Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc
Abstract
:1. Introduction and Basic Concepts
- (i)
- If with , then is the set of Janowski starlike functions; see [2]. Some interesting problems such as convolution properties, coefficient inequalities, sufficient conditions, subordinate results and integral preserving were discussed recently in [3,4,5,6,7] for some of the generalized families associated with circular domains;
- (ii)
- The class was introduced by Sokól and Stankiewicz [8], consisting of functions such that lies in the region bounded by the right-half of the lemniscate of Bernoulli given by ;
- (iii)
- When we take , then we have [9];
- (iv)
- The family , , the rational function is studied in [10];
- (v)
- For , the class is introduced in [11];
- (vi)
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, W.C.; Minda, D. Unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; American Mathematical Society: Rhode Island, RI, USA, 1992; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1971, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, K.; Arif, M.; Liu, J.L. Convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator. Turk. J. Math. 2019, 43, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Ahmad, K.; Liu, J.L.; Sokół, J. A new class of analytic functions associated with Sălăgean operator. J. Funct. Spaces 2019, 2019, 6157394. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coeffcient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Sokoł, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a rational function. Southeast Asian Bull. Math. 2016, 40, 199–212. [Google Scholar]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Ravichandran, V.; Sharma, K. Sufficient conditions for starlikeness. J. Korean Math. Soc. 2015, 52, 727–749. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Ravichandran, V. Application of subordination theory to starlike functions. Bull. Iran. Math. Soc. 2016, 42, 761–777. [Google Scholar]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Kargar, R.; Ebadian, A.; Sokół, J. On booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokol, J. On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Debye Functions, §27.1. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, NY, USA, 1972; pp. 999–1000. [Google Scholar]
- Lemmon, E.W.; Span, R. Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data 2006, 51, 785–850. [Google Scholar] [CrossRef]
- Arfken, G. Bernoulli Numbers, Euler-Maclaurin Formula, §5.9. In Mathematical Methods for Physicists, 3rd ed.; Academic Press: Orlando, FL, USA, 1985; pp. 327–338. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehen der Mathematischen Wissenschaften 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Annaby, M.H.; Mansour, Z.S. Q-Fractional Calculus and Equations; Springer: New York, NY, USA, 2012; Volume 2056. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differenatial Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Appl. Math. No. 255; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Bulboaca, T. Differential Subordinations and Superordinations: Recent Results; House of Science Book Publication: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Zaprawa, P. Estimates of initial coefficients for bi-univalent functions. Abst. Appl. Anal. 2014, 2014, 357480. [Google Scholar] [CrossRef]
- El-Qadeem, A.H.; Mamon, M.A. Estimation of initial Maclaurin coefficients of certain subclasses of bounded bi-univalent functions. J. Egypt. Math. Soc. 2019, 27, 16. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-Subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Qadeem, A.H.; Mamon, M.A.; Elshazly, I.S. Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc. Symmetry 2022, 14, 758. https://doi.org/10.3390/sym14040758
El-Qadeem AH, Mamon MA, Elshazly IS. Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc. Symmetry. 2022; 14(4):758. https://doi.org/10.3390/sym14040758
Chicago/Turabian StyleEl-Qadeem, Alaa H., Mohamed A. Mamon, and Ibrahim S. Elshazly. 2022. "Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc" Symmetry 14, no. 4: 758. https://doi.org/10.3390/sym14040758
APA StyleEl-Qadeem, A. H., Mamon, M. A., & Elshazly, I. S. (2022). Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc. Symmetry, 14(4), 758. https://doi.org/10.3390/sym14040758