ZE = FE(Z) + b1uc (36)

.
Ze = Fe(Z) + b2uc (37)

where Z are the states;
.
Z,

.
ZE,

.
Ze are all derivatives; uc is the controller.

b1 =

 0
0
1

, b2 =


0
1
0
0

 (38)

Therefore, the corresponding slave system is

.
y =

( .
yE.
ye

)
(39)

where
.

yE = FE(y) (40)
.

ye = Fe(y) (41)

Let EE = ZE + yE, and Ee = ye − Ze; then, the sum and error system can be expressed
by the following Equation (42):

.
E = S(Z, y, E) + b∗uc (42)

where

E =

(
EE
Ee

)
, b∗ =

(
b1
b2

)
(43)
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

EE1
EE2
EE3
Ee1
Ee2
Ee3
Ee4


=



ZE2 + yE2
ZE5 + yE5
ZE7 + yE7
ye1 − Ze1
ye3 − Ze3
ye4 − Ze4
ye6 − Ze6


(44)

Theorem 3. The b1 and b2 are given in Equation (38); the designed controller is

uc = kE (45)

uc = k(t)
(

EE
Ee

)(
b1
b2

)T

E = k(t)
(

EE3
Ee2

)
(46)

.
k = −‖E‖2 (47)

by which the sum and error system (40) is asymptotically stable. The master system (35) and the
slave system (39) realize simultaneous synchronization and anti-synchronization.

Proof of Theorem 3. For the sum and error system (42), if EE3 = Ee2 = 0, the sub-

system (
.

EE1
.

EE2
.

Ee1
.

Ee3
.

Ee4 )
T

is asymptotically stable. Therefore, b∗ is given in
Equation (38), and it can be proved that (S(Z, y, E), b∗) can be stabilized; therefore, the
designed controller is reasonable [23,24]. �

The controlled sum and error system is expressed as

.
EE1 = − f1EE1 + ZE2Ze4 + Ze6ZE7 + yE2ye4 + ye6yE7
.
EE2 = − f1EE2 + ZE7Ze1 − Ze3ZE5 + yE7ye1 − ye3yE5
.
EE3 = − f2EE3 − ZE5Ze1 − yE5ye1 + k(t)EE3
.
Ee1 = − f1Ee1 + ye1ye3 + yE5yE7 − Ze1Ze3 − ZE5ZE7
.
Ee2 = − f2Ee2 + 0.5

(
Z2

e1 − Z2
E5 − y2

e1 + y2
E5
)
+ k(t)Ee2

.
Ee3 = − f2Ee3 + 0.5

(
Z2

E2 − Z2
e6 − y2

E2 + y2
e6
)

.
Ee4 = − f1Ee4 − ye4ye6 + yE2yE7 + Ze4Ze6 − ZE2ZE7

(48)

Second, let the main system be as follows:

.
Z = F(Z) + b∗uc + ∆ f (Z) + d(Z) + b∗uude1 (49)

where F(Z) =
(

FE(Z)
Fe(Z)

)
, b∗ =

(
b1
b2

)
, b1 =

 0
0
1

, and uc is given in Equation (46),

d(Z) ∈ R7 is the external disturbance to the system, ∆ f (Z) is the uncertainty of the

system, the initial condition is set to ∆ f (Z) =



0
0
0.01ZE1
0
0.01ZE1
0
0


, d(Z) =



0
0
1
0
1
0
0


in this paper

(the external perturbations and uncertainties are only randomly selected values, and for
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convenience, in this paper, z1 = z2 = z4 = z6 = z7 = 0). uude1 is the controller to be
designed. Additionally, the slave system is

.
y = F(y) (50)

where F(y) =

(
FE(y)
Fe(y)

)
; let EE = ZE + yE, and Ee = ye − Ze; then, the sum and error

system is
.
E = F(E) + b∗uc + ∆ f (Z) + d(Z) + b∗uude1 (51)

According to Lemma 2, uude1 can be obtained, and the filter selection is

G(s) =
1

1 + 0.001s
(52)

.
EE1 = − f1EE1 + ZE2Ze4 + Ze6ZE7 + yE2ye4 + ye6yE7
.
EE2 = − f1EE2 + ZE7Ze1 − Ze3ZE5 + yE7ye1 − ye3yE5
.
EE3 = − f2EE3 − ZE5Ze1 − yE5ye1 + k(t)EE3 + ∆ f (Z) + d(Z) + uude1
.
Ee1 = − f1Ee1 + ye1ye3 + yE5yE7 − Ze1Ze3 − ZE5ZE7
.
Ee2 = − f2Ee2 + 0.5

(
Z2

e1 − Z2
E5 − y2

e1 + y2
E5
)
+ k(t)Ee2 + ∆ f (Z) + d(Z) + uude1

.
Ee3 = − f2Ee3 + 0.5

(
Z2

E2 − Z2
e6 − y2

E2 + y2
e6
)

.
Ee4 = − f1Ee4 − ye4ye6 + yE2yE7 + Ze4Ze6 − ZE2ZE7

(53)

5. Results
5.1. Simulation of Stabilization

The following results can be obtained by using MATLAB simulation. Let the initial
value z(0) = ( 1 1 2 2 3 3 2 ), and the feedback gain K(0) = −1. Firstly, for the
nominal system (13), the seven states of the system are gradually stable from Figure 2.
Figure 3 shows the dynamic gain feedback eventually becomes an appropriate constant.
This shows ua in (17) is reasonable. Each state of the system (14) finally approaches zero,
and the stabilization of the system is realized.
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Figure 2. The state diagram of system: (a) the state diagram of 𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ; (b) the state diagram 
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of z5, z6, z7.



Symmetry 2022, 14, 710 10 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 3. The state diagram of dynamic feedback gain K. 

Next, the initial value above was selected, and system (4) was simulated. As evident 
from Figure 4, the states of the system are gradually stable. Figure 5 reveals that the 
dynamic gain gradually becomes constant, and Figure 6 shows the two lines gradually 
coincide, indicating that du  tends to be equal to its estimated value of ˆdu . In the case of 
external disturbance, the system is stabilized under the action of the controller. 

(a) (b) 

Figure 4. The state diagram of system based on UDE control method: (a) the state diagram of 𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ; (b) the state diagram of 𝑧ହ, 𝑧଺, 𝑧଻. 

Figure 3. The state diagram of dynamic feedback gain K.

Next, the initial value above was selected, and system (4) was simulated. As evident
from Figure 4, the states of the system are gradually stable. Figure 5 reveals that the
dynamic gain gradually becomes constant, and Figure 6 shows the two lines gradually
coincide, indicating that ud tends to be equal to its estimated value of ûd. In the case of
external disturbance, the system is stabilized under the action of the controller.
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z3, z4; (b) the state diagram of z5, z6, z7.
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5.2. Simulation of Simultaneous Synchronization and Anti-Synchronization

The following results can be obtained by using MATLAB simulation:
Firstly, simulation was used to verify the correctness of the dynamic gain control

method. Let the initial values are ZE(0) = (0.2, 0.2, 0.1), yE1 = yE2 = yE3 = 0.2,
Ze(0) = (0.1, 0.2, 0.3, 0.1), and ye(0) = (0.2, 0.3, 0.2, 0.1). Additionally, the feedback gain is
k(0) = −1.

Figure 7 shows the feedback gain k gradually approaches a constant. Figure 8a,b show
the states of the sum system EE and error system Ee, respectively. We can see that they
all tend to stabilize in the end. The states ZE and the corresponding states yE are anti-
synchronous, as evident from Figure 9. Figure 10 reveals that the states Ze and the corre-
sponding states ye are synchronized.
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Figure 10. The state diagram of Ze, ye: (a) Ze1, ye1 and Ze3, ye3 are synchronized, respectively;
(b) Ze4, ye4 and Ze6, ye6 are synchronized, respectively.

Next, the system with uncertainty and disturbance was simulated. The above initial
value was selected, and the following results can be obtained:

Figure 11 shows the states of the sum and error system gradually approaching zero.
Figure 12 shows three states in the system that realize anti-synchronization, while Figure 13
shows the other four states in the system realize synchronization.
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Figure 12. The state diagram of ZE, yE. The state diagram based on UDE dynamic control method.
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Figure 13. The state diagram of Ze, ye: (a) the state diagram of Ze1, ye1, Ze3, ye3; (b) the state diagram
of Ze4, ye4, Ze6, ye6.

Figure 14 reflects that the uncertainties and disturbances ud1 and ud2 of the system
tend to be the same as their estimated values ûd1 and ûd2, respectively. Figure 15 indicates
that the feedback gain gradually converges to a constant.
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as ûd1; (b) ud2 gradually approaches the same as ûd2.
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5.3. Discussion

When using the dynamic gain feedback control method, it took about 400 s for EE
to realize anti-synchronization and 700 s for Ee to realize synchronization. When the
second method was adopted, it took about 250 s for EE to realize anti-synchronization,
and Ee realized synchronization in less than 100 s. The proposed system can realize simul-
taneous synchronization and anti-synchronization faster. At the same time, we can see
that when the second method was adopted, the state change range of the laser system is
relatively small and more stable. Through the simulation comparison of the two methods,
the dynamic feedback method based on UDE can realize the stability of the system in the
environment with external disturbances, and the feedback gain can be changed flexibly.

The results show that this new chaotic system is worth studying because of its obvious
chaotic characteristics. It is better to use the UDE control method combined with dynamic
feedback gain. The form of the controller designed using this method is relatively simple,
and it is possible to determine whether the system achieves synchronization and anti-
synchronization by monitoring the data and state of the feedback gain during operation.
Additionally, it can eliminate the uncertainty and interference of the system. This method
can be used in most nonlinear system control fields. Although this method is superior to
the dynamic feedback control method, it has some limitations. The cut-off frequency of the
filter determines the sum of uncertainty and interference.

Due to the randomness and ergodicity of chaos [23–28], chaos has important research
value in the field of random coverage path planning of chaotic mobile robots. The control
problem of laser systems studied in this paper provides a new idea for research on chaotic
robots. The designed controllers are physically realizable, which provides a theoretical
basis for the synchronization and stabilization of chaotic robots in the future.

6. Conclusions

In this paper, the stabilization and synchronization of a chaotic system in a complex
domain were studied by using the control method of dynamic gain feedback, and the
appropriate controllers were designed. Then, combining this method with the UDE control
method, the controllers suitable for laser complex chaotic systems with external interference
and uncertainty were designed. Therefore, the stabilization, simultaneous synchronization,
and partial anti-synchronization of the system were realized. The simulation results show
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that this method is effective and has more advantages. The dynamic feedback control
method based on UDE can change the feedback gain and obtain a more flexible controller,
as well as solve the problem that the system can still achieve synchronization and partial
anti-synchronization under uncertain interference, and reduce the asymmetry of nonlinear
system. The research results provide a theoretical basis for the application of chaotic mobile
robots in complex chaotic systems.
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