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Abstract: We build and train an artificial neural network (ANN) model based on experimental
α-decay energy (Qα) data. In addition to decays between the ground states of parent and daughter
nuclei, decays from the ground states of parent nuclei to the excited states of daughter nuclei are also
included. In this way, the number of samples is increased dramatically. The α particle is assumed to
have a spherical symmetric shape. The root-mean-square deviation between the calculated results
obtained from the ANN model and the experimental data is 0.105 MeV. It shows a good predictive
power for α-decay energy with the ANN model. The influence of different inputs is investigated.
It is found that both the shell effect and the pairing effect result in an obvious improvement of the
predictive power of the ANN model, and the shell effect plays a more important role. The optimal
result can be obtained when both the shell and pairing effects are considered simultaneously. The
application of the ANN model in predicting α-decay energy indicates a neutron magic number at
N = 184 in the superheavy nuclei mass region.

Keywords: α-decay energy; artificial neural network; superheavy nuclei; shell effect

1. Introduction

α-decay is one of the most important decay modes of heavy nuclei. It plays a crucial
role in the identification of newly synthesized superheavy elements and provides reliable
information on nuclear structures. Moreover, the α-decay half-life is one of the decisive
factors for the stability of superheavy nuclei [1]. The theoretical α-decay half-life is very
sensitive to α-decay energy which itself can reveal many nuclear structural properties [2–4].

α-decay energy can be obtained from the nuclear mass difference of the involved
nuclei, where nuclear mass is calculated by various theoretical mass models [5–16]. The
accuracy of these mass models ranges from about 3 MeV for the Bethe–Weizsäcker (BW)
model [17] to about 0.3 MeV for the Weizsäcker–Skyrme (WS) model [9]. For heavy nuclei,
an uncertainty of 1 MeV Qα would lead to 103−5 times the uncertainty of an α-decay
half-life. [18]. Such accuracy cannot meet the needs of α-decay half-life investigation,
especially for the unknown-nuclear-mass regions, such as the superheavy and neutron-
rich regions. The empirical formula is also applied to investigate α-decay energy [19–23].
It can be used as an effective description of α-decay energy to some extent. Accurate
descriptions of known nuclear α-decay energy and reliable predictions of the unknown
ones are indisputably required.

In recent years, machine learning has been used in the research of nuclear physics [24–30].
The artificial neural network is a mathematical model that mimics the function of the brain.
It is composed of several processing units called neurons, which are weighted by adaptive
synapses between them. It is employed to study nuclear charge radii and the ground-
state energies of nuclei [24,31]. In Refs. [25–28], the Bayesian neural network (BNN)
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approach is used to improve the nuclear mass predictions of various models and two-
neutron separation energy S2n. It constructs a sufficiently complex neural network that can
accelerate the calculation of relevant physical quantities with many parameters.

For α-decay energy, to the best of our knowledge, except for the studies in Refs. [29,30],
it is rarely investigated by using the machine learning method. In Ref. [29], α-decay energy
is calculated for the nuclei within the range 82 6 Z 6 118 by four different machine
learning models which include XGBoost, Random Forest (RF), Decision Trees (DTs), and
Multilayer Perception (MLP) neural networks. It is found that XGBoost best reproduces the
experimental Qα values and the root-mean-square deviation is 0.31. In Ref. [30], the BNN
model is used to calculate the α-decay energy for the nuclei within the range 82 6 Z 6 118.
In this way, the Qα value prediction of the Duflo–Zuker mass model has been improved and
the root-mean-square deviation improvement is 72%. In both of the works, only α-decays
from the ground state of the parent nucleus to the ground state of daughter nucleus are
considered.

In this work, based on experimental α-decay energy data [32], we construct an artificial
neural network to study the Qα value. In addition to decays which involve only the ground
states of the parent and daughter nuclei, the decays of the ground state of the parent
nucleus to the excited state of the daughter nucleus are investigated, as well. In this way,
the number of samples is increased substantially. We choose four inputs, i.e., mass number
(A), proton number (Z), shell effect P, and pairing term δ, to improve the accuracy of our
ANN model. The trained ANN model is used to predict the Qα for superheavy nuclei.

2. Theoretical Framework

We apply an ANN model to calculate α-decay energy. Our model takes nuclear
properties, which have important effects on the α-decay energy of nuclei, as input and
α-decay energy Qα as output. Such problems, where the output is a numerical value, are
known as regression problems. Regression is a supervised learning problem where there
is an input x and an output y, and the task is to learn the mapping from the input to the
output [33]. A model in machine learning is given as below:

yω,b(x) = φ(xw) (1)

where φ is the activation function and ωωω = {ωi} are weight parameters. In our study, y
corresponds to the output representing the prediction of α-decay energy, and xxx = {xi} is
the input data. In the context of machine learning, the parameters ωi are optimized by
minimizing a loss function. Thus, the predictions are obtained as close as possible to the
reference experimental data.

Multilayer perception (MLP), which is a class of feedforward artificial neural networks,
is selected as the model to solve the regression problems. During the training phase of MLP,
the back-propagation algorithm is used for the calculation of the gradient [34]. In recent
years, a new algorithm, the adaptive gradient method called Adam, which is a method for
stochastic optimization and adapts to the learning rate of model parameters alone, was
introduced and is used to train the ANN model in this paper [35,36].

As shown in Figure 1, we implement an MLP with three hidden layers for the α-decay
energy predictions. The Rectified Linear Unit (ReLU) function is chosen as the activation
function with ReLU(x) = log(1 + exp(x)). It is close to 0 when xi is negative and close to
xi when xi is positive. In Figure 1, ωωω1h, ωωω2h, and ωωω3h are the weight parameters belonging
to the first, second, and third hidden layers, respectively. The units of the first, second, and
third hidden layers are expressed as z1z1z1, z2z2z2, and z3z3z3, and vvv is the weight of the output layer.



Symmetry 2022, 14, 1006 3 of 10

When the input x is entered into the input layer, the weighted sum is calculated and the
activation is propagated forward. The ReLU function is selected as activation function:

zih = ReLU(ωωωT
ihxxx)

= ReLU(
d

∑
j=1

ωihjxj), h = 1, . . . , Hi, i = 1, 2, 3
(2)

where Hi is the number of neurons, ωihj are the weight parameters in the hidden layer i,
and d is the number of characteristic quantities in the input layer. When a pattern xxx appears
at the input, the system calculates a response based on two rules: First, the states of all
neurons within a given layer, as specified by the outputs zih of Equation (2), are updated
in parallel. Second, the layers are updated successively, proceeding from the input to the
output layer. Therefore, the output ypred is computed by taking z3 as input. Thus, the
forward-propagation is completed.

ypred = vTz3 =
H3

∑
h=1

vhz3 + v0 (3)

… … …

input 

hidden layer(64﹡3)

ReLU

 output ypred

z1 z2 z3

ω1h

ω2h ω3h

v

Figure 1. Architecture of a typical fully connected feedforward network having an input layer with
certain units, three hidden layers, each containing 64 units, and a single output unit.

In our ANN model, we use 64 hidden units in each hidden layer. The prediction for
α-decay energy is a single value and only one unit exists in the output layer. The challenge
of machine learning demands a learning model to perform well not only in the training
set but also in the test set [37]. The results obtained from ANN are in good agreement
with the experimental data. The root-mean-square deviation between calculation with the
ANN model and the experimental value is very small. It is 0.09 MeV (0.135 MeV) for the
training (test) data using the ANN model with four inputs. Since there is no significant
difference in the root-mean-square deviation between the training set and the test set, our
neural network does not overfit, even though the number of its parameters is larger than
that of the training data.

The input data are randomly divided into two subsets as 80% for training and 20%
for testing. The pragmatic objective of the training process will be to minimize the sum
of squared errors et relative to the experiment data. For the available experimental data
D = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where xi and yi(i = 1, 2, ..., n) are input and output
data and n is the number of data, the objective function is given as
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E(w, v|D) =
n

∑
t=1

(et)
2 =

n
∑

t=1
(yt

pred − yt
exp)

2

n
(4)

Here, ypred is the output of the ANN model, whereas yexp is the experimental α-
decay energy.

We use Python.Keras to build our ANN model and the Adam optimization algorithm
is used to train our ANN model for 1000 epochs to minimize the mean-square error. At the
same time, we require a hyperparameter called Callbacks.ReduceLROnPlateau in addition
to the learning rate [38]. During training, we monitor the loss function. In the whole
iteration process, when the loss function is not reduced for 100 consecutive iterations,
the callbacks function is activated. Then, the gradient value in which the loss function
was minimum in the previous training process is reloaded. The reloaded gradient is then
reduced by a factor of 0.1, and the model continues to be optimized to find a smaller loss
function.

3. Results and Discussions
3.1. Prediction of the α-Decay Energy Based on the Experimental Data

The experimental α-decay energies are extracted from Te (Z = 52) to Og (Z = 118)
isotopes. The data include not only the decay from the ground state of the parent nucleus
to the ground state of the daughter nucleus but also that to the exited state of the daughter
nucleus. A total of 2131 α-decay energy data are extracted.

To improve the predictive power of the ANN model, in addition to the mass (A) and
proton (Z) numbers, more inputs which carry physical information should be included [28].
Thus, the inputs δ and P related to nuclear pairing and shell effects, respectively, are
included. We consider these two effects separately and study their influences on the
predictive performance of the ANN approach. The pairing δ(Z, N) is defined as

δ(Z, N) = [(−1)Z + (−1)N ]/2 (5)

where Z is the proton number and N is the neutron number. A positive value of the pairing
term indicates a more stable nucleus, while a negative value is the opposite [17]. The shell
effect P [39] reads,

P = νpνn/(νp + νn), (6)

where νp(n) is the difference between the proton (neutron) numbers and the closest magic
number. We take the proton and neutron magic numbers as Z = 8, 20, 28, 50, 82, 126 and
N = 8, 20, 28, 50, 82, 126, 184, respectively.

The standard deviations (in MeV) of calculated Qα by ANN with respect to the avail-
able experiment values for different choices of input are shown in Figure 2. In Figure 2a,
we consider only mass A and proton Z as inputs, and the root-mean-square is slightly
higher, reaching 0.303 MeV. In order to improve the predictive power of the ANN, we add
more inputs by considering the physical effects which influence the Qα strongly. By adding
pairing effect δ alone, the root-mean-square deviation is significantly reduced to 0.22 MeV.
It corresponds to a 50% improvement in the prediction. By adding another input shell effect
P alone to the model, the root-mean-square deviation is 0.170 MeV. Compared with pairing
effect δ, including shell effect P improves further the accuracy of the ANN model. When
we consider both the pair effect δ and the shell effect P, the root-mean-square deviation
reaches a minimum value of 0.105 MeV. The results indicate that when we take appropriate
physical features as inputs in the ANN model, one can obtain more accurate predictions of
α-decay energy.
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Figure 2. (Color online) Comparison of the Qα between the experimental data [32] and that calculated
by the ANN model by using different inputs: (a) x = (Z, A), (b) x = (Z, A, δ), (c) x = (Z, A, P), and
(d) x = (Z, A, δ, P).

The root-mean-square deviations (σrms) of the α-decay energy by different machine
learning methods are given in Table 1. The present calculation exhibits relatively high
predictive accuracy of the ANN model. For the test set, except for σrms = 0.303 which is
obtained with input x = (A, Z), all the other deviations are smaller than those given by
the DZ+BNN model (σrms = 0.274) [30] and XGBoost neural network (σrms = 0.310) [29].
When input x = (A, Z, P) is adopted, to be the same as that used by the DZ+BNN model,
σrms = 0.176 is obtained in the ANN calculations. When further considering the pairing
effect δ, the result of the ANN model is improved to σrms = 0.105. This shows a relatively
high predictive power. Since the most powerful prediction is given by using the input
x = (Z, A, δ, P), the following calculations used to discuss the α-decay energy in the SHE
region are all calculated by using the input x = (Z, A, δ, P).

Table 1. The root-mean-square deviation (σrms) in unit of MeV.

ANN Model XGBoost
[29]

DZ+BNN
Model

[30]

input x (A, Z) (A, Z,δ) (A, Z, P) (A, Z, P,δ) - (A, Z, P)

σrms(MeV) training set 0.150 0.135 0.115 0.090 - 0.178
test set 0.303 0.220 0.176 0.105 0.403 0.274
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Note that the above comparisons based on the assessment of root-mean-square devia-
tions are only performed on different inputs. In the present work, we extract the α-decay
energy Qα from the ground state of the parent nucleus to the ground state of the daughter
and also to the excited state of the daughter nucleus. Therefore, the amount of sample data
is increased, which can improve the predictive power of the ANN model. The influence
of other factors, such as data size, symmetry energy, and so on, on the root-mean-square
deviations of the different models needs further investigation.

3.2. Extrapolation of the α-Decay Energy in the Superheavy Nuclei Mass Region

In the superheavy nuclei mass region where there are no sufficient experimental data
available, the accurate predictions of the α-decay energy and the half-lives of α-decay are
very important, both for the synthesis of new superheavy elements and the structural study
of superheavy nuclei. From the above discussion, one can see that the ANN model has a
relatively high predictive power for α-decay energy. We apply the above ANN approach to
calculate the α-decay energy of radionuclides in the SHE region. The comparison of the α-
decay energies calculated by the ANN model with the experimental data for 104 6 Z 6 118
are listed in Table 2. The first four columns denote the parent nucleus, its mass number,
and experimental and predicted α-decay energy, respectively. The last column is the root-
mean-square deviation for each element. The root-mean-square deviation of all α-decay
energies calculated in the SHE region is 0.204 MeV. The corresponding root-mean-square
deviation for each element is below 0.320 MeV, which is comparable to the results obtained
by the theoretical studies in Refs. [22,40]. The element with the largest root-mean-square
deviation is the Mt isotope (σrms = 0.315 MeV). The uncertainty of the α-decay energy Qα

leads to 101−2 times the uncertainty of the α-decay half-life. It confirms to us that the ANN
model can give a good prediction of the Qα values in the SHE region. However, the decay
of the SHE is very complicated. Besides α-decay, other decay modes such as spontaneous
fission play very important roles, which needs further investigation in the future.

The detailed comparison of the calculated Qα with the available experimental data
for the Z = 104− 118 isotope chains is shown in Figure 3, in which the results are divided
into four groups. The neutron numbers vary from N = 151 to 189. The calculated ANN
results are denoted by solid lines and the experimental data by solid circles. One can see
that the experimental data are reproduced well by the ANN model. The local minimum of
the Qα curves with the neutron number N of the parent nucleus could indicate a shell gap.
The dashed vertical lines mark the neutron numbers, at which there are possible existent
shell gaps.

As shown in Figure 3, a clear local minimum appears at N = 184 for almost all the
Z = 104− 118 isotope chains, which indicates a big shell gap. For Z = 118, the minimum of
Qα is predicted at N = 183 instead of 184. This is partly because there are few experimental
data for Og isotopes in the training model. As we know, the prediction of the next closed
shell beyond 208Pb is the critical point in synthesizing superheavy elements. Different
theoretical models usually predict different closed shells. In the present work, based on
the training of the ANN model by the experimental Qα, a big shell gap effect is predicted
at N = 184, which is consistent with the predicted neutron magic number by theoretical
nuclear models in the literature [41–43].
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Table 2. The comparison of the α-decay energies calculated by the ANN model with the experimental
data for 104 6 Z 6 118. The first four columns denote the parent nucleus, its mass number,
experimental and predicted α-decay energy (in MeV), respectively. The last column is the root-mean-
square deviation (in MeV) for each element.

Parent
Nuclei Ap

Qexp

(MeV)
Qpred

(MeV)
δrms

(MeV)
Parent
Nuclei Ap

Qexp

(MeV)
Qpred

(MeV)
δrms

(MeV)

104Rf 255 9.055 9.065 105Db 270 9.265 9.458
104Rf 256 8.926 8.955 105Db 263 9.206 9.057
104Rf 257 9.083 9.065 105Db 262 9.501 9.620
104Rf 258 9.193 9.588 105Db 257 9.620 9.507
104Rf 259 9.131 9.242 105Db 261 9.500 9.302
104Rf 261 8.648 8.758 0.173 105Db 256 9.218 9.163
106Sg 271 9.821 9.815 105Db 260 9.050 8.960
106Sg 269 9.901 9.861 105Db 258 8.834 8.808
106Sg 266 9.714 9.546 105Db 259 8.020 7.928 0.127
106Sg 263 9.403 9.333 107Bh 274 10.401 10.367
106Sg 261 8.763 8.721 107Bh 270 10.503 10.278
106Sg 259 8.631 8.552 107Bh 272 10.319 10.076
106Sg 260 8.561 8.202 0.156 107Bh 266 9.967 9.781
108Hs 270 11.059 10.872 107Bh 264 9.550 9.496
108Hs 269 10.591 10.539 107Bh 262 9.061 9.344
108Hs 275 10.586 10.528 107Bh 260 9.301 9.228
108Hs 273 10.335 10.162 107Bh 261 8.951 8.795 0.179
108Hs 267 10.110 10.148 109Mt 278 11.480 11.284
108Hs 266 9.315 9.790 109Mt 276 10.695 10.971
108Hs 265 9.070 9.256 109Mt 270 10.181 10.774
108Hs 264 9.670 9.428 109Mt 275 10.600 10.488
108Hs 263 9.440 9.110 0.235 109Mt 274 10.481 10.021
110Ds 281 11.780 11.692 109Mt 268 10.101 10.049
110Ds 279 11.680 11.336 109Mt 266 9.631 9.581 0.315
110Ds 277 11.117 11.022 111Rg 282 11.197 11.648
110Ds 271 10.899 11.029 111Rg 281 11.481 11.435
110Ds 270 11.371 10.879 111Rg 280 10.851 10.797
110Ds 273 10.710 10.282 111Rg 279 10.520 10.461
110Ds 269 9.840 9.833 111Rg 278 10.147 10.139
110Ds 267 8.853 9.158 0.289 111Rg 272 9.415 9.664
112Cn 285 11.595 11.388 111Rg 274 9.160 9.652 0.271
112Cn 283 10.450 10.160 113Nh 285 11.851 11.775
112Cn 281 9.761 9.778 113Nh 286 10.781 10.583
112Cn 277 9.291 9.367 0.182 113Nh 283 10.261 10.192
114Fl 289 10.561 10.295 113Nh 284 10.281 10.251
114Fl 288 10.370 10.230 113Nh 282 9.615 9.851
114Fl 287 10.161 10.059 113Nh 278 9.791 9.765 0.133
114Fl 286 10.072 10.089 115Mc 290 10.471 10.477
114Fl 285 9.961 9.963 0.141 115Mc 289 10.751 10.579
116Lv 293 11.001 10.954 115Mc 287 10.456 10.387
116Lv 292 10.891 10.714 115Mc 288 10.451 10.441 0.092
116Lv 291 10.774 10.802 117Ts 293 11.184 11.061
116Lv 290 10.671 10.616 0.095 117Ts 294 11.201 11.113 0.106
118Og 294 11.861 11.697 0.164 all nuclei 0.204
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Figure 3. (Color online) The α-decay energy Qα as a function of neutron numbers N in the SHE mass
region with 104 6 Z 6 118. The results obtained by the ANN model are denoted by lines and the
experimental data by solid circles. The dashed vertical lines are used to mark the predicted possible
neutron shell gaps (a–d).

4. Summary

We build and train an ANN model by extracting experimental Qα values from the
ground states of parent nuclei to the ground and excited states of daughter nuclei. In this
way, the number of samples increases substantially. The ANN model is trained to have
stronger prediction power. To obtain a high predictive power, besides mass number A and
proton number Z, two more inputs, i.e., P and δ, which are related to nuclear shell effect
and pair effect, respectively, are considered. By studying 2131 α-decays, the root-mean-
square deviation of the α-decay energy is 0.105 MeV, which presents great accuracy. In
addition, the influence of different inputs on predictive power is investigated. It is found
that considering both the shell effect and the pairing effect leads to an obvious improvement
of the result and that the shell effect plays a more important role. The optimal result is
obtained when both the shell and pairing effects are considered simultaneously. The ANN
model is used to study the α-decay energies in superheavy nuclear mass regions where
experimental data are rare. A clear minimum of the predicted Qα at N = 184 by the ANN
model indicates a big shell gap for nuclei in the SHE region, which is consistent with the
prediction of a neutron magic number at N = 184 by theoretical nuclear models.
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H.-Q.Y.; Data curation, Z.-Z.Q., H.-Z.S.; Formal analysis, Z.-Z.Q., R.-H.W., H.-Z.S.; Supervision,
X.-T.H.; Writing—original draft, H.-Q.Y., X.-T.H.; All authors have read and agreed to the published
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