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Abstract: In this paper, some novel stochastic finite-time stability criteria for stochastic nonlinear
systems with stochastic impulse effects are established. The results in this paper blackgeneralized the
related results in from two aspects: 1. the model in is the deterministic systems, which means that the
noise effect that can be described as a symmetric Markov process Brownian motion is considered
in our models; 2. the stochastic finite-time stability criterion is established in this paper, not the
asymptotic stability and the input-to-state stability that are studied in the form literature. Finally, an
example is given to show the significance blackand usefulness of our results.
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1. Introduction

Impulsive stochastic nonlinear systems is an important class of hybrid stochastic
systems, which can be used in multi-agent systems, dynamic networks and impulsive
control. For instance, Ref. [1] considered the exponential consensus for stochastic multi-
agent systems by using impulsive control. Ref. [2] studied the synchronization of stochastic
dynamical networks under the impulsive control approach. Ref. [3] obtained some leader-
following consensus results for impulsive stochastic delayed multi-agent systems. Stability
is one of the most key properties in the research of the related questions in the litera-
ture [1–3]. Up to date now, most of the stability criteria have been established for impulsive
stochastic nonlinear systems with deterministic impulse effects, i.e., the impulses occur
at the deterministic instants. For example, Refs. [4–6] considered the asymptotic stabil-
ity for impulsive stochastic (delayed) systems by using different approaches. Moreover,
Refs. [7,8] considered the exponential stability for impulsive stochastic delay differential
systems. Ref. [9] established the exponential stability for neutral impulsive stochastic
delay differential systems. Ref. [10] designed an impulsive controller for stochastic recur-
rent neural networks. Ref. [11] studied the stability for impulsive stochastic differential
equations driven by G-Brownian motion. For the other asymptotic stability criteria of
stochastic nonlinear systems with impulse effects at deterministic instants, please refer to
the references in [5,6]. In many cases, however, it can be found that the impulses often
occur at random instants. From this point, Refs. [12,13] studied the asymptotic stability for
stochastic nonlinear (delayed) systems with impulse effects at random times by using the
stochastic processes theory. For the stability and its related application in some others fields,
such as the teaching model of education information, children’s mental heath prevention
and control, please see the [14–20] and the reference therein.

Recently, Ref. [21] considered the asymptotic stability and input-to-state stability for
deterministic nonlinear systems with stochastic impulses. Here, the stochastic impulses are
determined by a continuous-time Markov chain. However, there are still some limitations
for the result of this model. Firstly, the noise is ignored in the model of [21], which cannot
describe the stochastic phenomena in the real world. As is known to all, the noise effect can
be described by a Brownian motion, which is a symmetric Markov process.Additionally,
asymptotic stability cannot ensure that the system state trend to equilibrium point in a
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finite time. However, in the real world, such as industrial production and the robustness
for the systems, whether the system state can trend to equilibrium point in a finite time is
crucial. In order to describe whether the system state can trend to equilibrium point in a
finite time, the concept finite-time stability has been proposed. Refs. [22,23] considered the
finite-time stability for deterministic autonomous and non-autonomous nonlinear systems,
respectively. Ref. [24] studied the finite-time stability for deterministic nonlinear delayed
systems. By using the probability theory, Refs. [25,26] provide a new stability concept,
which is called stochastic finite-time stability for stochastic nonlinear systems. There are
some important results for stochastic finite-time stability. For example, Ref. [27] obtained
some probability properties for stochastic finite-time stable stochastic nonlinear systems.
Ref. [26] obtained some stochastic finite-time stability and stochastic finite-time instability
criteria for autonomous stochastic systems. After that, Refs. [28–34] considered how to
design the finite-time state feedback stabilizers for some stochastic nonlinear systems by
using the stability criteria in [26] and the backstepping technology. Recently, Refs. [35–37]
derived some more widely used stochastic finite-time stable criteria under the framework
of weak solutions for stochastic differential equations.

It should be noted that for stochastic nonlinear systems with stochastic impulse effects,
whether the systems states can reach the equilibrium point in a finite time is still unknown.
Thus, motivated by the above analysis and discussions, in this paper, we focus on the
stochastic finite-time stability for stochastic nonlinear systems with stochastic impulse
effects. Compared to [21], the main differences we considered in this paper are that the
model we considered contains noise effects and the type of the stability we considered in
this paper is the stochastic finite-time stability. By using the Markov chain theory, stochastic
analysis theory and Lyapunov method, we overcome the difficulties that arise from the
noise effects and the stochastic impulse effects. Some useful criteria are established.

The rest of the paper is organized as follows: In Section 2, we introduce the model
of stochastic nonlinear systems with stochastic impulse effects, and then we give some
definitions. In Section 3, a novel stochastic finite-time stability criterion is established for
stochastic nonlinear systems with stochastic impulse effects. Some important remarks are
also displayed. An example is provided in Section 4 in order to demonstrate the significance
and usefulness of our results. Finally, in Section 5, we give some more general remarks for
the main results of this paper.

2. Preliminaries

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a natural filtration {Ft}t≥0
satisfying the usual condition (i.e., it is right continuous and F0 contains all P-null sets). We
use E[·] to denote the expectation operator with respect to P. Let B(t) = (B1(t), B2(t), · · · ,
Bm(t))T be an m-dimensional Brownian motion defined on a complete probability space.
Ψ denotes all the functions that are continuously twice differentiable in x ∈ Rn and once
differentiable in t. Φ denotes all the functions that are continuously twice differentiable in
x ∈ Rn\{0} and once differentiable in t. The symbol “C” denotes a constant whose precise
value is not important.

In this section, we consider the following stochastic nonlinear system with stochastic
impulse effects:{

dx(t) = f (t, x(t))dt + g(t, x(t))dB(t), t ≥ t0 ≥ 0, t 6= τk,
x(τk) = Hr(τk)

(x(τ−k )), t = τk, k = 1, 2, · · · , (1)

where {r(τk), k = 1, 2, · · · } is the embedded chain for the Markov chain {r(t), t ≥ t0},
which takes values in Γ = {1, 2, · · · , N}. There are N different impulse gains, and r(τk) = i
implies that the ith impulse occurs at instant τk (Convention: τ0 = t0.)

We need the definition of stochastic finite-time stability. See, e.g., [35,36].

Definition 1. The solution x(t, x0) of (1) is stochastic finite-time stable if the following two
properties meet:
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(1) Stable in probability: For any r > 0, we have

lim
x0→0

P
(

sup
t≥t0

|x(t, x0)| ≥ r
)
= 0

(2) Finite-time attractiveness in probability: The random time $0 = inf{t ≥ t0 : x(t) = 0} is
finite a.s., and x(t + $0) = 0, a.s. ∀ t ≥ 0.

Remark 1. Note that if Hk(τk, x(τ−k )) = 0 for some k = 1, 2, · · · , then according to the definition
of trivial solution, we can see that the finite-time attractiveness in probability holds obviously. Thus,
in order to avoid the trivial, we assume that Hk(τk, x(τ−k )) 6= 0 for all k = 1, 2, · · · . Moreover, we
can see that the drift coefficient f (t, x) and the diffusion coefficient g(t, x) of System (1) cannot
satisfy the local Lipschitz condition simultaneously. Otherwise, according to Lemma 3.2, Page
120 in [38], it is nonsense to consider the stochastic finite-time stability for System (1) because the
system state cannot reach the equilibrium point in a finite time.

Define the operator LU from R+ ×Rn to R by

LU(t, x) =
∂U(t, x)

∂x
+

∂U(t, x)
∂x

f (t, x) +
1
2

trace[gT(t, x)
∂2U(t, x)

∂x2 g(t, x)].

3. Main Results

In order to study the stability for System (1), the existence of the solution for System (1)
should be considered previously. The following proposition gives the existence of the
solution for System (1).

Proposition 1. If there exist a positive definite and radially unbounded function U ∈ Ψ, constants
α ≥ 0, βr(τk)

> 0 and θ > 0 satisfy:
(A) For all t ≥ t0 and t 6= τk, k = 1, 2, · · · ,

LU(t, x(t)) ≤ αU(t, x(t)).

(B) For all t = τk, k = 1, 2, · · · ,

U(τk, x(τk)) ≤ βr(τk)
U(τ−k , x(τ−k )).

(C) θ ≤ infi
qi

qi+α , where θ = maxi ∑j 6=i pijβ j.
Then, for any initial data x0, the global weak solution exists for System (1).

Proof. First of all, we prove the existence of the solution for System (1). For any t ≥ t0,
we use N(t) to denote the impulse number during the time interval [0, t). If there are k
impulse instants during the time interval [0, t), for i = 0, 1, 2, · · · , k, then we define

νk
m =

{
inf{t > τk : |x(t)| > m}, i f |x(τk)| ≤ m,

τk, i f |x(τk)| > m.

According to Theorem 1 in [39], there exists a weak solution on [t0, τ1 ∧ ν0
∞). Note that

for any t ∈ [t0, τ1),
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E
[
U(x(ν0

m ∧ t))e−α(ν0
m∧t)]

≥U(m)E
[
I{ν0

m<t}e
−αν0

m
]

≥U(m)E
[
I{ν0

m<t}e
−αt]

≥U(m)E
[
I{ν0

m<t}e
−ατ1

]
=U(m)E

[
I{ν0

m<t}E
[
e−ατ1 |Fν0

m

]]
≥U(m)P(ν0

m < t) inf
i

qi
qi + α

.

Moreover, by using Itô’s formula, we obtain

U(x(ν0
m ∧ t))e−α(ν0

m∧t) ≤ U(x0) +
∫ ν0

m∧t

t0

∂U
∂x

g(s, x(s))e−αsdB(s),

Noting that t0 ≤ ν0
m ∧ t ≤ t, it follows from Theorem 1.28 in [38] that

E
( ∫ ν0

m∧t

t0

∂U
∂x

g(s, x(s))e−αsdB(s)
)
= E

( ∫ t

t0

∂U
∂x

g(s, x(s))e−αsI{s≤ν0
m}dB(s)

)
= 0,

and so

E
[
U(x(ν0

m ∧ t))e−α(ν0
m∧t)] ≤ U(x0),

which implies that P(ν0
m < t) ≤ U(x0)

U(m)
. Letting t → τ−1 , and then letting m → ∞, we can

obtain that P(ν0
∞ ≥ τ1) = 1, which verifies that the weak solution exists in [t0, τ1). The

existence in t = τ1 is obvious.
Next, we assume that for any i = 1, 2, · · · , k− 1, the solution exists in [τi, τi+1), and

then we show that the solution exists in [τk, τk+1). On one hand, we can conclude that

E
[
U(x(νk

m ∧ t))e−α(νk
m∧t)]

≥U(m)E
[
I{νk

m<t}e
−ανk

m
]

≥U(m)E
[
I{νk

m<t}e
−αt]

≥U(m)E
[
I{νk

m<t}e
−ατk+1

]
=U(m)E

[
I{νk

m<t}E
[
e−ατk+1 |Fνk

m

]]
=U(m)E

[
I{νk

m<t}E
[
e−ατk+1 |r(τk), r(τk−1), · · · , r(τ1)

]]
≥U(m)P(νk

m < t)
(

inf
i

qi
qi + α

)k+1

.

On the other hand, by using Itô’s formula, it follows that

U(x(νk
m ∧ t))e−α(νk

m∧t) ≤ U(x(τk))e−ατk +
∫ νk

m∧t

τk

∂U
∂x

g(s, x(s))e−αsdB(s).

Noting that t0 ≤ τk ≤ νk
m ∧ t ≤ t, it follows from Theorem 5.16 in [38] that

E
( ∫ νk

m∧t

τk

∂U
∂x

g(s, x(s))e−αsdB(s)
)
= E

( ∫ t

τk

∂U
∂x

g(s, x(s))e−αsI{s≤νk
m}dB(s)

)
= 0.

By using the fact that the solution exists on the interval [τi, τi+1), i = 1, 2, · · · , k− 1, it
can be derived that
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E
[
U(x(νk

m ∧ t))e−α(νk
m∧t)]

≤E[U(x(τk))e−ατk ]

≤E[βr(τk)
U(x(τ−k ))e−ατk ]

=E[U(x(τ−k ))e−ατkE[βr(τk)
|Fτ−k

]]

=E[U(x(τ−k ))e−ατkE[βr(τk)
|r(τk−1)]]

≤θE[U(x(τ−k ))e−ατk ]

≤ · · ·
≤θkU(x0).

Thus, we have

P(νk
m < t) ≤ 1

θ

U(x0)

U(m)

(
θ

infi
qi

qi+α

)k+1

≤ C
U(x0)

U(m)
. (2)

By the arbitrariness of t, it follows that

P(νk
m < τk+1) ≤

U(x0)

U(m)
.

Letting m→ ∞ and using the total probability formula, we obtainP(νN(t)
∞ < τN(t)+1) =

0. Thus, we have P(νN(t)
∞ > τN(t)+1) = 1, which implies that for any t ≥ t0, the solution of

System (1) exists on the intervals [τi, τi+1), i = 0, 1, 2, · · · , N(t). For the arbitrariness of t,
and noting that N(t) → ∞ as t → ∞, we can see that the solution of System (1) exists on
[t0, ∞).

Remark 2. It should be noted that in Remark 2.1 in [33], it is only necessary to consider the
existence of a solution to System (1) because the uniqueness of the solution is a very restrictive
condition in the research of stochastic finite-time stability, which may be an obstacle for further
applications. Moreover, in [39], the existence of the global weak solution was established, and then
the asymptotic stability and the asymptotic stability of the weak solution were also obtained for the
stochastic nonlinear systems with non-local Lipschitz coefficients.

It should be noted that when g(t, x(t)) ≡ 0 in System (1), the asymptotic stability
and the input-to-state stability were considered in [21]. In the conclusion part of [21],
the authors mentioned that it is valuable to extend the results to stochastic systems. The
following result shows that under some mild conditions, not only the stability for System (1)
can be obtained, but also the stability can be achieved in a finite time.

Theorem 1. Under the conditions (A–C), if there exist another positive definite function V ∈ Φ,
constants c ≥ 0, β̂r(τk)

and θ̂ > 0 satisfying:
(D) For all t ≥ t0 and t 6= τk, k = 1, 2, · · · ,

LV(t, x(t)) ≤ −c.

(E) For all t = τk, k = 1, 2, · · · ,

V(τk, x(τk)) ≤ β̂r(τk)
V(τ−k , x(τ−k )).

(F) θ̂ := maxi ∑j 6=i pij β̂ j ≤ 1 .
Then, the solution of System (1) is stochastic finite-time stable.
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Proof. Firstly, we prove the stability in probability for the solution of System (1). Define
σr = inf{t : |x(t)| > r}. By using the total probability formula, we can see that for any
t ≥ t0,

P(σr < t) =
∞

∑
k=0

P(σr < t|N(t) = k)P(N(t) = k).

However,

P(σr < t|N(t) = k) =
k

∑
i=0

P(τi ≤ σr < τi+1 ∧ t|N(t) = k).

According to Equation (2), it follows that for any i = 0, 1, 2 · · · , k,

P(τi ≤ σr < τi+1 ∧ t|N(t) = k) ≤ C
U(x0)

U(r)

(
θ

infi
qi

qi+α

)i

,

which implies

P(σr < t) ≤C
∞

∑
k=0

k

∑
i=0

U(x0)

U(r)

(
θ

infi
qi

qi+α

)i

P(N(t) = k)

≤C
∞

∑
k=0

∞

∑
i=0

U(x0)

U(r)

(
θ

infi
qi

qi+α

)i

P(N(t) = k)

≤C
∞

∑
i=0

U(x0)

U(r)

(
θ

infi
qi

qi+α

)i

=C
U(x0)

U(r)
.

Now letting t → ∞ and then letting x0 → 0, we can see that limx0→0 P(σr < ∞) = 0,
i.e., the solution is stable in probability.

Additionally, we prove the solution is finite-time attractive in probability. Assume that
x0 6= 0. Note that for any increasing sequence {kn}∞

n=1, ξkn increases as kn. It is not hard to
see that {ξ∞ = ∞} ⊂ ∩∞

n=1 ∪∞
kn=1 {ξkn ∧ kn > τn}. Define An = ∩n

i=1 ∪∞
ki=1 {ξki

∧ ki > τi},
A = limn→∞ An.

For any t, u ∈ [τn−1 ∧ ξkn−1 ∧ kn−1, τn ∧ ξkn ∧ kn), by using Itô’s formula and condition
(D), we obtain

V(x(u))IAn−1 ≤ V(x(t))IAn−1 − c(u− t)IAn−1 +

( ∫ u

t

∂V
∂x

g(s, x(s))dB(s)
)

IAn−1 .

Note that An−1 ∈ Fτn−1∧ξkn−1
∧kn−1 ⊂ Ft, and so we have

E
( ∫ u

t

∂V
∂x

g(s, x(s))dB(s)IAn−1

)
=E
(
E
( ∫ u

t

∂V
∂x

g(s, x(s))dB(s)IAn−1

∣∣∣∣Ft

))
=E
(

IAn−1E
( ∫ u

t

∂V
∂x

g(s, x(s))dB(s)
∣∣∣∣Ft

))
=0,

which implies

E[V(x(u))IAn−1 ] ≤ E[V(x(t))IAn−1 ]− cE[(u− t)IAn−1 ].
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Taking u → τ−n ∧ ξkn ∧ kn and t → τn−1 ∧ ξkn−1 ∧ kn−1, according to the dominate
convergence theorem, we obtain

E[V(x(τ−n ∧ ξkn ∧ kn))IAn−1 ]

≤E[V(x(τn−1 ∧ ξkn−1 ∧ kn−1))IAn−1 ]− cE[(τ−n ∧ ξkn ∧ kn − τn−1 ∧ ξkn−1 ∧ kn−1)IAn−1 ].

Since

E[V(x(τn−1 ∧ ξkn−1 ∧ kn−1))IAn−1 ]

=E[β̂r(τn−1)
V(x(τ−n−1 ∧ ξkn−1 ∧ kn−1))IAn−1 ]

≤E[β̂r(τn−1)
V(x(τ−n−1 ∧ ξkn−1 ∧ kn−1))IAn−2 ]

≤E[E[β̂r(τn−1)
V(x(τ−n−1 ∧ ξkn−1 ∧ kn−1))IAn−2 |Fτ−n−1

]]

≤E[V(x(τ−n−1 ∧ ξkn−1 ∧ kn−1))IAn−2 E[β̂r(τn−1)
|Fτ−n−1

]]

≤θ̂E[V(x(τ−n−1 ∧ ξkn−1 ∧ kn−1))IAn−2 ],

we have

E[V(x(τ−n ∧ ξkn ∧ kn))IAn−1 ]

≤θ̂EV(x(τ−n−1 ∧ ξkn−1 ∧ kn−1)IAn−2)− cE((τ−n ∧ ξkn ∧ kn − τn−1 ∧ ξkn−1 ∧ kn−1)IAn−1)

≤ · · ·

≤θ̂n−1V(x0)− c
n−1

∑
i=0

θ̂iE[(τ−n−i ∧ ξkn−i
∧ kn−i − τn−i−1 ∧ ξkn−i−1

∧ kn−i−1)IAn−i−1 ].

It follows that

V(x0) ≥c
n

∑
i=1

θ̂1−iE[(τ−i ∧ ξki
∧ ki − τi−1 ∧ ξki−1

∧ ki−1)IAi−1 ]

=c
n−1

∑
i=0

θ̂−iE[(τ−i+1 ∧ ξki+1
∧ ki+1 − τi ∧ ξki

∧ ki)IAi ]

≥c
n−1

∑
i=0

θ̂−iE[(τi+1 − τi)IA].

Assuming that P(A) > 0. Letting n→ ∞, from the monotone convergence theorem
and the fact that infi E[(τi+1 − τi)IA] > 0, it follows that

V(x0) ≥c
∞

∑
i=1

θ̂−iE[(τi+1 − τi)IA]

≥c
∞

∑
i=1

θ̂−i inf
i
E[(τi+1 − τi)IA]

=∞,

which yields a contradiction. Here, we use the fact that τi+1 − τi is an exponential distri-
bution random variable. Its parameter takes value in the set {q1, q2, · · · , qN}. Thus, we
can obtain P(A) = 0, which implies that the solution is finite-time attractive in probability.
Hence, according to Definition 1, we see that the solution is stochastic finite-time stable.

Remark 3. From our result, we can see that the transition probability of the embedded chain
and impulse gains play some important roles in keeping the stochastic finite-time stability. We
compare our result with Corollary 3.3 in [21]. Firstly, in [21], the noise effect is ignored because
there are some essential difficulties in handling the stochastic integral and stopping time sequence
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{τk, k = 1, 2, · · · }. We use the stochastic analysis theory to overcome these difficulties. Additionally,
our result shows that not only the stochastic systems can keep stable but also stochastic finite-time
stable, which is more widely used in the real world.

Remark 4. In [12,13], the author also obtained some useful stability criteria for impulsive stochastic
nonlinear systems with impulse effects at random times. As is known to all, the impulse effects can
be divided into two types: the stabilizing impulse (i.e., β̂ < 1) and the destabilizing impulse (i.e.,
β̂ > 1). It should be noted that the impulse effect in [12,13] is either the stabilizing impulse or the
destabilizing impulse in all the impulse instants, which means that the the stabilizing impulse or
the destabilizing impulse cannot exist in the impulse instants {tk}∞

k=1 simultaneously. However,
in this paper, the impulse gain takes value at the set Γ subjected to the Markov chain r(t), which
means that the impulse type may be different in every impulse instant (i.e., multiply impulse
effects). Moreover, only the asymptotic stability is considered in [12,13]. However, in this paper, the
stochastic finite-time stability criterion is established.

Remark 5. There are also some researchers that considered the stability for the deterministic systems
with multiple impulse effects; see [40] and the references therein. In [40], only the asymptotic
stability and input-to-state stability are considered. Moreover, the noise effect is also ignored,
and the impulse gains are all deterministic. However, in this paper, the model we considered is a
stochastic system, and the impulse effects are all stochastic. Meanwhile, we find that under some
mild conditions, not only the stability for System (1) can be obtained, but also the stability can be
achieved in a finite time.

The following corollary can be checked more easily than Theorem 1. Since the proof is
similar to [35] Theorem 2, we omit it.

Corollary 1. Theorem 1 still holds if conditions (D–F) are replaced by
(D′) For all t ≥ t0 and t 6= τk, k = 1, 2, · · · ,

K(V(t, x))[LV(t, x) + cK(V(t, x))] ≤ 1
2

K
′
(V(t, x))|Vx(t, x)g(t, x)|2.

(E′) For all t = τk, k = 1, 2, · · · ,
∫ V(τk ,x(τk))

0

ds
K(s)

≤ β̃r(τk)

∫ V(τk ,x(τ−k ))

0

ds
K(s)

.

(F′) θ̃ := maxi ∑j 6=i pij β̃ j ≤ 1.
Here, K(·) is a piecewise continuous function satisfying K(s) > 0 and K

′
(s) ≥ 0.

4. Apply to a Stochastic Nonlinear Systems with Stochastic Impulses

In this section, we consider an example to illustrate the validity of our result.

Example 1. Consider the stochastic nonlinear system with stochastic impulse effects as follows:{
dx(t) = [−0.4x(t)− 0.5x(t)

1
3 ]dt + x(t)dB(t), t ≥ t0 ≥ 0, t 6= τk

xτk = Ir(τk)
x(τ−k ), t = τk

(3)

where x0 = 0.5. The Markov chain r(t) take values in Γ = {1, 2, 3, 4}, and the generator Q of r(t)
is given by

Q =


−2 0.5 0.8 0.7
0.2 −1 0.3 0.5
0.4 0.6 −2 1
0.2 0.1 0.7 −1

.

The random impulse Ir(τk)
takes values in Σ = {1.1, 1.2, 0.4, 0.5}.
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Take the Lyapunov function U(t, x(t)) = x(t)2. By using Itô’s formula, we can obtain
LU(t, x(t)) = 0.2x(t)2 − x(t)

4
3 ≤ 0.2x(t)2 = 0.2U(t, x(t)); thus, α = 0.2. By a direct

computation, it follows that θ = 0.8 < infi
qi

qi+α = 0.83. Choose anther Lyapunov function

V(t, x(t)) = |x(t)| and K(s) = s
1
3 , then LU(t, x(t)) ≤ −0.5V(t, x(t))

1
3 . It is not difficult to

check that θ̃ = 0.8405 < 1 by using the definition of θ̃. Thus, from Corollary 1, System (3) is
stochastic finite-time stable. See Figure 1.

0 2 4 6 8 10

t

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1. States for System (3).

Remark 6. Figure 1 displays the states for System (3). We can see that the states for System (3)can
reach the equilibrium point in a finite time, which is different from the asymptotic convergence of
the impulsive stochastic systems considered in the literature [5–13].

Remark 7. A numerical simulation for the stochastic differential equation and the stability analysis
for the numerical scheme is a very hot topic in the research of stability for stochastic differential
equation, see the monograph [41].

5. Conclusions

In this paper, the stochastic finite-time stability for stochastic nonlinear systems
with stochastic impulse effects is considered. By using the probability theory and Lyapunov
approach, some useful and easily checked stochastic finite-time stability criteria are ob-
tained. Compare with the recent achievements in the field, the impulse gain in our model
is more complex. It can be seen that the transition probability of the Markov chain and the
impulse gain play some important roles in keeping the stochastic finite-time stability for
the related systems. Meanwhile, the criteria also provide the approach to designing the
impulse gain and the transition probability to achieve the stochastic finite-time stability.
Moreover, an example is provided to show the efficiency of our result. There are some
questions that still need to be considered. Firstly, how to research the same question in the
frame of stochastic delayed systems. Additionally, how to use the theoretical results of the
stochastic finite-time synchronization for the impulsive stochastic neural networks.
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