
Citation: Zhu, Z.; Zhou, H.; Xing, S.;

Qian, Z.; Li, S.; Zhang, X. Perceptual

Hash of Neural Networks. Symmetry

2022, 14, 810. https://doi.org/

10.3390/sym14040810

Academic Editor: Jeng-Shyang Pan

Received: 24 March 2022

Accepted: 11 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Perceptual Hash of Neural Networks
Zhiying Zhu 1,† , Hang Zhou 2,†, Siyuan Xing 1, Zhenxing Qian 1,* , Sheng Li 1 and Xinpeng Zhang 1

1 School of Computer Science, Fudan University, Shanghai 200433, China; zyzhu19@fudan.edu.cn (Z.Z.);
syxing19@fudan.edu.cn (S.X.); lisheng@fudan.edu.cn (S.L.); zhangxinpeng@fudan.edu.cn (X.Z.)

2 School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
zhouhang2991@gmail.com

* Correspondence: zxqian@fudan.edu.cn
† These authors contributed equally to this work.

Abstract: In recent years, advances in deep learning have boosted the practical development, distribu-
tion and implementation of deep neural networks (DNNs). The concept of symmetry is often adopted
in a deep neural network to construct an efficient network structure tailored for a specific task, such
as the classic encoder-decoder structure. Massive DNN models are diverse in category, quantity and
open source frameworks for implementation. Therefore, the retrieval of DNN models has become a
problem worthy of attention. To this end, we propose a new idea of generating perceptual hashes of
DNN models, named HNN-Net (Hash Neural Network), to index similar DNN models by similar
hash codes. The proposed HNN-Net is based on neural graph networks consisting of two stages:
the graph generator and the graph hashing. In the graph generator stage, the target DNN model
is first converted and optimized into a graph. Then, it is assigned with additional information
extracted from the execution of the original model. In the graph hashing stage, it learns to construct a
compact binary hash code. The constructed hash function can well preserve the features of both the
topology structure and the semantics information of a neural network model. Experimental results
demonstrate that the proposed scheme is effective to represent a neural network with a short hash
code, and it is generalizable and efficient on different models.

Keywords: perceptual hash; DNN; model retrieval; graph hash; HNN-Net

1. Introduction

Of late, deep learning [1] has attracted the greatest attention in both academia and
industry. It is increasingly applied to a variety of fields [2], such as image processing [3,4],
natural language processing [5], audio processing [6,7], biometrics [8], etc. The core task
is designing deep neural network (DNN) models. Researchers are developing new DNN
models and their variants for specific tasks using frameworks such as TensorFlow, PyTorch,
MXNet, Keras, Caffe, etc.

Obtaining a preferable pre-trained model requires a large amount of training data,
the delicate designing of neural networks and expensive computing resources. It is no
doubt true that each pre-trained model consumes a lot of comprehensive costs. However,
these models are at risk of being stolen in direct or indirect ways. For example, pirates can
directly steal by illegally copying deep neural network model files or use APIs opened by
manufacturers to users to achieve indirect stealing by technical means such as knowledge
distillation [9]. With the widespread use of cloud computing, DNN models are usually
deployed on cloud server platforms. Pirated models may also be deployed, and the
platform needs to provide users with discovery services of infringements. Due to the huge
number of DNN models, we need technology to discover whether the uploaded model
is suspected of piracy; therefore, we propose a new method: perceptual hash for neural
networks. The flow chart is shown in Figure 1. We create a hash code for each model. Once

Symmetry 2022, 14, 810. https://doi.org/10.3390/sym14040810 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040810
https://doi.org/10.3390/sym14040810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1849-3494
https://orcid.org/0000-0002-5224-6374
https://doi.org/10.3390/sym14040810
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040810?type=check_update&version=1

Symmetry 2022, 14, 810 2 of 12

a new model is uploaded, we compare the hash code of the new model and the existing
models to retrieve similar models.

… …

… …

… …

… …

Hash code

Illegal copy

D
ep

lo
y

0 1 ... 0 1

1 0 ... 1 1

1 1 ... 1 0

0 1 ... 0 1

Cloud server

U
p

lo
ad

Figure 1. Flowchart of preventing pirated deployment. We create a hash code for each model on
the cloud server. When a DNN model is uploaded, the administrator will compare the new hash
code with the existing hash codes. The uploaded model will be further checked if a similar hash code
is retrieved.

To deal with the DNN retrieval task, we propose HNN-Net, a supervised two-stage
scheme based on graph neural network (GNN) [10]. In the first stage, we use a graph
generator to convert the DNN model to an undirected graph assigned with additional
information we extracted after a series of operations. We use the graph hashing network to
generate compact hash codes in the second stage. As the hamming distance computation is
fast for the CPU, the proposed DNN model hashing can be applied to a large-scale database
for retrieval. The proposed method is evaluated on a DNN model benchmark dataset we
collected. The experiment results demonstrate that the proposed method is effective for
neural network retrieval. The details of the two stages are shown in Figure 2, and we will
further discuss the deep neural network hashing in Section 3.

Our contributions are three-fold, as follows:

• We propose a new idea of generating perceptual hash for neural networks, which can
be used in model protection;

• The proposed deep hashing scheme based on neural graph work is capable of all kinds
of deep learning frameworks;

• The proposed method is effective that has a good retrieval performance.

The rest of this article is organized as follows. In Section 2, we present the related
works of the perceptual hash of neural networks. In Section 3, we define the problem and
describe the details of the proposed DNN hash method. We evaluate the capacity of our
scheme and set up some ablation experiments in Section 4. Section 5 concludes the article
by recapitulating our work.

Symmetry 2022, 14, 810 3 of 12

Stage 1
Graph generator

Execute

ONNX
format

Convert
Merge

Merge
rules

DNN model

Encode

𝑴𝒒

Attribute

Operator type

......

FLOPs
G

I

… …

… …

… …

Node feature

Graph feature extractionStage 2
Graph hashing

FCBinary hash code

...

...

1
...
...
0

Embedding GCN layers

...
Binarization

GAP layer

Figure 2. The details of our two-stage scheme. In the first stage, a raw DNN model is converted
into a graph with an initial node feature after a series of operations. Afterward, the graph, which is
generated by Stage 1, gets its graph-level feature embedding. Then the embedding is used to generate
Q-bit hash codes after binarization and predict the classification of the input model.

2. Related Works
2.1. Computational Graph

A neural network model can be regarded as a series of complex computations with
trainable parameters organized in a specific structure. One of the tools we use to describe
the DNN model is a computational graph [11,12], which is a directed graph used to express
a set of structured computations whose nodes and edges represent operators and directions
of dataflow, respectively. The operator stands for a calculation function for input, and
data flow goes along the graph’s edges. When a data flow is passed through a node, it is
dealt with by a node operator and generates a new value. Two examples of computational
graphs for some simple functions are shown in Figure 3. Note that computational graphs
are widely used for back-propagation on neural networks. Apparently, any DNN model
can be represented as a computational graph.

+

+

*

*

*

*

□²

□²

𝒇(𝒙, 𝒚) = 𝒂𝒙𝟐 + 𝒃𝒙𝒚 + 𝒄𝒚𝟐

𝒙

𝒚

𝒄

𝒃

𝒂

Figure 3. The computational graph for function f (x, y) = ax2 + bxy + cy2. Each node stands for
a specific operator such as addition and multiplication. Each edge stands for the direction of the
dataflow. The graph is fed with x and y as input and produce an output as the final result.

2.2. Deep Image Hashing

Traditional cryptographic hashing algorithms have an “avalanche effect”, which
implies that a minute difference between two input data will cause a significant difference
in the output hash codes. On the contrary, perceptual hashing generates similar hash codes
for two similar images and diverse hash codes for different images, which has blazed a
trail for researchers to measure image similarity.

Deep image hashing makes use of deep learning to generate perceptual hash codes
for images. CNNH [13] is an early work to learn image representation and image hashing.

Symmetry 2022, 14, 810 4 of 12

To unify representation learning and hashing learning, DPSH [14] and HashNet [15] both
propose end-to-end hashing learning approaches based on pair-wise loss. Moreover,
DNNH [16] utilizes the triplet ranking loss to guide the learning for the hash function. In
addition, SDH [17] makes use of an objective function to minimize the intra-class variations
and maximize the inter-class variations.

SSDH [18] proposes an assumption that the semantic labels are governed by several
latent attributes with each attribute on or off, and classification relies on these attributes.
Based on this assumption, SSDH employs a softmax classifier to guide deep hashing
learning to better exploit the semantic information of images. This idea inspired us to adopt
a classification layer to make better use of the semantic information of DNN models and
unifies DNN model classification and retrieval in a single learning model, which is trained
with pair-wise loss.

2.3. Graph Hashing

A graph (Graph) is a data structure modeling of a set of objects (nodes) and relationships
(edges) between objects, and is widely used in various fields such as knowledge graphs [19],
natural sciences [20] and many other fields [21,22]. The graph neural network (GNN) [10] is
a widely used technique to process graph structure data based on deep neural networks.
Graph convolution network (GCN) [22] defines a specific mechanism about how every node
gathers information from its neighboring nodes and learns to generate its representation.
Compared with early hand-crafted features, it performs much better in extracting effective
features from graphs and representing nodes, edges or graphs in low-dimensional vectors.
Additionally, attention mechanisms such as [23–27] have been proposed for graph-level or
node-level tasks.

To solve the problem of graph similarity search, many GNN-based methods [22,26,28–30]
have been proposed to generate a graph-level embedding to minimize the distance between two
graphs [31]. However, they are not effective enough to search large-scale databases in real-time.

To achieve a fast graph similarity search, GHashing [31] is the latest attempt that uses
GNN to generate binary hash codes and graph-level embedding for fast graph similarity
search. It uses graph attention pooling (GAP) [26] as its attention mechanism. However,
GHashing can not convert DNN models into hash code directly. This is not suitable for
practical application. In our task, it is taken as a basic foundation of our network for
neural network hashing. Different from Ghashing, in our network, the DNN models can be
directly used as input to get hash codes.

3. Deep Neural Network Hashing
3.1. Problem Definition

We denote {Mi}N
i=1 as a DNN model database associated with its classification labels,

and Mq as an arbitrary irrelevant DNN model to query. DNN model retrieval is the
task of retrieving the most similar model from the database with the query Mq. A DNN
model refers to a concrete executable DNN model implemented by a specific type of deep
learning framework. Take PyTorch [32] as an instance. A Python class inherited from
“torch.nn.Module” with its parameters loaded consists of a complete DNN model.

As we introducted in Section 1, the model can be converted into a graph. In this
procedure, we trace the data flow until the model terminates to get a trace with a full record
of operations that occurred in the data flow. From the trace, we can obtain rich information
in addition to the topology structure information of the graph, such as the number of
FLOPs (floating number operations of a layer) and the number of trainable parameters for
each layer in various ways.

To handle the task, our proposed scheme learns a hash function that maps a DNN
model Mq to a Q-bit binary hash code h.

Given Mq as the query, we computed hamming distances between the hash code for h
and those for models in the database. Hamming distance measures the similarity between
two binary hash codes, calculated as:

Symmetry 2022, 14, 810 5 of 12

HAMMING(h1, h2) = ‖h1 ⊕ h2‖1, (1)

where ⊕ is the exclusive OR operation and h1 and h2 are two hash codes.
The details of the two-stage scheme are shown in Figure 2, and the overall training

procedure is shown in Figure 4. We first converted a DNN model Mq into an optimized
computational graph which is assigned with additional information captured from the
execution of the model, and then fed it into a GNN-based neural network, which consisted
of graph feature extraction layers and fully-connected layers. The output was a Q-bit binary
hash code.

Figure 4. Flowchart of our proposed scheme in the training stage, consisting of 3 losses in a pair-wise
manner. Ltopo and Lclass are, respectively, used for preserving topology structure similarity and
semantic similarity between models. Lquant reduces quantization loss caused by the conversion from
continuous activation values to discrete binary hash code.

3.2. Stage 1: Graph Generator

A DNN model Mq was first converted to an undirected acyclic graph (V , E ,F) with a
trigger image I, where V is the set of nodes, E ⊆ V × V is the set of edges, and F is a set
of functions that map a vertex to multiple attributes. The computational graph would be
too large to handle if we defined basic operators like addition or multiplication as nodes.
Instead, we merged the diverse operators into a single graph node, which was represented
as a network layer in deep learning.

To make our scheme compatible with all kinds of existing deep learning frameworks,
these merges followed a standard open-source format called ONNX (Open Neural Network
Exchange) [33].

3.2.1. ONNX Operation

We denoted the function that maps a DNN model to the computational graph whose
operators and data types obey the ONNX [33] standard as fonnx. ONNX provides the
definition of its built-in operators and standard data types, where each computation
dataflow graph is structured as a list of nodes that form a graph [33]. The set of built-in
operators is portable across frameworks, and every framework supporting ONNX provides
implementations of these operators on the data types. Hence, our scheme is compatible with
most existing frameworks, including TensorFlow, PyTorch, Mxnet, Keras, Caffe, etc. [33].

3.2.2. Merge Operation

Many DNN structures contain duplicate sub-structure blocks that perform a similar
role across different neural networks. Merging specific layers into one block, representing a
node in the graph, can improve the hashing accuracy. Therefore, we applied hard-coded
merge rules, i.e., Conv-ReLU, Conv-BatchNorm, Conv-BatchNorm-ReLU, and Conv-Conv-
BatchNorm-ReLU, to the previous graph, and denote the merge operation by fmerg. After
ONNX and merge operations, the model Mq is converted to a graph by:

G ← fmerg(fonnx(Mq(I))). (2)

Symmetry 2022, 14, 810 6 of 12

3.2.3. Node Feature Embedding

To make full use of model characters for model hashing, we first extracted the number
of FLOPs and parameters from the trace of the data flow. Each node vi ∈ V from the
established graph G has 3 additional information mapping functions F = { f1, f2, f3}
which, respectively, map a vertex to its operator type, the number of FLOPs and the number
of parameters on the corresponding layer. In the last encoding step, for any node vi, its
f2, f3 returns continuous values while f1 returns discrete value. For continuous values
f2(vi), f3(vi), we designed an encoder function fenc(x) = max([log10(x)] + 1, 10) to map
the input to discrete values, where [log10(x)] + 1 is the number of digits in the the integer
part of x, e.g., 3 for 123.45 and 2 for 97.76. To normalize the feature dimensions, we used
the max function to ensure that they drop within {0, 1, 2, ..., 10}. The three attributes were
thus all discrete values. Then we encoded them into three one-hot vectors by foneh and
concatenated them into a unified one. The initial node representation ui for vertex vi ∈ V is

ui = [foneh(f1(vi)), foneh(fenc(f2(vi))), foneh(fenc(f3(vi)))], (3)

where [x, y] means concatenating x, y along the feature dimension.

3.3. Stage 2: Graph Hashing

The graph hashing networkH can be divided into three sub-networks, focusing on
how to extract graph-level features and how to generate a compact Q-bit binary code that
preserves both the topology structure similarity and the semantic similarity among models.
We used pair-wise loss between two different DNN models in each iteration for training.

The first sub-network, which is called graph feature extraction, contained three graph
convolution network layers (GCN) [22] and one graph attention pooling layer (GAP) [26],
and output a graph-level feature. We denoted ui as the representation of node vi, and u′i as
the next representation of node vi processed by a GCN layer.

GCN [22] is a neighbor aggregation method that defines how a node aggregates
embeddings of all its neighbors and learns to generate an output as its own subsequent
embedding, as defined by

u′i = GCN(ui). (4)

The final output of GCNs U ∈ RN×D is the feature matrix whose i-th row is the feature
vector u′i. GAP [26] defines how we produced a graph-level embedding from a graph
whose every node has its own node representation, as defined by

U′ = GAP(U). (5)

Then, the fully-connected layers contain 5 layers denoted by FC1 ∼ FC5. FC1 receives
the output features from GAP as its input and FC1 ∼ FC3 generates graph features. The
binarization layers generate a Q-bit binary code based on the output of FC5. Finally, it
outputs an embedding in continuous values and a discrete binary hash code.

3.4. Objective Loss Function

The objective loss function between two models M1 and M2 consists of three parts:
topology loss, classification loss and quantization loss, and formally:

L(M1, M2) = αLtopo(M1, M2) + βLclass(M1, M2) + γLquant(M1, M2), (6)

where α, β and γ are hyper-parameters.
Ltopo encourages our model to preserve more topology structure similarity and a part

of semantic similarity between the two models, as defined by

Ltopo(M1, M2) = (||FC3(M1)− FC3(M2)||22 −min(GED(M1, M2), R))2, (7)

Symmetry 2022, 14, 810 7 of 12

where GED [34] is the graph edit distance to measure topology structure similarity between
two graphs. Since it makes no sense for our model when it becomes too large, we used R
as an upper bound. Inspired by GHashing [31] that learning from an embedding function
described above is better than learning a hash function directly, we used the output of FC3
for constraint.

Lclass is a classification loss that encourages neural networks to be discriminative
among different model types, as defined by

Lclass(M1, M2) = −(t1 lnH(M1) + t2 lnH(M2)), (8)

where the output of H is the classification output, and t1, t2 are the ground-truth model
labels of M1 and M2, respectively.

Lquant encourages binary hash code to be more compact and carry more information
in each bit and is defined as

Lquant(M1, M2) = −(‖FC5(M1)−
1
2

1‖1 + ‖FC5(M2)−
1
2

1‖1), (9)

where 1 is a Q-dim all-ones vector.
Quantization loss is a common problem for hashing based on deep learning. There

is an information loss in the conversion from the continuous activation value to discrete
binary hash code by the binarization. It is a common technique to reduce this loss by
encouraging each unit of the activation values to be close to either 0 or 1.

4. Experiments
4.1. Implementation Details
4.1.1. Network Architecture

The output dimensions of GCN1 ∼ GCN3 were 256, 128 and 64, respectively. The
input dimension of FC1 was 448. The output dimensions of FC1 ∼ FC3 were 348, 256
and 256, respectively. The output dimension of FC4 was 128. The number of binary code
Q = {16, 32, 64}. The trigger image I was a [3, 256, 256, 256]-shaped zero tensor as default.

4.1.2. Training Parameters

The hyperparameters were defined as follows: α = 10, β = 10, γ = 0.2. The imple-
mentation was based on TensorFlow. For the optimization, we trained the network for
200 epochs using the Adam optimizer with a minibatch size of 10, and the learning rate is
0.001. The whole training process took about 16 h on the NVIDIA RTX 1080 Ti GPU and
Intelr Xeonr Silver 4210 CPU @ 2.20 GHz. Our dataset was generated with pre-trained
neural network models built in PyTorch 1.8.1.

4.1.3. Dataset

Our new DNN model dataset consists of 22 models belonging to 10 categories extracted
from the PyTorch package “torchvision.models”, as shown in Table 1. We randomly delete
10% nodes and their related edges in computational graphs of models by 10 times for
data augmentation. Finally, we pick the first 80% of data as the training dataset and the
remaining 20% as the test dataset.

Symmetry 2022, 14, 810 8 of 12

Table 1. Model list of our dataset includes 10 categories and 22 models.

Category Model Name in PyTorch

1 VGG vgg 11, 13, 16
2 Resnet resnet 18, 34, 101
3 mnaset mnasnet 0_75, 1_0, 1_3
4 DenseNet densenet 121, 161, 201
5 SqueezeNet squeezenet 1_0, 1_1, v2_x0_5

6 ShuffleNet shufflenet v2_x0_5, v2_x1_5,
v2_x2_0

7 AlexNet alexnet
8 Inception inception_v3
9 MobileNet mobilenet_v2
10 GoogLeNet GoogLeNet

4.1.4. Evaluation Metrics

We conducted traditional retrieval experiments and used common performance met-
rics in the retrieval task. We picked top-k models that have the smallest hamming distance
with the query as the retrieval result. Evaluation metrics included precision, recall and
F1 score.

4.2. Comparison with State-of-the-Art Methods
4.2.1. Methods in Comparison

We compared our method with GHashing [31] and a simplified version of our method
denoted as HNN-Net w/o Lclass. The code of GHashing [31] is open-source without a
license. Raw data stands for data that were not processed with hard-coded merge rules,
and merged data stands for data that were processed with merge rules.

As introduced in Section 3.2, “merge” is a technique adopted by our Graph Generator
to optimize the computations we generated. For example, if our merge rules contained
a single rule “CONV - RELU” and we had a graph which only contains 2 two nodes
(0:CONV,1:RELU), 1 edge “CONV -> RELU”. After “merge”, this graph would be con-
verted to a graph with only 1 node (0:CONV-RELU) and 0 edges. “Raw data” means that
all graphs were simply converted from ONNX format and would not be processed by the
“merge” operation. If we apply “merge” to “Raw Data”, we get “Merged Data”.

4.2.2. Results

Figure 5 shows evaluation curves evaluated with varying numbers of hash codes Q.
Figure 5a,b are evaluated on raw data and merged data, respectively. We adopt α = 10,
β = 10, and γ = 0.2 for HNN-Net. HNN-Net performs much better than HNN-Net
without Lclass and GHashing when Q is larger than 16 regardless of which data we use.
Table 2 provides comparison results among varying methods, and the best ones are in
bold. From the table, we can conclude that our method outperforms baselines in most
cases. The improvement comes from the better information extraction from the deep neural
networks according to the execution of the DNN model and the classification loss, which
can preserve the semantic similarity between DNN models. Additionally, merge operation
makes better use of transcendental knowledge in deep learning and helps us learn a better
hashing function.

Symmetry 2022, 14, 810 9 of 12

0.3

0.4

0.5

0.6

0.7

0.8

16 32 48 64

re
ca

ll

bits

recall, raw data

GHashing

HNN-Net w/o Lclass

HNN-Net 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 48 64

p
re

ci
si

o
n

bits

precision, raw data

GHashing

HNN-Net w/o Lclass

HNN-Net 0.3

0.4

0.5

0.6

0.7

0.8

0.9

16 32 48 64

F 1
 s

co
re

bits

F1 score, raw data

GHashing

HNN-Net w/o Lclass

HNN-Net

(a)

0.3

0.4

0.5

0.6

0.7

0.8

16 32 48 64

re
ca

ll

bits

recall, merged data

GHashing

HNN-Net w/o Lclass

HNN-Net 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 48 64

p
re

ci
si

o
n

bits

precision, merged data

GHashing

HNN-Net w/o Lclass

HNN-Net 0.3

0.4

0.5

0.6

0.7

0.8

0.9

16 32 48 64

F 1
 s

co
re

bits

F1 score, merged data

GHashing

HNN-Net w/o Lclass

HNN-Net

(b)

Figure 5. Comparative evaluation metrics curves of different methods on two datasets. (a) is
evaluated on the raw data with respect to varying Q. (b) is evaluated on the merged data with respect
to varying Q.

In Figure 5b, 32-bit HNN-Net slightly outperforms 64-bit HNN-Net. 64 bits make a
single hash code carry much more information than 32 bits. However, if a single hash code
can carry too much information from the training dataset, overfitting can result, leading to
a decrease in performance in the test dataset.

Table 2. The comparison of recall, precision and F1 score among GHashing [31], HNN-Net without
Lclass and HNN-Net in different hash code bits evaluated on the raw data and the merged data.

Methods Metrics
Raw Data Merged Data

16 Bits 32 Bits 64 Bits 16 Bits 32 Bits 64 Bits

GHashing [31]
Recall 0.559 0.565 0.707 0.559 0.74 0.719
Precision 0.67 0.692 0.828 0.758 0.889 0.861
F1 score 0.586 0.601 0.731 0.648 0.776 0.753

HNN-Net
w/o Lclass

Recall 0.519 0.522 0.677 0.648 0.721 0.727
Precision 0.675 0.624 0.83 0.805 0.88 0.867
F1 score 0.574 0.544 0.72 0.692 0.764 0.759

HNN-Net
Recall 0.351 0.714 0.762 0.333 0.762 0.762
Precision 0.475 0.881 0.905 0.452 0.905 0.905
F1 score 0.4 0.762 0.794 0.375 0.794 0.794

4.3. Ablation Analysis
4.3.1. The Role of Merge Operation

Figure 6 shows the results of using merged data or not. Figure 6a,b demonstrate
clearly that using merged data brings huge performance improvements, while for our
method shown in Figure 6c, the improvement brought by a merge operation is much
smaller than others.

Symmetry 2022, 14, 810 10 of 12

The essence of the merge operation is to utilize transcendental knowledge of neural
networks, namely their semantic information. Thus, more improvements could be brought
by a merge operation to an approach. The approach effectively extracts less semantic
information. On the other hand, HNN-Net introduces semantic loss to its loss function,
while GHashing and HNN-Net withoutLclass do not use it and aim to extract more semantic
information from data and generate better hash codes. Accordingly, experiment results
in Figure 6c imply that the merge operation brings the least improvement to HNN-Net
compared with the other two. It proves semantic loss in HNN-Net, and merge operations
extract the same kind of information inside the data as expected. In other words, both of
them extract semantic information from data effectively.

0.5

0.55

0.6

0.65

0.7

0.75

16 32 48 64

re
ca

ll

bits

recall, GHashing

raw

merged
0.6

0.65

0.7

0.75

0.8

0.85

0.9

16 32 48 64

p
re

ci
si

o
n

bits

precision, GHashing

raw

merged
0.5

0.55

0.6

0.65

0.7

0.75

0.8

16 32 48 64

F 1
sc

o
re

bits

F1score, GHashing

raw

merged

(a)

0.65

0.7

0.75

0.8

0.85

0.9

16 32 48 64

p
re

ci
si

o
n

bits

precision, HNN-Net w/o Lclass

raw

merged
0.55

0.6

0.65

0.7

0.75

16 32 48 64

re
ca

ll

bits

recall, HNN-Net w/o Lclass

raw

merged
0.55

0.6

0.65

0.7

0.75

0.8

16 32 48 64

F 1
sc

o
re

bits

F1score, HNN-Net w/o Lclass

raw

merged

(b)

0.3

0.4

0.5

0.6

0.7

0.8

16 32 48 64

re
ca

ll

bits

recall, HNN-Net

raw

merged
0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 48 64

p
re

ci
si

o
n

bits

precision, HNN-Net

raw

merged
0.3

0.4

0.5

0.6

0.7

0.8

0.9

16 32 48 64

F 1
sc

o
re

bits

F1score, HNN-Net

raw

merged

(c)

Figure 6. Comparative evaluation curves among different hashing algorithms. (a) GHashing [31],
(b) HNN-Net w/o Lclass, (c) HNN-Net.

4.3.2. Effect of the Classification Loss Lclass and the Quantization Loss Lquant

Figure 7 shows the performance of HNN-Net evaluated on raw data with varying β
when α = 10, γ = 0.2, Q = 32. As we can see, the three criteria all perform the best when
β = 10. A natural explanation is that a much larger β prevents the model from paying
sufficient attention to the topology structure similarity among models, and a much smaller
β restrains the model from preserving semantic similarities. Figure 7b is evaluated on raw

Symmetry 2022, 14, 810 11 of 12

data with varying γ when α = 10, β = 10 and the optimal weight γ = 0.2. Additionally,
an appropriate Lquant can reduce the information loss caused by the conversion from the
feature embedding in continuous values to discrete binary hash code.

5 10 15 20
β

0.4

0.5

0.6

0.7

0.8

0.9

m
et
ric

s

β={1, 5, 10, 15, 20}, raw data

recall
precision
F1 score

(a)

0.0 0.2 0.4 0.6 0.8 1.0
γ

0.65

0.70

0.75

0.80

0.85

m
et
ric

s

γ={0, 0.2, 1.0}, raw data

recall
precision
F1 score

(b)

Figure 7. Comparative evaluation curves of HNN-Net on varying β and γ. (a) Evaluation on raw
data with respect to varying β. (b) Evaluation on raw data with respect to varying γ.

5. Conclusions

We issue the new problem of DNN model retrieval in the face of deep learning
security threats. We propose a two-stage hashing scheme based on GNNs, and it is
compatible with models implemented by most existing deep learning frameworks. HNN-
Net generates hash codes that preserve both the topology structure and the semantic
similarity of models, and then learns a classifier for discriminating DNN models. Results
verify that our scheme is effective and performs much better than others. HNN-Net makes
full use of the shallow information in DNN, such as topology information, network node
information, and network operation intermediate result information. However, the use
of deep information in DNN, such as the functional information of the network itself, is
very limited. In the future, we will combine the shallow and deep information of the DNN
model to generate better quality perceptual hash codes.

Author Contributions: Z.Z.: Conceptualization, Methodology, Writing—original draft. H.Z.:
Writing—review & editing. S.X.: Software. Z.Q.: Visualization, Investigation. S.L.: Data curation.
X.Z.: Supervision. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China: 62072114; National Natural Science Foun-
dation of China: U20A20178; National Natural Science Foundation of China: U20B2051; National
Natural Science Foundation of China: U1936214.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks for the support from the National Natural Science Foundation of China
under Grant U20B2051, Grant U20A20178, Grant 62072114 and Grant U1936214.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
3. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.

Intell. Neurosci. 2018, 2018, 7068349. [CrossRef] [PubMed]
4. Hemanth, D.J.; Estrela, V.V. Deep Learning for Image Processing Applications; IOS Press: Amsterdam, The Netherlands, 2017;

Volume 31.

http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619

Symmetry 2022, 14, 810 12 of 12

5. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput.
Intell. Mag. 2018, 13, 55–75. [CrossRef]

6. Purwins, H.; Li, B.; Virtanen, T.; Schlüter, J.; Chang, S.Y.; Sainath, T. Deep learning for audio signal processing. IEEE J. Sel. Top.
Signal Process. 2019, 13, 206–219. [CrossRef]

7. Lee, H.; Pham, P.; Largman, Y.; Ng, A. Unsupervised feature learning for audio classification using convolutional deep belief
networks. Adv. Neural Inf. Process. Syst. 2009, 22, 1096–1104.

8. Sundararajan, K.; Woodard, D.L. Deep learning for biometrics: A survey. ACM Comput. Surv. 2018, 51, 1–34. [CrossRef]
9. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. Comput. Sci. 2015, 14, 38–39.
10. Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. arXiv 2018, arXiv:1812.08434.
11. Kantorovich, L.V. On a mathematical symbolism convenient for performing machine calculations. Dokl. Akad. Nauk SSSR 1957,

113, 738–741.
12. Bauer, F.L. Computational graphs and rounding error. SIAM J. Numer. Anal. 1974, 11, 87–96. [CrossRef]
13. Xia, R.; Pan, Y.; Lai, H.; Liu, C.; Yan, S. Supervised Hashing for Image Retrieval via Image Representation Learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Volume 28.
14. Li, W.J.; Wang, S.; Kang, W.C. Feature learning based deep supervised hashing with pairwise labels. arXiv 2015, arXiv:1511.03855.
15. Cao, Z.; Long, M.; Wang, J.; Yu, P.S. Hashnet: Deep learning to hash by continuation. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5608–5617.
16. Lai, H.; Pan, Y.; Liu, Y.; Yan, S. Simultaneous feature learning and hash coding with deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3270–3278.
17. Erin Liong, V.; Lu, J.; Wang, G.; Moulin, P.; Zhou, J. Deep hashing for compact binary codes learning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2475–2483.
18. Yang, H.F.; Lin, K.; Chen, C.S. Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 40, 437–451. [CrossRef] [PubMed]
19. Hamaguchi, T.; Oiwa, H.; Shimbo, M.; Matsumoto, Y. Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural

Network Approach. arXiv 2017, arXiv:1706.05674.
20. Battaglia, P.W.; Pascanu, R.; Lai, M.; Rezende, D.; Kavukcuoglu, K. Interaction Networks for Learning about Objects, Relations and

Physics; Curran Associates Inc.: Red Hook, NY, USA, 2016.
21. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2017, arXiv:1706.02216.
22. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
23. Lee, J.B.; Rossi, R.; Kong, X. Graph classification using structural attention. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1666–1674.
24. Thekumparampil, K.K.; Wang, C.; Oh, S.; Li, L.J. Attention-based graph neural network for semi-supervised learning. arXiv 2018,

arXiv:1803.03735.
25. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
26. Bai, Y.; Ding, H.; Qiao, Y.; Marinovic, A.; Gu, K.; Chen, T.; Sun, Y.; Wang, W. Unsupervised inductive graph-level representation

learning via graph-graph proximity. arXiv 2019, arXiv:1904.01098.
27. Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P. Graph matching networks for learning the similarity of graph structured objects.

arXiv 2019, arXiv:1904.12787.
28. Bai, Y.; Ding, H.; Bian, S.; Chen, T.; Sun, Y.; Wang, W. Simgnn: A neural network approach to fast graph similarity computation. In

Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, Australia, 11–15 February
2019; pp. 384–392.

29. Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; Leskovec, J. Hierarchical graph representation learning with differentiable
pooling. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
3–8 December 2018; pp. 4800–4810.

30. Bai, Y.; Ding, H.; Gu, K.; Sun, Y.; Wang, W. Learning-Based Efficient Graph Similarity Computation via Multi-Scale Convolutional
Set Matching. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020; pp. 3219–3226.

31. Qin, Z.; Bai, Y.; Sun, Y. GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA,
USA, 6–10 July 2020; pp. 2062–2072.

32. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8026–8037.

33. Onnx: Open Neural Network Exchange. 2019. Available online: https://github.com/onnx/onnx (accessed on 10 April 2022).
34. Gao, X.; Xiao, B.; Tao, D.; Li, X. A survey of graph edit distance. Pattern Anal. Appl. 2010, 13, 113–129. [CrossRef]

http://dx.doi.org/10.1109/MCI.2018.2840738
http://dx.doi.org/10.1109/JSTSP.2019.2908700
http://dx.doi.org/10.1145/3190618
http://dx.doi.org/10.1137/0711010
http://dx.doi.org/10.1109/TPAMI.2017.2666812
http://www.ncbi.nlm.nih.gov/pubmed/28207384
https://github.com/onnx/onnx
http://dx.doi.org/10.1007/s10044-008-0141-y

	Introduction
	Related Works
	Computational Graph
	Deep Image Hashing
	Graph Hashing

	Deep Neural Network Hashing
	Problem Definition
	Stage 1: Graph Generator
	ONNX Operation
	Merge Operation
	Node Feature Embedding

	Stage 2: Graph Hashing
	Objective Loss Function

	Experiments
	Implementation Details
	Network Architecture
	Training Parameters
	Dataset
	Evaluation Metrics

	Comparison with State-of-the-Art Methods
	Methods in Comparison
	Results

	Ablation Analysis
	The Role of Merge Operation
	Effect of the Classification Loss Lclass and the Quantization Loss Lquant

	Conclusions
	References

