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Abstract: When imperceptibility is an issue, data-hiding techniques typically become limited to
small payloads. In this paper, a novel data-hiding scheme is proposed that allows embedding large
payloads while maintaining high stego-image quality. The scheme utilizes an N × N sub-block for
constructing a reference matrix as a secret key that allows the symmetric embedding and extraction
of secret data from a grayscale cover image, where N is a positive integer greater than or equal
to two. With proper modification, the proposed method can be directly converted to a symmetric
cryptosystem. For cases with acceptable stego-image quality (i.e., PSNR > 34), the experimental
results showed that the proposed method can embed, on average, four bits per pixel (bpp), a higher
hiding capacity than in previous works, and also offers the ability to adjust the capacity by varying N.
The number of solutions for a sub-block reaches the factorial of N2, guaranteeing the security of data
embedding and extraction. In addition, the proposed method has low computational complexity and
can be implemented in a straightforward manner.

Keywords: flexible embedding capacity; reference matrix; steganography

1. Introduction

Technological advancements and near-ubiquitous connectivity have fueled Internet
communications. Although cryptography can be used for encrypting and transmitting
secret messages on the Internet, encryption has attracted the attention of hackers. Upon
identifying encrypted data, attackers may intercept and attempt to decode secret messages.
Currently, considerable research has been conducted on data hiding as an alternative to
avoiding easy detection, with the primary goal of ensuring secret communication via the
Internet. A secret message can be embedded into a cover medium using a concealing
algorithm to create a stego-medium. The secret message carried by the stego-medium can
then be transmitted through the Internet without being detected, even if it is intercepted.
Digital images are commonly used as cover media for data hiding; the resulting images are
known as stego-images.

There are two domains of data hiding in image steganography: the spatial [1–20] and
frequency domains [21–26]. In the spatial domain, secret data are embedded by adjusting
the least significant bit (LSB) of each pixel. A high embedding capacity can be achieved, and
embedding and extraction procedures can be easily implemented. However, stego-images
in the spatial domain are easily attacked by steganalysis. In the frequency domain, secret
data are embedded in the frequency coefficients of the image, following the discrete cosine
transform (DCT). The advantage of the frequency domain is its robustness. In general,
secret data are difficult to detect, although only small quantities can be embedded owing to
image distortion. This study focuses on the data-hiding mechanism in the spatial domain.
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The data-hiding scheme in this work is designed considering two main factors: (1) the
embedding capacity (the number of covered bits per pixel) and (2) the image’s visual quality
(image distortion). Some existing works have focused on designing reversible data-hiding
schemes [12–20] to allow full recovery of cover images from stego-images. The embedding
capacity of those methods is limited, owing to the need to store information related to the
recovery of the original images. For irreversible data-hiding schemes [1–11], achieving high
embedding capacity and visual quality is desirable. However, it is difficult to ensure both
of these metrics at the same time. Increasing the embedding capacity increases the stego-
image distortion, and vice versa. Therefore, the trade-off between embedding capacity
and visual quality depends on the user and on the application context. For example, if
embedded information is used for authenticating the copyright of cover images, as is the
case in digital watermarking [21–23,25,26] or image authentication [27], then perhaps a
larger acceptable distortion can be tolerated. However, if the goal is to protect the secrecy
of the embedded information, then the visual quality should be such that the transmitted
information is undetectable, at least to the human visual system.

In the spatial domain, the simplest LSB-based method amounts to replacing the least
significant bits of the covering pixels with bits of the binary secret message. This simple
method can be easily implemented for concealing confidential data but is prone to common
statistical attacks [28–30]. In 2006, Mielikainen [2] proposed LSB matching, a revised
LSB-like data-hiding method. In the LSB matching approach, pairs of pixels are grouped
into basic embedded units. The least significant bits of a single pixel per pair are then
modified to embed two bits. However, Mielikainen’s method did not fully explore all
special modification cases. Zhang et al. [3] proposed an exploiting-modification direction
(EMD) method, expanding Mielikainen’s method and exploiting special cases. The EMD
method dynamically groups N pixels of the cover image to conceal (2N + 1)-base numeral
system digits, where N is a positive integer. Although this minimizes distortion, the
embedding capacity of this method is limited. More recently, an LSB-based approach was
proposed by Singh [10], using a novel adaptive pixel value differencing (PVD) scheme
along with LSB embedding to achieve a high embedding capacity while retaining the visual
quality of the cover image.

In 2008, Chang et al. [4] introduced a novel family of data-hiding schemes that uses
Sudoku-based reference matrices for concealing and extracting secrets. Their method
utilizes the properties of Sudoku [31] and applies an approach that uses pixel-pairs from the
cover image as coordinates for matching their secrets in the digital format within a table. Lin
et al. [5] subsequently proposed an approach for improving visual quality, inspired by the
Sudoku method of Chang et al. [4]. Recently, Wu et al. [6] used three-dimensional reference
tables for improving security and for customizing embedding capacity. Chang et al. [7]
also freely adjusted the embedding in a one-dimensional vector. Hsiao et al. [11] extended
the 9× 9 Sudoku matrix to a 16× 16 matrix for increasing the possibility of its solution
and used a two-layer reference matrix for embedding additional information. The present
study focuses on two-dimensional reference matrices. The main goal is to address the idea
inspired by combining the EMD [3] and Sudoku [4] methods to improve the visual quality
of the Sudoku method and to improve its high embedding capacity and security properties.
We present a scalable secret reference matrix (SSRM), a secret matrix composed of many
N × N submatrices. The procedure of the proposed method first converts binary secret
data into secret digits in the N2-base numeral system, and then modifies the values of the
cover pixel-pairs for concealing the secret digits. Moreover, the SSRM can be also used as a
secret key to symmetrically encrypt and decrypt the secret message via a cover image.

2. Related Work

In this section, since the proposed method is mainly based on the EMD method [3]
and the Sudoku method [4], we briefly discuss the most relevant works based on these
two approaches.
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The pioneering work of EMD can date back to an optimal strategy (LSB-re) proposed
by Jarno Mielikainen [2] to improve the visual quality of stego-images in the classic LSB-
based replacement approach when embedding one bit per pixel (bpp) in a cover image. The
LSB-re alters the second least significant bit if the pixel value after the LSB replacement has
exceeded a certain predefined range to reduce its distortion. Zhang et al. [3] subsequently
proposed an EMD method that described the generalization of all cases in [2] as well as
produced the first data-hiding scheme that utilized a reference matrix. The main idea of
EMD is to hide a (2N + 1)-base digit d into n cover pixels, where d is an integer in the
0–2N range, and N is a non-negative integer. The worst-case implication of embedding a
(2N + 1)-base digit in N cover pixels is that only one out of N pixels should be increased
or decreased by one. In 2008, Chang et al. [4] proposed a data-hiding scheme using a new
reference matrix based on a 9× 9 Sudoku grid, for improving the embedding capacity of
the EMD method. In the Sudoku method, each pixel-pair of a cover image can hide a 9-base
digit, in contrast to the EMD method, which can only embed a 5-base digit. Chang et al.
used the Sudoku solution for creating a reference matrix to guide the modification of the
cover image. The number of possible solutions to a 9× 9 Sudoku problem is approximately
6.671× 1021, showing that the security of the Sudoku method is higher than that of the
EMD method.

In early 2016, Wu et al. [6] proposed a magic cube–based (MCB) scheme to improve the
efficiency of the Sudoku method of Chang et al. [4] The MCB method utilizes a 2R× 2R× 2R

magic cube for 1 ≤ R ≤ 8 to embed and extract the secret data in base 23R numeral
secret digits where the embedding capacity is R bpp. A three-dimensional reference
table can be constructed by the magic cube with distinct values of 0 to 23R − 1 randomly
assigned to all magic cubes. That is, every sub-cube in the magic cube stands for a different
number. All pixels in the cover image are modified by substitution according to the
spatial coordinates mapped from the numeral secret digits of the secret data. Later in
2017, Chang et al. [7] proposed another data-hiding scheme based upon a permutation
vector (PV). The PV is concatenated repeatedly to construct a one-dimensional reference
matrix in order to improve the visual quality of an embedding capacity less than 1.5 bpp.
Recently, Hsiao et al. [11] proposed two methods using the 16× 16 Sudoku matrix and the
double-layer magic matrix, respectively. For the first method, the 16× 16 Sudoku matrix
is an extended version of the 9× 9 Sudoku matrix in [4]. Note that the numbers in each
column, row, and diagonal of the 4× 4 magic matrix must sum to 30. Hsiao et al. designed
a double-layer magic matrix (DLMM) to improve embedding capacity compared to the
16× 16 Sudoku matrix. As a result, the bpp of the embedding capacity increases from
2 to 3. The data-hiding scheme proposed by Hsiao et al. also modified the pixels through a
reference matrix RM to complete the embedding of a secret message. A double-layer magic
matrix is constructed to help embed the secret message in a base 64 numeral system.

3. The Proposed SSRM Method

The proposed method requires a 256× 256 special scalable secret reference matrix
(SSRM) as a key map. This key map guides the cover image to modify its pixels to
imply the secret message indirectly. An overall flow diagram of the developed system
is shown in Figure 1. The same key map is used to extract the hidden secret message
as well. The proposed method is introduced in four subsections. Section 3.1 describes
how to create an SSRM and its characteristics. Section 3.2 proves the characteristics of
SSRM. Finally, Sections 3.3 and 3.4 give details of the embedding process and extraction
process, respectively.

3.1. The Generating Process of SSRM

In this section, a 256× 256 SSRM is proposed to be generated as a key map to guide
pixel modification while in the embedding phase. It will also be required when extracting
the secret data from the stego-image. SSRM is a special matrix that consists of two condi-
tions as follows. First, the SSRM is filled with all digits 0 ~

(
N2 − 1

)
, where N is a positive
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integer in the range of 1 < N ≤ 256 (i.e., N is greater than 1 because the signal in image
processing has at least two digits, ‘0′ and ‘1′, to represent the multimedia data. On the other
hand, the maximum of N can only be 256 due to the full size of the SSRM being 256× 256).
Secondly, any N × N square window in SSRM has all digits 0 ~

(
N2 − 1

)
in it. Suppose

an empty set of a 256× 256 matrix M has been generated, and an N × N table T has been
created with all digits 0 ~

(
N2 − 1

)
randomly filled in using a random number generator

along with an arbitrary seed as a key. Then a matrix such as the SSRM can be generated by
the following steps.

Step 1: Let Ti,j represents the location of T on SSRM where i and j are the row and column
of the upper-left most corner of T on SSRM, respectively.

Step 2: From left to right, slide Ti,j horizontally one column. Then, Ti,j+1 will be Ti,j’s new
position, where the leftmost column elements of T are slid to the rightmost column
of Ti,j+1, as an example of N = 5 is shown in Figure 2a.

Step 3: Repeat Step 2 until the N × N window scans to the right edge of the SSRM.
Step 4: Locate the N × N sliding window back to position (0,0) of the SSRM (i.e., the left

end of the SSRM).
Step 5: From top to bottom, vertically slide the N × N window T one row. Make the new

position of the N×N window Ti+1,j and complement Ti+1,j’s bottommost elements
with Ti,j’s topmost elements. An example of N = 5 is shown in Figure 2b.

Step 6: Repeat Step 3 to Step 6 until M is filled with digits, as shown in Figure 3.
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The SSRM process can be summarized by tiling an N × N table to a 256× 256 matrix.
By using the SSRM, it costs two pixels each time to map on the element of the SSRM (i.e.,
the SSRM is a two-dimensional matrix), which means that every two pixels can embed an
N-base digit. Therefore, the embedding capacity increases by adjusting the value of N. On
the other hand, the distortion also increases by growing the size of the N × N table (i.e.,
the correct element could be found far from the located element, whereby the difference
between the new pixel-pair and the original pixel-pair could be large).

3.2. The Correctness of the Property in SSRM

The 256× 256 SSRM has a property that every coordinate’s element can find other
base N2 digits through its surrounding neighbor elements. To prove this phenomenon,
a 256× 256 SSRM base on the 3× 3 table (N = 3) is given as an example for illustration.
First, create a 3× 3 table T filled up randomly with unrepeated 9 base digits 0–8. Define
three sets SE1, SE2, and SE3 that respectively include the elements of T in columns 0, 1,
and 2, where SE1 = {6, 4, 2}, SE2 = {5, 7, 1}, SE3 = {3, 0, 8}. Secondly, suppose a
3× 3 sliding window, SW, that attaches to table T. Then, the three columns of SW are
WC1, WC2, WC3, respectively. While SW is sliding, the new three columns of SW can be
represented in general form as WC1 = 0 + ∆, WC2 = 1 + ∆, WC3 = 2 + ∆ (i.e., variable
∆ is defined as the sliding distance of SW, where ∆ is a positive integer at the range of
0 ≤ ∆ < 256. The fact of the SSRM can be proven by the following mathematical induction.

Step 1: When ∆ = 0, then WC1 = 0 + 0 = 0, WC2 = 1 + 0 = 1, WC3 = 2 + 0 = 2, where
the element sets {WC1} ∪ {WC2} ∪ {WC3} = {0, 1, . . . , 8} = {T} as shown in
Figure 4a. SW has not moved.

Step 2: Let ∆ = 1, then WC1 = 0 + 1 = 1, WC2 = 1 + 1 = 2, WC3 = 2 + 1 = 3. Because
of {WC3} is an empty set, the vacant elements is {6, 4, 2} = SE1. Therefore,
the column 0′s elements have to complement column 3′s empty set, where SE1
is assigned to {WC3} to contain the three sets of {WC1} ∪ {WC2} ∪ {WC3} =
{0, 1, . . . , 8} = {T} as shown in Figure 4b. SW has moved by 1.

Step 3: When ∆ = k, then WC1 = k, WC2 = k + 1, WC3 = k + 2. Suppose this consists of
the expression {WC1} ∪ {WC2} ∪ {WC3} = {T} as shown in Figure 4c. SW has
moved by k.

Step 4: Let ∆ = k + 1, then WC1 = 0 + (k + 1) = k + 1, WC2 = 1 + (k + 1) = k + 2,
WC3 = 2 + (k + 1) = k + 3. Since {WC3} is an empty set, the lacking elements
should be at column k. Therefore, assign column k’s elements to {WC3} as shown
in Figure 4d to consist of {WC1} ∪ {WC2} ∪ {WC3} = {T}. SW has moved
by k + 1.
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From the deduction above, the horizontal sliding is proven to have the characteristic
that every location can find other digits around its neighbors. On the other hand, the same
proof method can be used while sliding vertically. Thus, the characteristic of SSRM is
proven to be accurate.

3.3. The Embedding Section

The main procedure of the embedding process can be summarized as the upper part of
Figure 1. First, an H ×W grayscale cover image I = {pi | 0 ≤ pi < 256, 0 ≤ i < (H ×W)},
where H and W represent the height and width of the cover image, respectively.
Any possible pairing technique can be used to group every two pixels on the cover
image. Secondly, prepare a size 256× 256 SSRM that contains digits from 0 to

(
N2 − 1

)
,

where N is a positive integer. Suppose the embedded secret message is a bit stream
S =

{
bj | 0 ≤ j ≤ m− 1, bj ∈ [0, 1]

}
, where m represents the bits length of S. Then S will

be divided into segments of α bits. Each α bit can be converted into an N2-base digit. The
value of α can be calculated by

∣∣log2 N2
∣∣. If the digit converted by α bits is greater than N2,

catch an α− 1 bits segment to range the conversion in 0–N2 digits. After the bit stream is
converted into N2-base secret digits, each pair of pixels will be guided by the SSRM for
modification to imply a secret digit.

Suppose an N2-base digit, d, is about to embed into a pixel-pair (pi, pi+1). Locate the
pixel-pair (pi, pi+1) as a coordinate on the SSRM. The element of the coordinate (pi, pi+1)
on SSRM is M(pi, pi+1). If M(pi, pi+1) = d, then embed d without any modification on
(pi, pi+1). If M(pi, pi+1) 6= d, then search for the neighbor elements to find digit d. To find
the modification that maintains a higher quality of PSNR, the Euclidean distance should
be used as a measurement standard. The Euclidean distances ED(·) for two locations
v = (pi, pi+1) and u =

(
p′i, p′i+1

)
in the SSRM can be calculated by (1).

ED(v, u) =

√(
p′i − pi

)2
+
(

p′i+1 − pi+1

)2
(1)

The reason for selecting Euclidean distance over other distance metrics, such as city-
block distance or chessboard distance, is because Euclidean distance tends to have a more
precise estimation when distance is actually the value differences between two pixel-pairs.
That is, a diagonal step (alter each of the two pixels by one) is better than two vertical
or horizontal steps (alter one of the two pixels by two) in terms of PSNR. For example,
given four coordinates in a two-dimensional space: u = (pi, pi+1), v = (pi + 1, pi+1 + 1),
s = (pi + 1, pi+1), and t = (pi + 2, pi+1). The city-block distance tends to overestimate the
cost of a diagonal step since it estimates that the distance between u and v is the same as
that between u and t. On the contrary, the chessboard distance tends to underestimate
the cost of a diagonal step since it estimates that the distance between u and v is the
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same as that between u and s. However, the distortions caused by the substitution of u is
t > v > s. Therefore, only the Euclidean distance that applies the straight-line distance is
more consistent with the cost of value differences between two pixel-pairs.

Before finding the candidate element of (pi, pi+1), an N× N size block will be marked
as a searching area (SA). Try to locate (pi, pi+1) on the center of the SA as possible. That
way, the searched neighborhood elements can nearly stay around the coordinate (pi, pi+1),
where a suitable element with the closest Euclidean distance can be found. Due to the fact
that the candidate element in the SA can only exist once, which is also the optimal one to
have the closest Euclidean distance, the search need only be in the SA. Suppose (x, y) is
the beginning location for searching the SA. The pseudo code of the search procedure is
described in Algorithm 1 as follows.

Algorithm 1 The step by step searching process of the SSRM algorithm.

• Initialize S to be an empty set

• Initialize the radius r = N
2 , and the complement r = 255− r

if N (mod 2) ≡ 0, then r = r− 1
end if

• Initialize x and y by the following cases:
if r ≤ pi ≤ r and r ≤ pi+1 ≤ r then x = pi − r, y = pi+1 − r
else if pi < r and pi+1 < r then x = y = 0
else if pi > r and pi+1 > r then x = y = 255− n + 1
else if pi < r and r ≤ pi+1 ≤ r then x = 0, y = pi+1 − r
else if r ≤ pi ≤ r and pi+1 < r then x = pi − r, y = 0
else if pi > r and 0 ≤ pi+1 ≤ 255 then x = 255− n + 1, y = pi+1 − r
else if r ≤ pi ≤ r and pi+1 > r then x = pi − r, y = 255− n + 1
else if pi > r and pi+1 < r then x = 255− n + 1, y = 0
else pi < r and pi+1 > r then x = 0, y = 255− n + 1
end if

• Collect all the elements of SA to E by the following loop:
for k = 0 . . . (N− 1) do

for l = 0 . . . (N− 1) do
S = S∪ {M(x + k, y + l)};

end for

• return S;

The search starts from the element on the leftmost column and topmost row, and
sequentially continues from left to right, top to bottom. Suppose the optimal pixel-pair(

p′i, p′i+1
)

is found to have M
(

p′i, p′i+1
)
= d. The value of pixel-pair (pi, pi+1) is switched

to
(

p′i, p′i+1
)

as the stego pixel-pair, implying an N2-base digit, d.
Consider the following example to illustrate the embedding process. Suppose embed-

ding a segment of binary streams (10110)2 into the pixel-pair (5, 4). First, turn (10110)2
to a 25-base digit 2225, and create a 256× 256 SSRM that contains 0–24 digits as shown in
Figure 5. Secondly, map the pixel-pair on the SSRM in Figure 5 to match the element with
2225. The location (5, 4) of SSRM is discovered as M(5, 4) = 2425 6= 2225. Therefore, a big
Oh O(5× 5) searching area (SA) is marked in gray, as shown in Figure 5. The process of
searching is defined as initializing the first searching element as the location of the leftmost
column and topmost row in the searching area. Follow the sequential index from left to
right, top to bottom in SA to search for the digit 2225, as shown in Figure 5. The digit 2225
is, however, found at (6, 5) on the SSRM, as shown in Figure 5. Substitute (5, 4) with (6, 5)
as a means of hiding 2225 in pixel-pair (5, 4).
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3.4. The Extracting Section

The main procedure for data extraction is as shown in the lower part of Figure 1.
Before extracting the secret message, the same stego-image and SSRM in the embedding
section is required. The SSRM should contain digits 0 ~ N2, where N is a positive integer
greater than 2. Before extracting the secret message, the same grouping technique that is
used in the embedding section is first used to identify the same location of pixel-pairs on
the stego-image. Every pair of stego pixels

(
p′i, p′i+1

)
is seen as a coordinate on the SSRM.

The location on the SSRM contains an element M
(

p′i, p′i+1
)

which points out the N2-base
secret digit d′ that is implied by the modified pixel-pair

(
p′i, p′i+1

)
. Then extract all d′ by

using the same mapping technique. After every d′ has been extracted, the original secret
message can be recovered by converting every d′ into binary form. Here is an example
for the extraction section. A pixel-pair (6, 5) is cached to locate onto the SSRM in Figure 5
(i.e., N = 5). The element M(6, 5) on the SSRM is a 25-base digit 2225. Convert the 2225
back into its binary form, and the binary stream can be obtained as 102, which is part of the
original secret message.

4. Experimental Results

In this section, the experimental results and comparisons between the related work and
proposed method are presented. The proposed data-hiding method was implemented using
the Java IDE Eclipse 4.18 on a machine with CPU i5-8250U and 8.00 GB RAM. The source
code is available at GitHub [32]. Comparisons are made with OPAP [1], LSB-re [2], EMD [3],
Sudoku [4], MCB [6], PV [7], and DLMM [11]. The test images in this experiment are nine
grayscale natural images, ‘Lena’, ‘Baboon’, ‘Pepper’, ‘Scene’, ‘Boats’, ‘F-16’, ‘Goldhill’,
‘Barbara’, and ‘Tiffany’, with resolutions of 512× 512, as shown in Figure 6. These test
images are available from the USC–SIPI image database [33]. The secret messages used in
the experiments are randomly generated by a random number generator.

To evaluate the performance of the data-hiding technique, visual qualities and embed-
ding capacity, two important factors, must be taken into consideration. To compare the
visual quality, the peak signal-to-noise ratio (PSNR) is used as an international measure
standard to present the visual quality of the stego-images. PSNR can be calculated by (2).

PSNR = 10 log10
2552

MSE
(dB) (2)

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(
Iij − I′ij

)2
(3)
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where MSE represents the mean square error, which indicates the pixels’ difference between
the cover image I and the stego-image I′. Its formula is defined in (3), where H and W
respectively denote the height and width of the image. Higher values of PSNR mean lower
distortion in the stego-image.
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For embedding capacity, bits-per-pixel (bpp) is a basic unit being used in the measure-
ment. The formula for calculating the embedding capacity is defined in (4).

C =
S

H ×W
(bpp) (4)

where C represents the embedded capacity with the unit bits-per-pixel (bpp). S is the total
number of bits of random secret message that are to be embedded into the cover image. H
and W denote the height and width of the cover image, respectively. If the value of C is
high, it means the data-hiding system exhibits a high embedding capacity.

For algorithmic efficiency, since all methods take the same input size H×W pixels as a
cover image, the main difference between these methods lies in the search of the secret digit
di on the reference matrix for the data embedding. However, this operation only requires
constant time c, where c� H ×W. Furthermore, the extraction of the secret data is merely
an act of direct access to the LSBs or lookup table. Therefore, the time complexity for all
methods in this section is estimated as O(H ×W + c) = O(H ×W).

The proposed method uses a scalable secret reference matrix (SSRM) to embed and
extract data. The SSRM is composed of several N×N sub-blocks. The value of N affects the
visual quality, embedding capacity, and security. First of all, Figure 7 is a trend diagram of
PSNR from N = 2 to N = 23. It is discovered that the reduction of PSNR is very slow. When
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N = 23, PSNR is 30 dB. On the other hand, Figure 8 shows that the embedding capacity
from N = 2 to N = 23 can be adjusted very flexible. It can achieve a high embedding
capacity of 4.5 bpp, which is much higher than that of most previous data-hiding techniques.
Table 1 demonstrates that a decent PSNR has been achieved while the embedding capacity
increases proportional to N. These results are reflected in comparison with the Sudoku
method. In Table 2, let the proposed method set in the case of N = 3. For the same
embedding capacity, the proposed method has a visual quality of, on average, 5.07 dB
higher than that of the Sudoku method. Moreover, when the proposed method is under
the case of N = 5, not only the embedding capacity is 0.74 (bpp) higher than the Sudoku
method, but also the PSNR is on average 0.3 dB higher than their PSNR. To summarize
these two factors, the visual quality and the embedding capacity of the proposed method,
the visual quality of SSRM is not inferior to most of the recent methods, as shown in Table 3.
On the other hand, the proposed SSRM method shared the same flexibility as the PV
method to adjust the embedding capacity from 1 to 8 bpp, as shown in Table 4. Although
the MCB method can also do similar adjustments, it only considers the cases of integer bpp.
As for the security aspect, the DLMM method used a 16× 16 Sudoku matrix to increase
the number of possible solutions to the reference matrix. However, it sacrificed the visual
quality of the stego-image, which can be obviously seen in Table 3 when the embedding
capacity C is set to 2. Under the comprehensive evaluation, the proposed SSRM method
has relatively more advantages than the other related works.
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Figure 8. The embedding capacity trend diagram.
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Table 1. The visual quality and embedding capacity in different values of N.

Cover Image N PSNR (dB) C (bpp) C/PSNR (%)

Random 2 51.15 1 1.96
3 49.91 1.58 3.17
4 46.39 2 4.31
5 45.14 2.32 5.14
6 43.14 2.58 5.98
7 42.13 2.81 6.67
8 40.75 3 7.36

Table 2. The visual quality and embedding capacity of the proposed SSRM method in N = 3 to N = 5.

Cover Image
Sudoku [4]

Proposed SSRM Method

N = 3 N = 4 N = 5

PSNR C (bpp) PSNR C (bpp) PSNR C (bpp) PSNR C (bpp)

Lena 44.97 1.58 49.90 1.58 46.39 2.00 45.14 2.32

Baboon 44.68 1.58 49.92 1.58 46.39 2.00 45.15 2.32

Pepper 44.67 1.58 49.91 1.58 46.39 2.00 45.14 2.32

Scene 44.67 1.58 49.91 1.58 46.39 2.00 45.13 2.32

Boats 44.94 1.58 49.90 1.58 46.38 2.00 45.14 2.32

F-16 45.02 1.58 49.90 1.58 46.40 2.00 45.14 2.32

Goldhill 44.84 1.58 49.91 1.58 46.40 2.00 45.13 2.32

Barbara 44.77 1.58 49.90 1.58 46.37 2.00 45.14 2.32

Tiffany 45.02 1.58 49.91 1.58 46.39 2.00 45.14 2.32

Average 44.88 1.58 49.91 1.58 46.39 2.00 45.14 2.32

Table 3. Comparisons of related works in visual quality with embedding capacity C = 2 and C = 3.

Cover Image

C = 2 Bpp C = 3 Bpp

MCB [6] PV [7] DLMM [11] SSRM MCB [6] PV [7] DLMM [11] SSRM

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Lena 46.37 46.37 42.58 46.38 40.73 40.73 40.73 40.73

Baboon 46.37 46.38 42.62 46.38 40.73 40.73 40.73 40.73

Pepper 46.37 46.38 42.58 46.38 40.73 40.73 40.73 40.73

Scene 46.37 46.38 42.55 46.37 40.73 40.73 40.73 40.73

Boats 46.37 46.39 42.52 46.38 40.73 40.73 40.72 40.72

F-16 46.37 46.39 42.56 46.39 40.73 40.73 40.73 40.73

Goldhill 46.37 46.38 42.62 46.38 40.73 40.72 40.72 40.72

Barbara 46.37 46.37 42.60 46.37 40.73 40.73 40.73 40.73

Tiffany 46.37 46.38 42.63 46.39 40.72 40.73 40.72 40.73

Average 46.37 46.38 42.59 46.38 40.73 40.73 40.73 40.73

Table 4. Comparisons of related works in the flexibility of embedding capacity and the size of solutions.

LSB-re [2] EMD [3] Sudoku [4] MCB [6] PV [7] DLMM [11] SSRM

bpp 1 1~1.36 1.58 1, 2, . . . , 8 1~8 2, 3 1~8

Possible Solutions 1 1 6.671× 1021 (
23N)! N! 5.958× 1098 * N2!
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In addition, an experiment was conducted on all nine test images to compare the perfor-
mance between the proposed SSRM and the LSB-based approaches. From Table 5, the experi-
mental results show that at the same condition for embedding capacity (C = 1 bpp ∼ 4 bpp),
the PSNR of the proposed method is higher than the traditional LSB technique with an aver-
age of 2 dB higher PSNR. On the other hand, when the PSNR is compared with the OPAP [1],
it is nearly the same in any condition for the embedding capacity. The slightly difference in
the resulting stego-image is not easily detected by the naked eye. As a real-life example, for
the two Lena images in Figure 9 it is difficult to distinguish which has more distortion than
the other. Normally, the human eye cannot perceive the loss of stego-image quality when
PSNR is greater than 40 dB. In the spatial domain, OPAP is known as the state-of-the-art
baseline algorithm for large-payload data hiding. However, the main goal of the proposed
method is to pursue an additional advantage in terms of security with the same performance
of visual quality and embedding capacity. More specifically, the secret data that uses the
OPAP can be easily attacked by trying to extract the least significant bits of every pixel. That
is, at most eight attempts are required to obtain the secret message (i.e., every pixel value
is represented by 8 bits). However, for the proposed method, the SSRM acts as a key for
embedding and extracting the secret data. Therefore, it takes, at most, N2! attempts to find
the correct SSRM for the corresponding stego-image.

Table 5. The comparison of visual quality and embedding capacity.

Cover Image C SSRM OPAP LSB

Lena

1 51.16 51.14 51.14
2 46.39 46.37 44.15
3 40.74 40.73 37.92
4 34.84 34.81 31.78

Baboon

1 51.15 51.14 51.14
2 46.39 46.37 44.15
3 40.73 40.73 37.92
4 34.81 34.80 31.86

Pepper

1 51.14 51.14 51.14
2 46.39 46.37 44.16
3 40.76 40.72 37.93
4 34.81 34.80 31.84

Scene

1 51.16 51.14 51.14
2 46.39 46.37 44.15
3 40.75 40.73 37.89
4 34.82 34.81 31.85

Boats

1 51.16 51.13 51.13
2 46.38 46.37 44.13
3 40.75 40.74 37.92
4 34.81 34.81 31.77

F-16

1 51.15 51.14 51.14
2 46.40 46.37 44.11
3 40.75 40.73 37.96
4 34.82 34.81 31.85

Goldhill

1 51.14 51.14 51.14
2 46.40 46.37 44.16
3 40.73 40.72 37.91
4 34.82 34.80 31.86

Barbara

1 51.15 51.14 51.14
2 46.37 46.38 44.15
3 40.74 40.72 37.93
4 34.82 34.80 31.82
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Table 5. Cont.

Cover Image C SSRM OPAP LSB

Tiffany

1 51.17 51.15 51.15
2 46.39 46.38 44.16
3 40.76 40.73 37.90
4 34.82 34.82 31.94
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Figure 9. Two grayscale Lena images, of which (a) is the original image and (b) is the stego-image
(PSNR = 34.84 dB, C = 4 bpp).

The final goal of the steganography is to securely cover the secret message to pre-
vent hackers from extracting the secret message. The proposed method offers a further
advantage for security. There are two reasons behind these advantages. The first is that
the same SSRM is required to embed and extract the secret message. Second, due to the
multiple solutions of the SSRM, it is difficult to decide on the correct one. Both the method
of Chang et al. and the proposed method offer high security for a data-hiding scheme, but
the proposed method is safer due to the SSRM’s possible solutions, which number about
N2!, that is, ∏N2−1

i=0

(
N2 − i

)
possibilities, as shown in Table 6. It is higher than the Sudoku

solutions of Chang et al. of 6.671× 1021 when N ≥ 5.

Table 6. The size of SSRM solutions in different N.

N Contain Digits d Possible Solutions

2 0 ≤ d ≤ 3 4! + 2.4× 10
3 0 ≤ d ≤ 8 9! + 3.63× 105

4 0 ≤ d ≤ 15 16! + 2.09× 1013

5 0 ≤ d ≤ 24 25! + 1.55× 1025

6 0 ≤ d ≤ 35 36! + 3.72× 1041

7 0 ≤ d ≤ 48 49! + 6.08× 1062

8 0 ≤ d ≤ 63 64! + 1.27× 1089

5. Conclusions

This study proposes a data-hiding scheme that utilizes a scalable secret reference
matrix (SSRM). The characteristics of the EMD method and Sudoku method are combined
to achieve a high embedding capacity, low distortion, and high security. Empirical evidence
suggests that in the acceptable range of the stego-image quality values (PSNR > 34),
the embedding capacity of the proposed method is, on average, 4 bpp higher than that
associated with the EMD method (on average 1.16 bpp). The PSNR of the proposed method
is, on average, higher than that of the EMD method, and is slightly higher than the values
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yielded by other methods. On the other hand, compared with the Sudoku method, both
visual quality and embedding capacity are higher than those produced by the Sudoku
method for the cases of N = 3 to N = 5. The embedding capacity can be dynamically
adjusted according to user requirements (i.e., by changing the value of N). In addition,
compared with the best large-payload data-hiding method, OPAP, in the spatial domain,
the proposed method offers the advantage of high security while embedding and extracting
data owing to the various solutions of the SSRM. The SSRM solutions can be multiplied
by changing the value of N, where the solution can be computed in

(
N2!
)
. The proposed

method is not only a simple and sufficient algorithm, but also represents a novel and secure
idea for data-hiding in the spatial domain. Future work will further explore data-hiding for
the SSRM edge cases. The possibility of combining other data-hiding schemes with edge
detection will be considered for reducing the distortion of stego-images.
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