Impact of Brownian Motion on the Analytical Solutions of the Space-Fractional Stochastic Approximate Long Water Wave Equation
Abstract
:1. Introduction
2. Conformable Derivative and Its Properties
- is a constant
3. Wave Equation for SFSALWWE
4. Analytical Solutions for SFSALWWE
5. The Influence of Noise
6. Physical Interpretation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prévöt, C.; Rxoxckner, M. A Concise Course on Stochastic Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mohammed, W.W.; Blömker, D. Fast diffusion limit for reaction-diffusion systems with stochastic Neumann boundary conditions. SIAM J. Math. Anal. 2016, 48, 3547–3578. [Google Scholar] [CrossRef] [Green Version]
- Imkeller, P.; Monahan, A.H. Conceptual stochastic climate models. Stoch. Dynam. 2002, 2, 311–326. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, F.; Li, J. Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 2009, 71, 2724–2733. [Google Scholar] [CrossRef]
- Deng, W. Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal. 2010, 72, 1768–1777. [Google Scholar] [CrossRef]
- Iqbal, N.; Yasmin, H.; Ali, A.; Bariq, A.; Al-Sawalha, M.M.; Mohammed, W.W. Numerical Methods for Fractional-Order Fornberg-Whitham Equations in the Sense of Atangana-Baleanu Derivative. J. Funct. Spaces 2021, 2021, 2197247. [Google Scholar] [CrossRef]
- Iqbal, N.; Wu, R.; Mohammed, W.W. Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting. Math. Comput. Simul. 2021, 188, 102–119. [Google Scholar] [CrossRef]
- Shah, K.; Sher, M.; Ali, A.; Abdeljawad, T. On degree theory for non-monotone type fractional order delay differential equations. AIMS Math. 2021, 7, 9479–9492. [Google Scholar] [CrossRef]
- Kamal, R.; Rahmat, G.; Shah, K. On the Numerical Approximation of Three-Dimensional Time Fractional Convection-Diffusion Equations. Math. Probl. Eng. 2021, 2021, 4640467. [Google Scholar]
- El-Sayed, A.M.A.; Gaber, M. The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys. Lett. A 2006, 359, 175–182. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 2011, 375, 1069–1073. [Google Scholar] [CrossRef]
- Guo, S.M.; Mei, L.Q.; Li, Y.; Sun, Y.F. The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 2012, 376, 407–411. [Google Scholar] [CrossRef]
- Wang, M.L.; Li, X.Z.; Zhang, J.L. The ()-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 2004, 40, 499–508. [Google Scholar] [CrossRef]
- Mohammed, W.W. Approximate solutions for stochastic time-fractional reaction–diffusion equations with multiplicative noise. Chin. Ann. Math. Methods Appl. Sci. 2021, 44, 2140–2157. [Google Scholar] [CrossRef]
- Mohammed, W.W. Modulation Equation for the Stochastic Swift–Hohenberg Equation with Cubic and Quintic Nonlinearities on the Real Line. Mathematics 2020, 6, 1217. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Akbar, M.A. The eyp(-ϕ(ς))-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 2014, 5, 72–83. [Google Scholar]
- Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
- Yang, X.F.; Deng, Z.C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Diff. Equation 2015, 1, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Bulut, H.; Baskonus, H.M.; Pandir, Y. The Modified Trial Equation Method for Fractional Wave Equation and Time Fractional Generalized Burgers Equation. Abstr. Appl. Anal. 2013, 2013, 636802. [Google Scholar] [CrossRef]
- Taghizadeh, N.; Mirzazadeh, M.; Rahimian, M.; Akbari, M. Application of the simplest equation method to some time-fractional partial differential equations. Ain Shams Eng. J. 2013, 4, 897–902. [Google Scholar] [CrossRef] [Green Version]
- Ege, S.M.; Misirli, E. The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 2014, 2014, 135. [Google Scholar] [CrossRef] [Green Version]
- Al-Askar, F.M.; Mohammed, W.W.; Albalahi, A.M.; El-Morshedy, M. The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation. Fractal Fract. 2022, 6, 156. [Google Scholar] [CrossRef]
- Al-Askar, F.M.; Mohammed, W.W.; Albalahi, A.M.; El-Morshedy, M. The Impact of the Wiener process on the analytical solutions of the stochastic (2+ 1)-dimensional breaking soliton equation by using tanh–coth method. Mathematics 2022, 10, 817. [Google Scholar] [CrossRef]
- Albosaily, S.; Mohammed, W.W.; Hamza, A.E.; El-Morshedy, M.; Ahmad, H. The exact solutions of the stochastic fractional-space Allen—Cahn equation. Open Phys. 2022, 20, 23–29. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Iqbal, N.; Botmart, T. Additive Noise Effects on the Stabilization of Fractional-Space Diffusion Equation Solutions. Mathematics 2022, 10, 130. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Bazighifan, O.; Al-Sawalha, M.M.; Almatroud, A.O.; Aly, E.S. The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation. Fractal Fract. 2021, 5, 262. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Wang, M.L.; Zhang, J.L.; Li, X.Z. Application of the (G′/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations. Appl. Math. Comput. 2008, 206, 321–326. [Google Scholar] [CrossRef]
- Guo, S.; Zhou, Y.; Zhao, C. The improved (G′/G)-expansion method and its applications to the Broer–Kaup equations and approximate long water wave equations. Appl. Math. Comput. 2010, 216, 1965–1971. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z. Generalized extended tanh-function method to construct new explicit exact solutions for the approximate equations for long water waves. Int. J. Mod. Phys. C 2003, 14, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, M.; Akbulut, A. Application of two different algorithms to the approximate long water wave equation with conformable fractional derivative. Arab. J. Basic Appl. Sci. 2018, 25, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Yaslan, H.C. New analytic solutions of the space-time fractional Broer–Kaup and approximate long water wave equations. J. Ocean Eng. Sci. 2018, 3, 295–302. [Google Scholar] [CrossRef]
- Yan, L. New travelling wave solutions for coupled fractional variant Boussinesq equation and approximate long water wave equation. Int. J. Num. Meth. Heat Fluid Flow 2015, 25, 33–40. [Google Scholar] [CrossRef]
- Guner, O.; Atik, H.; Kayyrzhanovich, A.A. New exact solution for space-time fractional differential equations via (G′/G)-expansion method. Optik 2016, 130, 696–701. [Google Scholar] [CrossRef]
- Khater, M.M.A.; Kumar, D. New exact solutions for the time fractional coupled Boussinesq-Burger equation and approximate long water wave equation in shallow water. J. Ocean. Eng. Sci. 2017, 2, 223–228. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Askar, F.M.; Mohammed, W.W.; Alshammari, M. Impact of Brownian Motion on the Analytical Solutions of the Space-Fractional Stochastic Approximate Long Water Wave Equation. Symmetry 2022, 14, 740. https://doi.org/10.3390/sym14040740
Al-Askar FM, Mohammed WW, Alshammari M. Impact of Brownian Motion on the Analytical Solutions of the Space-Fractional Stochastic Approximate Long Water Wave Equation. Symmetry. 2022; 14(4):740. https://doi.org/10.3390/sym14040740
Chicago/Turabian StyleAl-Askar, Farah M., Wael W. Mohammed, and Mohammad Alshammari. 2022. "Impact of Brownian Motion on the Analytical Solutions of the Space-Fractional Stochastic Approximate Long Water Wave Equation" Symmetry 14, no. 4: 740. https://doi.org/10.3390/sym14040740
APA StyleAl-Askar, F. M., Mohammed, W. W., & Alshammari, M. (2022). Impact of Brownian Motion on the Analytical Solutions of the Space-Fractional Stochastic Approximate Long Water Wave Equation. Symmetry, 14(4), 740. https://doi.org/10.3390/sym14040740