Permissions-Based Detection of Android Malware Using Machine Learning
Abstract
:1. Introduction
- A lightweight malware detection system.
- Manual collection of a new ~10,000 malware and benign APKs dataset, publicly available at GitHub [27].
- Optimization of permission feature set (~77%) as compared to existing techniques.
- Improved detection accuracy up to 90% using standard ML techniques—SVM, Random Forest, and Naïve Bayes based classifiers.
- Fully functional source code of the proposed scheme readily available [28] for future research.
2. Literature Review
3. The Proposed Methodology
- I.
- Collecting Malicious and Benign APKs
- II.
- Constructing/Identifying the Features Set
- III.
- Filtering, Finalizing, and Extracting the Permissions (Features) Dataset
- IV.
- Employing the Supervised ML algorithms to Classify the Android Malware
3.1. Malicious and Benign Samples Collection
3.2. Constructing the Parameter Feature Set
3.3. Filtering, Finalizing, and Extracting the Core Features
3.3.1. Selection of Effective Permissions
3.3.2. Generating Dataset
3.4. Malware Detection by Employing Machine Learning Classification Models
4. Performance Evaluation
4.1. Evaluation Measures
4.2. Evaluating PerDRaML Effectiveness
4.3. Discussion
4.4. Applicability of PerDRaML
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feizollah, A.; Anuar, N.B.; Salleh, R.; Suarez-Tangil, G.; Furnell, S. AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection. Comput. Secur. 2017, 65, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Jannath, N.O.S.; Bhanu, S.M.S. Detection of repackaged Android applications based on Apps Permissions. In Proceedings of the 2018 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15–17 March 2018; pp. 1–8. [Google Scholar]
- Sandeep, H.R. Static analysis of android malware detection using deep learning. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Secunderabad, India, 15–17 May 2019; pp. 841–845. [Google Scholar]
- Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant Permission Identification for Machine-Learning-Based Android Malware Detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [Google Scholar] [CrossRef]
- Wang, Z.; Li, K.; Hu, Y.; Fukuda, A.; Kong, W. Multilevel permission extraction in android applications for malware detection. In Proceedings of the 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), Beijing, China, 28–31 August 2019; pp. 1–5. [Google Scholar]
- Fan, M.; Liu, J.; Luo, X.; Chen, K.; Tian, Z.; Zheng, Q.; Liu, T. Android Malware Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1890–1905. [Google Scholar] [CrossRef]
- Fatima, A.; Kumar, S.; Dutta, M.K. Host-Server-Based Malware Detection System for Android Platforms Using Machine Learning. In Advances in Computational Intelligence and Communication Technology; Springer: Singapore, 2021; pp. 195–205. [Google Scholar]
- Sun, Y.; Xie, Y.; Qiu, Z.; Pan, Y.; Weng, J.; Guo, S. Detecting android malware based on extreme learning machine. In Proceedings of the 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Orlando, FL, USA, 6–10 November 2017; pp. 47–53. [Google Scholar]
- Zhu, H.-J.; You, Z.-H.; Zhu, Z.-X.; Shi, W.-L.; Chen, X.; Cheng, L. DroidDet: Effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 2018, 272, 638–646. [Google Scholar] [CrossRef]
- Faruki, P.; Laxmi, V.; Bharmal, A.; Gaur, M.; Ganmoor, V. AndroSimilar: Robust signature for detecting variants of Android malware. J. Inf. Secur. Appl. 2015, 22, 66–80. [Google Scholar] [CrossRef]
- Suarez-Tangil, G.; Dash, S.K.; Ahmadi, M.; Kinder, J.; Giacinto, G.; Cavallaro, L. Droidsieve: Fast and accurate classification of obfuscated android malware. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, Scottsdale, AZ, USA, 22–24 March 2017; pp. 309–320. [Google Scholar]
- Tong, S.; Chang, E. Support vector machine active learning for image retrieval. In Proceedings of the ninth ACM international conference on Multimedia, New York, NY, USA, 30 September–5 October 2011; pp. 107–118. [Google Scholar]
- Qiao, M.; Sung, A.H.; Liu, Q. Merging permission and api features for android malware detection. In Proceedings of the 2016 5th IIAI international congress on advanced applied informatics (IIAI-AAI), Kumamoto, Japan, 10–14 July 2016; pp. 566–571. [Google Scholar]
- Wu, D.-J.; Mao, C.-H.; Wei, T.-E.; Lee, H.-M.; Wu, K.-P. Droidmat: Android malware detection through manifest and api calls tracing. In Proceedings of the 2012 Seventh Asia Joint Conference on Information Security, Washington, DC, USA, 9–10 August 2012; pp. 62–69. [Google Scholar]
- Wagstaff, K.; Cardie, C.; Rogers, S.; Schrödl, S. Constrained k-means clustering with background knowledge. Icml 2001, 1, 577–584. [Google Scholar]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Wang, W.; Zhao, M.; Gao, Z.; Xu, G.; Xian, H.; Li, Y.; Zhang, X. Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy and Directions. IEEE Access 2019, 7, 67602–67631. [Google Scholar] [CrossRef]
- Guerra-Manzanares, A.; Bahsi, H.; Nõmm, S. KronoDroid: Time-based Hybrid-featured Dataset for Effective Android Malware Detection and Characterization. Comput. Secur. 2021, 110, 102399. [Google Scholar] [CrossRef]
- Jannath Nisha, O.S.; Mary Saira Bhanu, S. Detection of malicious Android applications using Ontology-based intelligent model in mobile cloud environment. J. Inf. Secur. Appl. 2021, 58, 102751. [Google Scholar] [CrossRef]
- Bhandari, S.; Panihar, R.; Naval, S.; Laxmi, V.; Zemmari, A.; Gaur, M.S. Sword: Semantic aware android malware detector. J. Inf. Secur. Appl. 2018, 42, 46–56. [Google Scholar] [CrossRef]
- Karbab, E.B.; Debbabi, M.; Derhab, A.; Mouheb, D. MalDozer: Automatic framework for android malware detection using deep learning. Digit. Investig. 2018, 24, S48–S59. [Google Scholar] [CrossRef]
- Mathur, A.; Podila, L.M.; Kulkarni, K.; Niyaz, Q.; Javaid, A.Y. NATICUSdroid: A malware detection framework for Android using native and custom permissions. J. Inf. Secur. Appl. 2021, 58, 102696. [Google Scholar] [CrossRef]
- Androguard: Reverse Engineering, Malware Analysis of Android Applications. Available online: https://github.com/androguard/androguard (accessed on 20 January 2021).
- Razgallah, A.; Khoury, R.; Hallé, S.; Khanmohammadi, K. A survey of malware detection in Android apps: Recommendations and perspectives for future research. Comput. Sci. Rev. 2021, 39, 100358. [Google Scholar] [CrossRef]
- Sihag, V.; Vardhan, M.; Singh, P. A survey of android application and malware hardening. Comput. Sci. Rev. 2021, 39, 100365. [Google Scholar] [CrossRef]
- Zhang, W.; Luktarhan, N.; Ding, C.; Lu, B. Android Malware Detection Using TCN with Bytecode Image. Symmetry 2021, 13, 1107. [Google Scholar] [CrossRef]
- PerDRaML. Available online: https://github.com/fahadakbar24/android-malware-detection (accessed on 8 February 2022).
- Malware Dataset. Available online: https://github.com/fahadakbar24/android-malware-detection-dataset (accessed on 22 January 2021).
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting; R Package Version 0.4-2 1; 2015; pp. 1–4. Available online: https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 27 October 2021).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 28 October 2021).
- Google Play Python API. Available online: https://github.com/fahadakbar24/google-play-api (accessed on 17 November 2021).
- Sotiroudis, S.P.; Goudos, S.K.; Siakavara, K. Feature Importances: A Tool to Explain Radio Propagation and Reduce Model Complexity. Telecom 2020, 1, 114–125. [Google Scholar] [CrossRef]
- Nasir, M.; Javed, A.R.; Tariq, M.A.; Asim, M.; Baker, T. Feature engineering and deep learning-based intrusion detection framework for securing edge IoT. J. Supercomput. 2022, 78, 1–15. [Google Scholar] [CrossRef]
Reference | Features | No. of Features | No. of Samples | Classifier/Algorithm | Accuracy | Suggestions |
---|---|---|---|---|---|---|
Feizollah et al. [1], 2017 | Intents (explicit and implicit), Permissions | Variable | 7406 (B:1846, M:5560) | Bayesian Network using k-fold cross-validation | 95.5% | To improve the accuracy, the intents can be utilized in conjunction with other characteristics |
Nisha et al. [2], 2018 | Permissions | 88 | - | KNN, SVM, DT, Naïve Bayes and Random Forest | 92.94% | Permissions can be reduced by exploring the most relevant ones (i.e., Li et al. [4], 2017). |
Sandeep [3], 2019 | Permissions | 331 | - | Random Forest | 94.65% | Other classifiers can be explored to improve the detection accuracies. Further, the features can be optimized while incorporating the resistance against mimicry attacks, App cloning, or adware |
Li et al. [4], 2017 | Ranking, support-based, and multi-level Permissions Pruning | 22 | - | SVM | >90% | Unknown samples were collected. The scheme should be tested on larger datasets. |
Wang et al. [5], 2019 | Permission Interactions | 25 | 9736 | MN, SVM, D-Tree, and Random Forest | 97.9% | - |
Fan et al. [6], 2018 | Fregraphs to represent common behaviors of malware | Variable | Multiple datasets | - | 94.2% | - |
Fatima et al. [7], 2020 | Frequent sub-graphs | 674 | 50,000 (B:25,000, M:25,000) | Random classifier by server client arch. | >97% | The security of host vs. server communications should be evaluated. |
Sun et al. [8], 2017 | Permission, API calls | 83 | 1049 (B:524, M:525) | Extreme Learning Machine | 97.14% | Dataset only limited to Chinese markets |
Zhu et al. [9], 2018 | Permission, API calls | 22 | 2130 (B:1065, M:1065) | SVM and Rotation Forest | >88% | Evaluation on limited APKs dataset and as well as limited classifiers was explored |
Guillermo et al. [11], 2017 | Permission, API calls | - | 100,000 | ExtraTrees, SVM, RF, XGBoost | 99.82% | - |
Qiao et al. [13], 2016 | Permission, API calls | - | 6260 | SVM, Random Forest, ANN | 78.40–94.98% | - |
Wu et al. [14], 2012 | Permission, API calls | - | 1738 | K-Means, k-nearest neighbors | 97.87% | Evaluation on limited APKs dataset |
S. No | Features | Source | Importance% | S. No | Features | Source | Importance % |
---|---|---|---|---|---|---|---|
1 | READ_PHONE_STATE | G | 0.31892 | 15 | ACCESS_NOTIFICATION_POLICY | G | 0.00337 |
2 | Smali Size | R | 0.22674 | 16 | WRITE_CONTACTS | G | 0.00265 |
3 | Permission rate | R | 0.20376 | 17 | READ_CALENDAR | G | 0.00235 |
4 | WRITE_EXTERNAL_STORAGE | G + R | 0.06948 | 18 | READ_CALL_LOG | G | 0.00200 |
5 | ACCESS_COARSE_LOCATION | G | 0.05323 | 19 | WRITE_CALENDAR | G | 0.00175 |
6 | ACCESS_FINE_LOCATION | G | 0.01932 | 20 | INSTALL_PACKAGES | G + R | 0.00151 |
7 | RECORD_AUDIO | G | 0.01923 | 21 | SET_ALARM | G + R | 0.00090 |
8 | READ_EXTERNAL_STORAGE | G | 0.01588 | 22 | BODY_SENSORS | G | 0.00080 |
9 | SEND_SMS | G + R | 0.01268 | 23 | WRITE_SECURE_SETTINGS | G + R | 0.00077 |
10 | CAMERA | G | 0.01024 | 24 | WRITE_CALL_LOG | G | 0.00069 |
11 | RECEIVE_SMS | G + R | 0.01009 | 25 | UPDATE_DEVICE_STATS | G + R | 0.00016 |
12 | GET_ACCOUNTS | G | 0.00953 | 26 | READ_HISTORY_BOOKMARKS | G + R | 0.00002 |
13 | READ_SMS | G | 0.00743 | 27 | WRITE_HISTORY_BOOKMARKS | G + R | 0.00000 |
14 | READ_CONTACTS | G | 0.00650 | - | - | - | - |
Type | No | Name |
---|---|---|
Permissions | 1 | android.permission.READ_PHONE_STATE |
2 | android.permission.WRITE_EXTERNAL_STORAGE | |
3 | android.permission. ACCESS_COARSE_LOCATION | |
Metrics | 1 | Smali Size |
2 | Permission Rate |
Permissions/Features | Zhu et al. [9] | Proposed Method | |
---|---|---|---|
Permission | WRITE_EXTERNAL_STORAGE | ✓ | ✓ |
UPDATE_DEVICE_STATS | ✓ | X | |
SET_ALARM | ✓ | X | |
INSTALL_PACKAGES | ✓ | X | |
WRITE_HISTORY_BOOKMARKS | ✓ | X | |
WRITE_SECURE_SETTINGS | ✓ | X | |
READ_HISTORY_BOOKMARKS | ✓ | X | |
RECEIVE_SMS | ✓ | X | |
SEND_SMS | ✓ | X | |
READ_PHONE_STATE | X | ✓ | |
ACCESS_COARSE_LOCATION | X | ✓ | |
APIs & URLs | sendTextMessage() | ✓ | X |
getMessageBody() | ✓ | X | |
getSubscriberId() | ✓ | X | |
getLine1Number() | ✓ | X | |
getLastKnownLocation() | ✓ | X | |
content://com.android.contacts | ✓ | X | |
System Event | DATA_SMS_RECEIVED | ✓ | X |
BATTERY_CHANGED | ✓ | X | |
AIRPLANE_MODE | ✓ | X | |
SMS_RECEIVED | ✓ | X | |
c2dm.intent.RECEIVE | ✓ | X | |
QUICKBOOT_POWERON | ✓ | X | |
Metrics | Permission Rate | ✓ | ✓ |
Smali Size | X | ✓ | |
Percentage (Feature Usage) | 88.0% | 20.0% |
Classifier | Test Set | Precision (%) | Sensitivity (TPR, %) | Accuracy (%) | AUC |
---|---|---|---|---|---|
SVM | 1 | 85.71 | 87.27 | 85.91 | 0.85 |
2 | 87.27 | 83.48 | 84.51 | 0.87 | |
3 | 81.48 | 83.02 | 82.16 | 0.83 | |
4 | 77.06 | 85.71 | 81.69 | 0.83 | |
5 | 87.62 | 85.98 | 86.85 | 0.88 | |
6 | 81.82 | 88.24 | 84.98 | 0.86 | |
7 | 82.30 | 89.42 | 85.45 | 0.89 | |
8 | 84.40 | 87.62 | 85.92 | 0.88 | |
9 | 88.39 | 83.19 | 84.51 | 0.85 | |
10 | 85.29 | 87.88 | 87.32 | 0.86 | |
Average (%) | 84.13 ± 3.5% | 86.18 ± 2.3 | 84.93 ± 1.8 | 0.86 ± 0.02 | |
Rotation Forest | 1 | 88.18 | 88.18 | 87.79 | 0.88 |
2 | 88.03 | 89.57 | 87.79 | 0.90 | |
3 | 86.11 | 87.74 | 86.85 | 0.86 | |
4 | 84.62 | 89.80 | 87.79 | 0.90 | |
5 | 88.35 | 85.05 | 86.85 | 0.88 | |
6 | 89.11 | 88.24 | 89.20 | 0.89 | |
7 | 89.81 | 93.30 | 91.55 | 0.93 | |
8 | 87.00 | 82.86 | 85.45 | 0.86 | |
9 | 91.30 | 88.24 | 88.73 | 0.89 | |
10 | 89.11 | 90.91 | 90.61 | 0.90 | |
Average (%) | 88.16 ± 1.80 | 88.4 ± 2.76 | 88.26 ± 1.73 | 0.89 ± 0.02 |
Classifier | Test Set | Precision (%) | Sensitivity (TPR, %) | F1—Score (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|
SVM | 1 | 89.63 | 89.65 | 89.60 | 89.60 | 0.95 |
2 | 89.66 | 89.64 | 89.60 | 89.60 | 0.95 | |
3 | 90.01 | 89.98 | 89.99 | 90.00 | 0.95 | |
4 | 89.07 | 89.01 | 89.00 | 89.00 | 0.93 | |
5 | 90.63 | 90.63 | 90.60 | 90.60 | 0.95 | |
6 | 90.46 | 90.21 | 90.27 | 90.30 | 0.95 | |
7 | 89.11 | 88.82 | 88.87 | 88.90 | 0.94 | |
8 | 90.63 | 90.59 | 90.50 | 90.50 | 0.95 | |
9 | 88.81 | 88.81 | 88.80 | 88.80 | 0.94 | |
10 | 89.73 | 89.66 | 89.68 | 89.70 | 0.94 | |
Average (%) | 89.77 | 89.70 | 89.69 | 89.70 | 0.94 |
Classifier | Test Set | Precision (%) | Sensitivity (TPR, %) | F1—Score (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|
Rotation Forest | 1 | 85.49 | 85.49 | 85.49 | 85.50 | 0.86 |
2 | 86.50 | 86.39 | 86.39 | 86.40 | 0.88 | |
3 | 86.38 | 86.43 | 86.39 | 86.40 | 0.87 | |
4 | 85.31 | 85.33 | 85.30 | 85.30 | 0.87 | |
5 | 87.62 | 87.62 | 87.60 | 87.60 | 0.89 | |
6 | 86.59 | 86.58 | 86.58 | 86.60 | 0.88 | |
7 | 86.20 | 86.19 | 86.20 | 86.20 | 0.88 | |
8 | 87.65 | 87.67 | 87.66 | 87.70 | 0.89 | |
9 | 85.81 | 85.81 | 85.80 | 85.80 | 0.87 | |
10 | 84.94 | 84.90 | 84.92 | 85.00 | 0.87 | |
Average (%) | 86.25 | 86.24 | 86.23 | 86.25 | 0.88 |
Classifier | Test Set | Precision (%) | Sensitivity (TPR, %) | F1—Score (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|
Random Forest | 1 | 91.30 | 91.29 | 91.30 | 91.30 | 0.95 |
2 | 88.12 | 88.14 | 88.10 | 88.10 | 0.94 | |
3 | 89.44 | 89.28 | 89.34 | 89.40 | 0.94 | |
4 | 89.47 | 89.50 | 89.48 | 89.50 | 0.95 | |
5 | 91.51 | 91.48 | 91.49 | 91.50 | 0.96 | |
6 | 89.73 | 89.70 | 89.70 | 89.70 | 0.95 | |
7 | 90.56 | 90.63 | 90.58 | 90.60 | 0.95 | |
8 | 89.09 | 89.13 | 89.10 | 89.10 | 0.95 | |
9 | 89.71 | 89.63 | 89.60 | 89.60 | 0.95 | |
10 | 90.80 | 90.82 | 90.80 | 90.80 | 0.95 | |
Average (%) | 89.97 | 89.96 | 89.95 | 89.96 | 0.95 |
Classifier | Test Set | Precision (%) | Sensitivity (TPR, %) | F1—Score (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|
Naive Bayes | 1 | 88.80 | 88.80 | 88.80 | 88.80 | 0.92 |
2 | 89.25 | 89.39 | 89.28 | 89.30 | 0.93 | |
3 | 89.52 | 89.49 | 89.50 | 89.50 | 0.92 | |
4 | 89.79 | 89.82 | 89.80 | 89.80 | 0.94 | |
5 | 89.25 | 89.12 | 89.17 | 89.20 | 0.92 | |
6 | 90.12 | 90.10 | 90.10 | 90.10 | 0.93 | |
7 | 88.53 | 88.65 | 88.49 | 88.50 | 0.92 | |
8 | 90.60 | 90.60 | 90.60 | 90.60 | 0.94 | |
9 | 89.63 | 89.49 | 89.55 | 89.60 | 0.93 | |
10 | 89.82 | 89.75 | 89.78 | 89.80 | 0.92 | |
Average (%) | 89.53 | 89.52 | 89.50 | 89.52 | 0.93 |
Classifier | Zhu et al. [9] Approach | Proposed Approach | ||||||
---|---|---|---|---|---|---|---|---|
# of Features | Precision (%) | Sensitivity (%) | Accuracy (%) | # of Features | Precision (%) | Sensitivity (%) | Accuracy (%) | |
SVM | 22 | 84.13 ± 3.5 | 86.18 ± 2.3 | 84.93 ± 1.8 | 5 | 89.7 ± 0.8 | 89.7 ± 0.85 | 89.7 ± 0.9 |
Rotation Forest | 88.16 ± 1.80 | 88.4 ± 2.76 | 88.26 ± 1.73 | 86.25 ± 1.3 | 86.24 ± 1.4 | 86.25 ± 1.25 | ||
Random Forest | - | - | - | 89.97 ± 1.25 | 89.96 ± 1.5 | 89.96 ± 1.5 | ||
Naïve Bayes | - | - | - | 89.53 ± 0.75 | 89.52 ± 1.1 | 89.52 ± 1.0 | ||
Reduction | 0% | 77.23% |
Classifier | Precision (%) | Sensitivity (TPR, %) | F1—Score (%) | Accuracy (%) |
---|---|---|---|---|
SVM | 89.79 | 89.72 | 89.71 | 89.72 |
Rotation Forest | 88.10 | 88.10 | 88.03 | 88.04 |
Random Forest | 90.93 | 90.94 | 90.92 | 90.93 |
Naïve Bayes | 76.58 | 68.59 | 65.99 | 68.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, F.; Hussain, M.; Mumtaz, R.; Riaz, Q.; Wahab, A.W.A.; Jung, K.-H. Permissions-Based Detection of Android Malware Using Machine Learning. Symmetry 2022, 14, 718. https://doi.org/10.3390/sym14040718
Akbar F, Hussain M, Mumtaz R, Riaz Q, Wahab AWA, Jung K-H. Permissions-Based Detection of Android Malware Using Machine Learning. Symmetry. 2022; 14(4):718. https://doi.org/10.3390/sym14040718
Chicago/Turabian StyleAkbar, Fahad, Mehdi Hussain, Rafia Mumtaz, Qaiser Riaz, Ainuddin Wahid Abdul Wahab, and Ki-Hyun Jung. 2022. "Permissions-Based Detection of Android Malware Using Machine Learning" Symmetry 14, no. 4: 718. https://doi.org/10.3390/sym14040718
APA StyleAkbar, F., Hussain, M., Mumtaz, R., Riaz, Q., Wahab, A. W. A., & Jung, K. -H. (2022). Permissions-Based Detection of Android Malware Using Machine Learning. Symmetry, 14(4), 718. https://doi.org/10.3390/sym14040718