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Abstract

:

In this paper, we present the q-Lidstone polynomials which are q-Bernoulli polynomials generated by the third Jackson q-Bessel function, based on the Green’s function of a certain q-difference equation. Also, we provide the q-Fourier series expansions of these polynomials and derive some results related to them.
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1. Introduction


In 1929, Lidstone [1] introduced a generalization of Taylor’s series that approximates an entire function   f ( z )   of exponential type less than  π  in a neighborhood of two points instead of one:


  f  ( z )  =  ∑  n = 0  ∞   A n   ( z )   f  2 n    ( 1 )  +  ∑  n = 0  ∞   A n   ( 1 − z )   f  2 n    ( 0 )  ,  








where the set    {  A n   ( z )  }  n   called Lidstone polynomials. In [2], Whittaker proved that


   A n   ( z )  =   2  2 n + 1    ( 2 n + 1 ) !    B  2 n + 1    (   z + 1  2  )  ,  








where    B n   ( x )    is the Bernoulli polynomial of degree n, which may be defined by the generating function


    t  e  x t      e t  − 1   =  ∑  n = 0  ∞   B n   ( x )    t n   n !   .  











Recently, Ismail and Mansour [3] introduced a q analog of the Lidstone expansion theorem where they expand a class of entire functions of q-exponential growth in terms of Jackson q-derivatives of even degree at 0 and 1. See also [4,5,6] for some results and applications to the q-Lidstone theorem.



In [7], the authors constructed another formula of q-Lidstone expansion theorem by using the symmetric q-difference operator   δ q   (see Section 2), that is


  f  ( z )  =  ∑  n = 0  ∞      δ q  2 n    f  ( 1 )     δ q   z  2 n        A ˜  n   ( z )  −    δ q  2 n    f  ( 0 )     δ q   z  2 n        B ˜  n   ( z )   ,  



(1)




where     A ˜  n   ( z )    and     B ˜  n   ( z )    are the q-Lidstone polynomials defined by the generating functions


        e x  p q   ( z w )  − e x  p q   ( − z w )    e x  p q   ( w )  − e x  p q   ( − w )     =   ∑  n = 0  ∞     A ˜  n   ( z )    w  2 n   ,          e x  p q   ( z w )  e x  p q   ( − w )  − e x  p q   ( − z w )  e x  p q   ( w )    e x  p q   ( w )  − e x  p q   ( − w )     =   ∑  n = 0  ∞     B ˜  n   ( z )    w  2 n   .     



(2)







Moreover, it turns out that


    B ˜  n   ( z )  =   2  2 n + 1      [ 2 n + 1 ]  q  !     B ˜   2 n + 1    ( z / 2 ; q )  ,  



(3)




where     B ˜  n   ( z ; q )    are q-Bernoulli polynomials generated by


     w  e x  p q   ( z w )   e x  p q   (   − w  2  )    e x  p q   (  w 2  )  − e x  p q   (   − w  2  )     =  ∑  n = 0  ∞    B ˜  n   ( z ; q )    w n     [ n ]  q  !   ,  



(4)




and the function   e x  p q   ( . )    is the q-exponential function which has the series representation


  e x  p q   ( z )  =  ∑  n = 0  ∞    q   n ( n − 1 )  4      [ n ]  q  !    z n  ;  z ∈ C .  



(5)







In this paper, we assume that q is a positive number less than one and the set   A q *   is defined by


   A q *  : =  {  q n  : n ∈  N 0  }  ∪  { 0 }  ,  








where    N 0  : =  { 0 , 1 , 2 , … }   . We present the q-Lidstone polynomials     A ˜  n   ( z )    and     B ˜  n   ( z )    based on the Green’s function of a q-boundary value problem


         δ q  2 n    f  ( z )     δ q   z  2 n     = ϕ  ( z )  ,             δ q  2 k    f  ( 0 )     δ q   z  2 k     =  a k  ,      δ q  2 k    f  ( 1 )     δ q   z  2 k     =  b k     ( k = 0 , 1 , … , n − 1 )  ,      



(6)




where f and  ϕ  are assumed to be continuous functions on   A q *  . Also, we introduce the q-Fourier series expansions of these functions and derive some results related to them. For other recent contributions on this area, one may refer to [8,9,10].



This article is organized as follows: In the next section, we present some background on q-analysis which we need in our investigations. In Section 3, we establish the existence of a solution for the system (51). In Section 4, we introduce the q-Fourier series expansions of some functions. As an application, in Section 5, we define q-Lidstone polynomials based on the Green’s function of the system (51), and we provide the q-Fourier series expansions of these polynomials. Moreover, relying on the obtained q-Fourier series, we derive a close approximation to     A ˜  n   ( z )    and     B ˜  n   ( z )    for large n.




2. Preliminaries


Recall that the q-derivative   D q   of the function f is defined by


   D q  f  ( z )  : =   f ( z ) − f ( q z )   z − q z   ,   for   z ≠ 0 ,  



(7)




and the q-derivative at zero is defined to be    f ′   ( 0 )    if it exists, see [11]. The q-shifted fractional    ( a ; q )  n   of   a ∈ C   is defined by


    ( a ; q )  0  : = 1   and     ( a ; q )  n  : =  ∏  j = 0  n   ( 1 − a  q j  )  ,  for   n ∈ N ,  








and the q-number factorial     [ n ]  q  !   is defined for   q ≠ 1   by


    [ n ]  q  ! =  ∏  j = 0  n    [ j ]  q  ,    [ j ]  q  =   1 −  q j    1 − q   .  











Jackson [12] introduced the following integral, as a right inverse of the q-derivative (7), by


   ∫ a b  f  ( t )    d q  t : =  ∫ 0 b  f  ( t )   d q  t −  ∫ 0 a  f  ( t )    d q  t   ( a , b ∈ C )  ,  








where


   ∫ 0 z  f  ( t )    d q  t : =  ( 1 − q )   ∑  n = 0  ∞  z  q n  f  ( z  q n  )  ,  








provided that the series converges at   z = a   and   z = b  . We can interchange the order of double q-integral by


   ∫ 0 z   ∫ 0 v  f  ( t )    d q  t  d q  v =  ∫ 0 z   ∫  q t  z  f  ( t )    d q  v  d q  t =  ∫ 0 z   ( z − q t )   f  ( t )    d q  t .  



(8)







The symmetric q-difference operator   δ q   which is acting on a function f defined by


     δ q  f  ( z )     δ q  z   : =    f  (  q  1 2   z )  − f  (  q   − 1  2   z )    z (  q  1 2   −  q   − 1  2   )    ,   for   z ≠ 0 .  



(9)




(see [11,13]). From (7) and (9), it follows


     δ q  f  ( z )     δ q  z   : =  D q  f  (  z  q   )  .  











Therefore, we have


   ∫ 0 a     δ q  f  ( z )     δ q  z     d q  z =  q  1 2     [ f  (  q  −  1 2     a )  − f  ( 0 )  ]  .  



(10)







A function f defined on   A q *   is called q-regular at zero if it satisfies


   lim  n → ∞   f  ( x  q n  )  = f  ( 0 )  ,  for  all  x ∈  A  q , t  *  .  











The q-integration by parts rule on   A q *   (see [13]) is


   ∫ 0 a  g  (  q  −  1 2    t )     δ q  f  ( t )     δ q  t     d q  t =  q  1 2     ( g f )   (  q  −  1 2     t )   | 0 a  −  ∫ 0 a  f  (  q  1 2   t )      δ q  g  ( t )     δ q  t     d q  t ,  



(11)




where f and g are complex valued q-regular functions at zero.



We will use a q-exponential function   e x  p q   ( . )    defined in (5) and the q-linear sine and cosine,    S q   ( z )    and    C q   ( z )   , which defined by


      S q   ( z )      : =   e x  p q   ( i z )  − e x  p q   ( − i z )    2 i   =  ∑  n = 0  ∞    ( − 1 )  n     q  n ( n +  1 2  )      [ 2 n + 1 ]  q  !    z  2 n + 1   ,        C q   ( z )      : =   e x  p q   ( i z )  + e x  p q   ( − i z )   2  =  ∑  n = 0  ∞    ( − 1 )  n     q  n ( n −  1 2  )      [ 2 n ]  q  !    z  2 n   .     



(12)







They can be written in terms of the third Jackson q-Bessel function    J ν  ( 3 )    ( z ; q )    [14,15] as follows


      S q   ( z )      : =  q  1 / 8      (  q 2  ;  q 2  )  ∞    ( q ;  q 2  )  ∞    z  1 / 2     J  1 / 2   ( 3 )    (  q  − 1 / 4   z ;  q 2  )  ,        C q   ( z )      : =  q  − 3 / 8      (  q 2  ;  q 2  )  ∞    ( q ;  q 2  )  ∞    z  1 / 2     J  − 1 / 2   ( 3 )    (  q  − 3 / 4   z ;  q 2  )  .     



(13)







These functions satisfy


     δ q   C q   ( w z )     δ q  z   = − w   S q   ( w z )  ,     δ q   S q   ( w z )     δ q  z   = w   C q   ( w z )  ,  



(14)




see [11,13]. We denote to the derivative of    S q   ( z )    by    S q ′   ( z )    and we assume that   {  w k  :  k ∈ N    with     w 1  <  w 2  <  w 3  < … }   is the set of positive zeroes of    S q   ( z )   .




3. Existence Solutions of  q -Differential System


In this section, we construct the solution of the q-differential system (51). Let    C q n   (  A q *  )    denote the space of all continues functions with continuous q-derivatives up to order   n − 1   on   A q *   with values in  R .



Lemma 1.

Let   f ,  ϕ ∈  C q 2   (  A q *  )   . Then, the solution of the q-differential equation


      δ q 2  f  ( z )     δ q   z 2    − ϕ  ( z )  = 0 ,   



(15)




subject to the boundary conditions   f ( 0 ) = f ( 1 ) = 0   is equivalent to the basic Fredholm q-integral equation


   f  ( z )  =  ∫ 0 1   G ˜   ( z , q t )  ϕ  ( q t )    d q  t ,   



(16)




where    G ˜   ( z , t )    is the Green’s function defined on   A q *   by


    G ˜   ( z , t )  : =       q  z  ( t − 1 )  ,      z < t  ;           q  t   ( z − 1 )  ,      t < z  .        



(17)









Proof. 

The q-differential Equation (15) can be written as


   D  q  2  f  ( z )  −  q  ϕ  ( q z )  = 0   ( z ∈  A q *  )  .  



(18)







By taking double q-integral for (18) and using (8), we obtain


  f  ( z )  =  c 0  +  c 1  z +  q   ∫ 0 z   ( z − q t )  ϕ  ( q t )    d q  t ,  



(19)




where   c 0   and   c 1   are arbitrary constant. Using the boundary conditions, we get    c 0  = 0   and


   c 1  = −  q   ∫ 0 1   ( 1 − q t )  ϕ  ( q t )    d q  t .  











Substituting in (19), we have


  f  ( z )  = −  q  z  ∫ 0 1   ( 1 − q t )  ϕ  ( q t )    d q  t +  q   ∫ 0 z   ( z − q t )  ϕ  ( q t )    d q  t ,  








and then we obtain (16).  ☐





Remark 1.

By induction on n, one can verify that if   f , ϕ ∈  C q  2 n    (  A q *  )   , then the function


   f  ( z )  =  ∫ 0 1    G ˜  n   ( z , q t )   ϕ  ( q t )    d q  t ,   



(20)




is the solution of the q-boundary value problem


          δ q  2 n    f  ( z )     δ q   z  2 n     = ϕ  ( z )  ,             δ q  2 k    f  ( 1 )     δ q   z  2 k     =    δ q  2 k    f  ( 0 )     δ q   z  2 k     = 0    ( k = 0 , 1 , … , n − 1 )  ,       



(21)




where     G ˜  1   ( z , t )    is the Green’s function defined as in (17) and


        G ˜  n   ( z , q t )  =      ∫ 0 1   G ˜   ( z , q w )     G ˜   n − 1    ( q w , q t )    d q  w      =     ∫ 0 1    G ˜   n − 1    ( z , q w )    G ˜   ( q w , q t )    d q  w   ( n = 2 , 3 , … )  .      



(22)









Theorem 1.

If   f ( z )   and   ϕ ( z )   are functions of class    C q  2 n    (  A q *  )   , then any solution of the system


          δ q  2 n    f  ( z )     δ q   z  2 n     = ϕ  ( z )  ,             δ q  2 k    f  ( 0 )     δ q   z  2 k     =  a k  ,      δ q  2 k    f  ( 1 )     δ q   z  2 k     =  b k     ( k = 0 , 1 , … , n − 1 )        



(23)




is given by


      f  ( z )  =  a 0   ( z − 1 )  +   ∑  k = 1   n − 1     a k   ∫ 0 1   ( q t − 1 )     G ˜  k   ( z , q t )    d q  t +  b 0  z       +   ∑  k = 1   n − 1     b k   ∫ 0 1   ( q t )     G ˜  k   ( z , q t )    d q  t +  ∫ 0 1    G ˜  n   ( z , q t )  ϕ  ( q t )    d q  t ,      



(24)




where the functions     G ˜  n   ( z , q t )      ( n ∈ N )   defined as in (17) and (22).





Proof. 

From (17), (22) and Equation (23) we get


      R n   ( z )  =      ∫ 0 1    G ˜  n   ( z , q t )  ϕ  ( q t )    d q  t      =     ∫ 0 1    G ˜   n − 1    ( z , q w )   ∫ 0 1   G ˜   ( q w , q t )      δ q  2 n    f  ( q t )     δ q   z  2 n       d q  t   d q  w      =     ∫ 0 1    G ˜   n − 1    ( z , q w )  [  q   ( q w − 1 )   ∫ 0  q w    ( q t )      δ q  2 n    f  ( q t )     δ q   z  2 n       d q  t      +    q  q  w  ∫  q w  1   ( q t − 1 )      δ q  2 n    f  ( q t )     δ q   z  2 n       d q  t ]   d q  w .     



(25)







Using the rule (11), after some simplifications, we obtain


      R n   ( z )  =    δ q  2 n − 2    f  ( 0 )     δ q   z  2 n − 2      ∫ 0 1   ( q w − 1 )     G ˜   n − 1    ( z , q w )    d q  w −          δ q  2 n − 2    f  ( 1 )     δ q   z  2 n − 2      ∫ 0 1   ( q w )     G ˜   n − 1    ( z , q w )    d q  w +  ∫ 0 1    G ˜   n − 1    ( z , q w )      δ q  2 n − 2    f  ( q w )     δ q   z  2 n − 2       d q  w .     



(26)







Repeating the q-integration by parts on the last q-integral of Equation (26)   ( n − 1 )   times, we get


      R n   ( z )  =   ∑  k = 1   n − 1       δ q  2 k    f  ( 0 )     δ q   z  2 k      ∫ 0 1   ( q w − 1 )     G ˜  k   ( z , q t )    d q  w −         ∑  k = 1   n − 1       δ q  2 k    f  ( 1 )     δ q   z  2 k      ∫ 0 1   ( q w )     G ˜  k   ( z , q w )    d q  w +  ∫ 0 1   G ˜   ( z , q w )      δ q 2   f  ( q w )     δ q   z 2      d q  w .     



(27)







Computing the last integral of (27), we get


         ∫ 0 1   G ˜   ( z , q w )      δ q 2   f  ( q w )     δ q   z 2      d q  w      =     q   ( 1 − z )   ∫ 0 z   ( − q w )      δ q 2   f  ( q w )     δ q   z 2      d q  w −  q  z  ∫ z 1   ( 1 − q w )      δ q 2   f  ( q w )     δ q   z 2      d q  w      =     a 0   ( 1 − z )  +  b 0  z − f  ( z )  .     



(28)







Now, by substituting (28) in (27), we obtain the required result.  ☐






4. Certain  q -Fourier Expansions


In this section, we consider the q-trigonometric functions    C q   ( z )    and    S q   ( z )    which are defined in (12). Our aim is to obtain the q-Fourier expansions of certain q-integral transforms involving the Green’s functions     G ˜  n   ( z , q t )    defined in Section 3.



Recall that the q-Fourier series expansion for   f ( x ) = 1   and   g ( x ) = x   are given [13,16] by


     1 =     2  ∑  k = 1  ∞    1 −  C q   (  q  1 / 2    w k  )     w k   C q   (  q  1 / 2    w k  )   S q ′   (  w k  )      S q   ( q  w k  x )  ,  x ∈  A q *  ,       x =     −  1 q   ∑  k = 1  ∞   2   w k   S q ′   (  w k  )      S q   ( q  w k  x )  ,     



(29)




where   {  w k  :  k ∈ N }   is the set of positive zeroes of    S q   ( z )   .



Lemma 2.

Let   z ∈  A q *   . Then


    ∫ 0 1   G ˜   ( z , q t )   S q   ( q  w k  t )    d q  t = −  1  w k 2     S q   (  w k  z )  .   













Proof. 

From (17), we get


      ∫ 0 1   G ˜   ( z , q t )   S q   ( q  w k  t )    d q  t =  q   ( 1 − z )   ∫ 0 z   ( − q t )    S q   ( q  w k  t )    d q  t       −  q   z  ∫  z  1   ( 1 − q t )    S q   ( q  w k  t )    d q  t .     



(30)







Using q-integration by parts (11), we obtain


      ∫ 0 z   ( − q t )    S q   ( q  w k  t )    d q  t =  z   q    w k      C q   (    w k  z   q   )  −  1   q    w k 2      S q   (  w k  z )  ,     



(31)






      ∫ z 1   ( 1 − q t )    S q   ( q  w k  t )    d q  t =   ( 1 − z )    q    w k      C q   (    w k  z   q   )  +  1   q    w k 2      S q   (  w k  z )  .     



(32)







Substituting from (31) and (32) into (30), we have the required result.  ☐





Lemma 3.

For   z ∈  A q *   , the following q-Fourier series expansion holds:


    ∫ 0 1   G ˜   ( z , q t )    d q  t = −  ∑  k = 1  ∞    L k   w k 2     S q   (  w k  z )  ,   



(33)




where


    L k  : =   2 − 2  C q   (  q  1 / 2    w k  )     w k   C q   (  q  1 / 2    w k  )   S q ′   (  w k  )    .   













Proof. 

According to (29), we have


  1 = 2  ∑  k = 1  ∞    1 −  C q   (  q  1 / 2    w k  )     w k   C q   (  q  1 / 2    w k  )   S q ′   (  w k  )      S q   ( q  w k  t )  ,  t ∈  A q *  .  



(34)







Multiplying (34) by    G ˜   ( z , q t )   , and integrating with respect to t from zero to unity, we get


      ∫ 0 1   G ˜   ( z , q t )    d q  t =       2   ∑  k = 1  ∞     1 −  C q   (  q  1 / 2    w k  )     w k   C q   (  q  1 / 2    w k  )   S q ′   (  w k  )      ∫ 0 1   G ˜   ( z , q t )   S q   (  w k  q t )    d q  t .     



(35)







By setting     L k  : =   2 − 2  C q   (  q  1 / 2    w k  )     w k   C q   (  q  1 / 2    w k  )   S q ′   (  w k  )       and using Lemma 2, we obtain the result.  ☐





Theorem 2.

For   z ∈  A q *   , the following q-Fourier series expansion holds:


    ∫ 0 1    G ˜  n   ( z , q t )    d q  t =   ( − 1 )  n    ∑  k = 1  ∞    L k   w k  2 n      S q   (  w k  z )  .   



(36)









Proof. 

We prove the result by mathematical induction with respect to n. We first observe that for   n = 1  , the Formula (36) reduces to the formula in Lemma 3; that is, Equation (36) is true for   n = 1  .



Next, assume that (36) is true for some   n ≥ 2  . Then


      ∫ 0 1    G ˜   n + 1    ( z , q t )    d q  t =      ∫ 0 1   ∫ 0 1   G ˜   ( z , q y )    G ˜  n   ( q y , q t )    d q  y   d q  t      =     ∫ 0 1   G ˜   ( z , q y )    ∫ 0 1    G ˜  n   ( q y , q t )    d q  t    d q  y      =      ( − 1 )  n   ∑  k = 1  ∞    L k   w k  2 n      ∫ 0 1   G ˜   ( z , q y )   S q   (  w k  q y )    d q  y      =      ( − 1 )  n   ∑  k = 1  ∞    L k   w k  2 n        − 1   w k 2    S q   (  w k  z )        =      ( − 1 )   n + 1     ∑  k = 1  ∞    L k   w k  2 ( n + 1 )      S q   (  w k  z )  .     











 ☐





Lemma 4.

For   z ∈  A q *   , the following q-Fourier series expansion holds:


    ∫ 0 1   ( q t )    G ˜   ( z , q t )    d q  t = 2  ∑  k = 1  ∞   1   w k 3    S q ′   (  w k  )      S q   (  w k  z )  ,  k ∈ N .   



(37)









Proof. 

Consider the function   g ( t ) = t  . From (29), we have


  t = −  1 q   ∑  k = 1  ∞   2   w k   S q ′   (  w k  )      S q   ( q  w k  t )  ,  0 < t < 1 .  



(38)







Hence, the proof can be performed by using (38) similar to the proof of Lemma 3.  ☐





Theorem 3.

For   z ∈  A q *   , the following q-Fourier series expansion holds:


    ∫ 0 1   ( q t )     G ˜  n   ( z , q t )    d q  t =   ( − 1 )  n    ∑  k = 1  ∞   2   w k  2 n + 1     S q ′   (  w k  )      S q   (  w k  z )  .   



(39)









Proof. 

The proof can be performed by induction similar to the proof of Theorem 2. So, we omit it.  ☐






5. Fourier Series Expansions of the  q -Lidstone Polynomials


The Fourier expansion of special polynomials has been studied by some mathematicians; see [17,18,19,20]. In this section, we consider the q-Lidstone polynomials     A ˜  n   ( z )    and     B ˜  n   ( z )    defined in (2). We define these polynomials by using the Green’s functions     G ˜  n   ( z , q t )    defined in (17) and (22) and then, we introduce the q-Fourier Series Expansions for them.



We begin with the following result from [7]:



Lemma 5.

For   n ∈ N  , the q-polynomials     A ˜  n   ( z )    and     B ˜  n   ( z )    satisfy the q-difference equations


      δ q 2     A ˜  n   ( z )     δ q   z 2    =   A ˜   n − 1    ( z )   a n d     δ q 2     B ˜  n   ( z )     δ q   z 2    =   B ˜   n − 1    ( z )  ,   








with the boundary conditions     A ˜  n   ( 0 )  =   A ˜  n   ( 1 )  = 0 =   B ˜  n   ( 0 )  =   B ˜  n   ( 1 )  = 0  . Moreover,


     A ˜  0   ( z )  = z ,    B ˜  0   ( z )  = z − 1 .   













We have the following:



Proposition 1.

The q-Lidstone polynomials    A ˜  n   and    B ˜  n   can be expressed as     A ˜  0   ( z )  = z  ,     B ˜  0   ( z )  = z − 1  , and for   n ∈ N  


        A ˜  n   ( z )      = q  ∫ 0 1  t    G ˜  n   ( z , q t )    d q  t ,      



(40)






        B ˜  n   ( z )      =  ∫ 0 1   ( q t − 1 )     G ˜  n   ( z , q t )    d q  t ,      



(41)




where


       G ˜   ( z , t )  : =   G ˜  1   ( z , t )  =       q  z  ( t − 1 )  ,      0 ≤ z < t ≤ 1  ;           q  t   ( z − 1 )  ,      0 ≤ t < z ≤ 1  .              G ˜  n   ( z , q t )  =  ∫ 0 1   G ˜   ( z , q w )     G ˜   n − 1    ( q w , q t )    d q  w   ( n = 2 , 3 , … )  .      



(42)









Proof. 

We use the induction on n. By Lemma 5, we have


         δ q 2     A ˜  n   ( z )     δ q   z 2    =   A ˜   n − 1    ( z )    ( n ∈ N )  ,            A ˜  n   ( 0 )  =   A ˜  n   ( 1 )  = 0 .      



(43)







So, if   n = 1   we get the q-boundary value problem


         δ q 2     A ˜  1   ( z )     δ q   z 2    = z   ( z ∈  A q *  )  ,            A ˜  1   ( 0 )  =   A ˜  1   ( 1 )  = 0 .      



(44)







According to Lemma 1, we have the result.



Next, assume that (40) is true for   n ≥ 1  . According to Remark (1), the solution     A ˜   n + 1    ( z )    of the q-boundary value problem


         δ q 2     A ˜   n + 1    ( z )     δ q   z 2    =   A ˜  n   ( z )  ,            A ˜   n + 1    ( 0 )  =   A ˜   n + 1    ( 1 )  = 0 ,      



(45)




is given by


       A ˜   n + 1    ( z )      =  ∫ 0 1   G ˜   ( z , q w )    A ˜  n   ( q w )    d q  w        =  ∫ 0 1   G ˜   ( z , q w )    ∫ 0 1  q t    G ˜  n   ( q w , q t )    d q  t    d q  w        =  ∫ 0 1    ∫ 0 1  q t   G ˜   ( z , q w )    G ˜  n   ( q w , q t )    d q  w    d q  t        =  ∫ 0 1  q t    G ˜   n + 1    ( z , q t )    d q  t .     











Similarly, we can prove Equation (41). Finally, by induction on n  ( n ≥ 2 )   again, it is easy to see that


    G ˜  n   ( z , q t )  =  ∫ 0 1    G ˜   n − 1    ( z , q w )   G ˜   ( q w , q t )    d q  w .  











 ☐





The following result offers the explicit representation of the interpolating q-Lidstone polynomials and the associated error function    R n   ( z )   .



Theorem 4.

Let   0 < q < 1   and   f ∈  C q 2   (  A q *  )   . Then


   f  ( z )  =  ∑  k = 0   n − 1       δ q  2 k    f  ( 1 )     δ q   z  2 k        A ˜  k   ( z )  +    δ q  2 k    f  ( 0 )     δ q   z  2 k        B ˜  k   ( z )   +  R n   ( z )  ,   



(46)




where


    R n   ( z )  =  ∫ 0 1    G ˜  n   ( z , q t )      δ q  2 n    f  ( q z )     δ q   z  2 n       d q  t .   













Proof. 

The proof follows immediately from Theorem 1 and Proposition 1, if we replace   a k  ,   b k   and   ϕ ( z )   in Equation (24) by their values in terms of   f ( z )   as given by the system (23).  ☐





Proposition 2.

For   z ∈  A q *    and   n ∈ N  , the Fourier series for q-Lidstone polynomials     A ˜  n   ( z )    and     B ˜  n   ( z )    are given by


        A ˜  n   ( z )     =      ( − 1 )  n    ∑  k = 1  ∞   2   w k  2 n + 1    S q ′   (  w k  )      S q   (  w k  z )  ,      



(47)






        B ˜  n   ( z )     =      ( − 1 )  n    ∑  k = 1  ∞   2   w k  2 n + 1    S q ′   (  w k  )   C q   (  q  1 / 2    w k  )      S q   (  w k  z )  ,      



(48)




where   {  w k  :  k ∈ N    w i t h     w 1  <  w 2  <  w 3  < … }   is the set of positive zeroes of    S q   ( z )   .





Proof. 

By using Equation (40) and Theorem 3 we get (47). Similarly, Equation (48) follows immediately from (41), (36) and (37).  ☐





We end this section by determining the asymptotic behavior of     A ˜  n   ( z )    and     B ˜  n   ( z )    for large n.



Proposition 3.

Let   z ∈  A q *   . Then, there exist some constants   K q   and   L q   such that


          |   ( − 1 )  n    A ˜  n   ( z )  −   2   S q   (  w 1  z )     w 1  2 n + 1     S q ′   (  w 1  )    | <   K q   w 1  2 n    ,      



(49)






          |   ( − 1 )  n   B n   ( z )  −   2   S q   (  w 1  z )     w 1  2 n + 1     S q ′   (  w 1  )   C q   (  q   w 1  )    | <   L q   w 1  2 n    ,      



(50)




where   w 1   is the smallest positive zero of    S q   ( z )   .





Proof. 

From Equation (47), we get


  |   ( − 1 )  n    A ˜  n   ( z )  −  2   w 1  2 n + 1     S q ′   (  w 1  )      S q   (  w 1  z )  | = |  ∑  k = 2  ∞   2   w k  2 n + 1    S q ′   (  w k  )      S q   (  w k  z )  | .  











Since the function    S q   ( . )    is bounded on   A q *  , there exists a constant   M > 0   such that


     |     ∑  k = 2  ∞   2   w k  2 n + 1    S q ′   (  w k  )      S q   (  w k  z )   |       <     M   w 2  2 n + 1    S q ′   (  w 2  )     1 +   (   w 2   w 3   )   2 n + 1       S q ′   (  w 2  )     S q ′   (  w 3  )    +   (   w 2   w 4   )   2 n + 1       S q ′   (  w 2  )     S q ′   (  w 4  )    + … …  .     











Note that    w 1  <  w 2  < …  , this implies the series in brackets tends to unity when   n → ∞  . Set    K q  =  M   w 1   S q ′   (  w 2  )     , we get (49). Inequality (50) can be proved in the same manner by using Equation (48).  ☐






6. Conclusions and Future Work


In this paper, we have introduced some definitions of the q-Lidstone polynomials which are q-Bernoulli polynomials generated by the third Jackson q-Bessel function, based on the Green’s function of the q-difference equation


         δ q  2 n    f  ( z )     δ q   z  2 n     = ϕ  ( z )  ,             δ q  2 k    f  ( 0 )     δ q   z  2 k     =  a k  ,      δ q  2 k    f  ( 1 )     δ q   z  2 k     =  b k     ( k = 0 , 1 , … , n − 1 )  .      



(51)







New results are obtained; particularly the q-Fourier series expansions of these functions.



Another study to give a characterization of those functions on the plane given by absolutely convergent of q-Lidstone series expansion (1), using the results in Section 5, is in progress.
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