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Abstract: The functions v/1+2z, €%, 1+ Az, A € (0,1] map the unit disc D to a domain which is
symmetric about the x-axis. The Regular Coulomb wave function (RCWF) F , is a function involving
two parameters L and 7, and F ;; is symmetric about these. In this article, we derive conditions on
the parameter L and # for which the normalized form £ of F| ; are subordinated by V1+z. We
also consider the subordination by ¢ and 1 + Az, A € (0,1]. A few more subordination properties
involving RCWF are discussed, which leads to the star-likeness of normalized Regular Coulomb
wave functions.

Keywords: star-like function; Janowski star-like; differential subordination; Regular Coulombwave
functions

1. Introduction

The Regular Coulomb wave function (RCWF) defined in the complex plane is an entire
function and closely associated with the well-known classical Bessel function. The Coulomb
wave functions have a rich literature (See [1-10] and references therein) in terms of mathe-
matical and numerical research articles and its applications in various branches of physics,
especially in nuclear physics. The symmetrical property of RCWF is established in [11].
Entire functions have good geometric characterizations in the unit disc. In this sense, the ex-
ploration of the geometric nature of Coulomb wave functions is limited [4,12]. The aim of
this article is to contribute some results on the geometric properties of RCWF.

The Coulomb differential equation [13] is a second-order differential equation of
the form

L(L+1)

4 ) )w:O, 1, z €C, 1)

dz?

d*w ( 2y

that asserts two independent solutions, namely regular and irregular Coulomb wave
functions. In terms of Kummer confluent hypergeometric functions {F;, the RCWF is
defined as

Fpp(z) := zL+1efiZCL(17)1F1(L +1+4in,2L +2;2iz) = Cr(7) Z aL,nz”+L+l. )

n=0
In this case, z,%, L € C and
CLin) = 2Le T(L 41+ in)|
L= TeL+2)
Ui 2nap -1 — arn-2
—1, -1 _ ZhhL, N2 2,3,...}.
AL AT T T Tamyor+n 'S { }
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For the study of the geometric characterization of RCWF, we need a normalized form
such as as 1(0) = 1 or 1(0) = 0 = #'(0) — 1. Clearly, F; , defined in (2) does not process
such a normalization. Hence, we consider the following two normalizations:

fr(z) = CL_l(q)z_L_lFLl,?(z) =1+ LLHZ +.o. ©)]
gr(z) = Cgl(q)szFL,,](z) =zf1(z) =z + LLHZ2 +o. 4)

By a calculation, it can be shown from (1) that f; satisfies the differential equation
22y"(2) + 2(L+1)zy'(z) + (22 — 22)y(2) = O, ®)
while the function g; is the solution of the differential equation
22y (z) + 2Lzy' (z) + (2> — 25z — 2L)y(z) = 0. (6)

Let A denote the class of normalized analytic functions f in the open unit disk
D = {z:|z| < 1} satisfying f(0) = 0 = f'(0) — 1. Denote by S* and C, respectively,
the widely studied subclasses of A consisting of univalent (one-to-one) star-like and con-
vex functions. Geometrically, f € S* if the linear segment tw, 0 < t < 1, lies com-
pletely in f(ID) whenever w € f(D), while f € C if f(DD) is a convex domain. Related to
these subclasses is the Caratheodory class P consisting of analytic functions p satisfying
p(0) = 1 and Rep(z) > 0in D. Analytically, f € S*if zf'(z)/f(z) € P, while f € C if
1+zf"(z)/f'(z) € P.

For two analytic functions f and g in D, the function f is subordinate to g, written as
f < g orf(z) < g(z),z € D, if there is an analytic self-map w of D satisfying w(0) = 0 and
f(z) = g(w(2)),z € D.

Consider now the class P[¢] of analytic functions p(z) =1+ c1z + - - - in D satisfying
p(z) < ¢(z), where ¢ is an analytic function with a positive real impact on D, ¢(0) = 1
and ¢’ (0) > 0. This article considers three different ¢, namely ¢(z) = (1 + Az)/(1+ Bz),
¢(z) =vV1+zand ¢(z) = ¢

For -1 < B < A <1land ¢(z) = (14 Az)/(1 + Bz), denote the class as P[A, B]. This
family P[A, B] has been widely studied by several authors and most notably by Janowski
in [14], and the class is also referred to as Janowski class of functions. The class P[A, B]
contains several known classes of functions for judicious choices of A and B. For instance,
if 0 < B < 1, then P[1 — 2B, —1] is the class of functions p(z) = 1+ c1z + - - - satisfying
Rep(z) > B in D. In the limiting case B = 0, the class reduces to the classical C4ratheodory
class P.

The class of Janowski star-like functions S*[A, B] consists of f € A satisfying

zf'(z)
@) € PlA, B],

while the Janowski convex functions C[A, B] are functions f € A satisfying

zf"(2)
1+ 02) € P[A,B].

For0 < B <1,S8*[1—-2B,—1] := §*(B) is the classical class of star-like functions of order j3;
S*1—p,0]:=Sp = {f € A:[zf(2)/f(z) = 1] <1— B}, and S*[B, -] := S*[B] = {f €
A zf(z)/ f(z) = 1] < Blzf'(z)/f(z) + 1]}. These are all classes that have been widely
studied; see, for example, the works of [14-16].

The next important class is related to the right half of lemniscate of Bernoulli given by
{w: |w? — 1| = 1}. The functions p(z) = 1+ 1z + - - - in D satisfying p(z) < /1 +z are
known as lemniscate Carathéodory function, and the corresponding class is denoted by P.
A lemniscate Caratheodory function is also Caratheodory function and hence univalent.
The lemniscate star-like class S, consists of functions f € A such that zf'(z)/f(z) <
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V1+z Theclass Ky = {f € A: 1+ (zf"(z))/f'(z) < V1 +z} is known as a class of
lemniscate convex functions.

The third important class that is considered in sequence relates with the exponential
functions ¢*. The functions p(z) = 14 c1z + - - - in D satisfying p(z) < ¢* is known as
the exponential Caratheéodory function, and the corresponding class is denoted by Ps¢.
The exponential star-like class Sg consists of functions f € A such that zf'(z)/ f(z) < €.
The class K¢ = {f € A: 1+ (2f"(z))/f'(z) < ¢*} is known as a class of exponential
convex functions.

The inclusion properties of special functions in the geometric classes are well
known [4,12,17-22]. However, there are limited articles regarding the inclusion of RCWF in
the classes of geometric functions theory. It is proved in [4] that for L, ;7 € C, the function
z — gy is leminiscate star like provided that

(V2-1)2L—1|+2|y| < %.

It is also shown that z — g is exponentially star like provided that
e—1

The radius of star-likeness, univalency, is discussed in [12] by using the Weierstrassian
canonical product expansion of RCWE. It is proved that for L > —1 and 5 < 0, the radius of
star-likeness of the order B € (0, 1] for the functions z — g is the smallest positive root of

(L4 B)FLy(r) — rF’Lﬂ(r) =0.

The star-likeness of g; is discussed in ([12], Theorem 4). The conditions for which Re(g; ) >
0 were also found in same results ([12], Theorem 4). However, it seems that the obtained
condition for which Re(gy) > 0 is not correct with that fact that g; (0) = 0, while as per
the requirement of ([12], Lemma 2), it should be g; (0) = 1. The aim of this study is
to contribute more results related to the inclusion of normalized RCWF in the classes
of univalent functions theory. In Section 2, we state a proof of the results in which the
function £ is subordinated by three functions, v/1+z, 1 + Az and ¢*. We explain our
results through a graphical representation in some special cases. The star-likeness for gy, in
the shifted disc 1 + Az is also considered.

Throughout this study, we used the principle of differential subordination [23,24],
which is an important tool in the investigation of various classes of analytic functions to
proof main result.

Lemma 1 ([23,24]). Let Q C Cand ¥ : C? x D — C satisfy
¥ (ip,0;z) ¢ Q)

for z € D, and real p,o such that ¢ < —(1+ p2)/2. If p is analytic in D with p(0) = 1,
and ¥(p(z),zp'(z);z) € Qforz € D, then Re p(z) > 0in D.

Lemma 2 ([25]). Let Q C C,and ¥ : C*> x D — C satisfy
Y(r,s,t;z) & Q

whenever z € D, and form >n>1, —nt/4 <0 < 1t/4,

, 3i6 ‘ 3m2
r = 4/2cos(26 el s= _me and Re((t+s)e®0) > 7
(26) 24/2cos(26) (< ) ) ~ 84/2cos(20) @

IfFY¥(p(z),zp'(2),2%p" (z);2z) € Qforz €D, then p(z) < v/1+zinD.
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Lemma 3 ([21]). Let Q C C,and ¥ : C3 x D — C satisfy ¥ (r,s, t;z) & Q) whenever z € D,
and form > 1,0 € (0,2m),

i 0 ol t
r=e", s=me%" and Re(l + S> > m(1+ cos(6). 8)

IfY¥(p(z),zp'(2),22p" (2);z) € Qfor z € D, then p(z) < €% in D.
The following Lemma holds for r and s as stated in Lemma 2.

Lemma 4. Consider s and v as in (7) with m > 1. For any a € R, the following inequalities
are true:

1. |s+r2—a|22(2\[
2. r—al? < (a—+2)?2

+2—zx)2

Proof. For the r and s along with m > 1, we have

|s + 1% — a|?
, 2
3i6 )
= L4—2cos(29)3219—¢x
24/2cos(26)
, 2
3i6
S — +2c0s?(26) +isin(46) — a
2/2cos(26)
, 2
3if .
= e (q—1)
24/2cos(26)
2
m . .
—_ 7—1-619— 0(—167319
2/2cos(26) ( )
2 2
= + cos(6 & —1)cos(30) | + [ sin(0) + (« —1)sin(30
(zm <><>)(<><><>)
2 2
+ cos(@ « — 1) cos(30 + { sin(f) + (a —1 sin36> = g(0
(wm <><>>(<><><> 0)

A calculation shows

g =1 (2& sec? (20)((2a — 1) sin(6) + (a — 1) sin(50))
+ tan(26) sec(260) (8a + 8(a« — 1) cos(40) —7)).

For a fixed « > 0, ¢/(0) has a zero only at 6 = 0 in (—7t/4,7/4), and further for
x> 3 (5 + 2\@) /(16 + 7/2) ~ 0.906785,

g'(6=0)= %(8(04 —1) 4 24a +2v2(7a — 6) — 22) > 0.

This implies that g has a local minimum at 6 = 0 and hence

2
s + 7% —a|* > g(0) = <M+2—a) .
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2

|r — af? :‘\/ZCOS(ZQ) — e

2
:< 2cos(26)—acos(6)) + a? sin®(6)

=2c0s(26) — 2a cos(0)4/2 cos(26) + o>
<a?—2vV2a +2.

This complete the proof. [

2. Geometric Properties of Coulomb Wave Functions (CWF)
2.1. Subordination by /1 +z

In [4], sufficient conditions based on L and 7 is derived for which zg] (z) /g1 (z) <
v 1+z, that is gj, is Lemniscate star like. This section derives conditions on L and # for
which £ (z) < v/1 + z, which we termed as £ is the Lemniscate Catathéodory function.

Theorem 1. For 1, L € C, suppose that
13
Re(2L+1) >max{0,8|17| +4}, )

then £1(z) < 1+ z.

Proof. Suppose that p(z) = £ (z). Since £ is the solution of the differential equation (5), p
is the solution of

22p"(z) + 2(L 4+ 1)zp/(z) + (22 — 2572)p(z) = 0. (10)

Let Q = {0} C Cand define ¢ : C®> x D — C as
W(r,s,t;2) ==t +2(L+1)s + (22 — 252)r. (11)
It is clear from (10) that (p(z),zp’'(z),z?p" (z);z) € Q. We shall apply Lemma 2 to show

Y(r,s,t;z) ¢ Q, which further implies p(z) < V1 + z.
Forr,s,t as given (7), it follows from (11) that

[w(r,s,t2)| = ‘(t+s) + Q2L+ 1)s + (22 — 272)r
s @LADm |

> ‘(t+s)e +2\/W E zq\\/m
3m? Re (2L +1)m L

7 8v/2c0s20) | 2y2c0s(28) 2|y/2c05(26)

[3m2 +4mRe (2L +1) — 16 — 32|17|} >0,

1
 84/2c0s(26)
provided Re(2L +1) > (13+32|y|)/4. O

It is well known that for univalent function g, if f < g, then f(D) C g(D). Using
this fact, we chose some real and complex #, and validated Theorem 1. For the first case,
consider # = 1,1, and L is a real number. Using Theorem 1, in both cases, L > 5.25. This
fact is represented in Figure 1.
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00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 L4

(@ ForL=525andy =1 (b)ForL=525andy =i
Figure 1. Image of £ (D) for L = 5.25.

We consider another case by taking # = (1 + i). By Theorem 1, in this case for real
L > 6.78185, and Figure 2 validate the result.

04t

02

p //—*‘7\\
T % T
\ 4
\\_/ 4

—04F

L L L L L L L
00 02 04 06 08 10 12 14

Figure 2. Image of £ (D) for L = 6.78185.

2.2. Subordination by 1 + Az

In this part we proved that result related to the subordination f;, < 1+ Az and
zg; (z)/gr(z) < 14 Az which describe the nature of f; and g, in the disc center at (1,0)
and radius A. The results in this section are proved by using Lemma 2.

Theorem 2. For#,L € Cand A € (0,1], suppose that
4ARe(L) > 2|y|(A+1) —3A+3 (12)
Then, £1(z) < 1+ Az.

Proof. Consider

9(x) = \/ k(1) + A - 1). (13)
A simplification gives
f1(z) = A*(2) = A+1, f1(2) =244 (2)q(z) £[(2) = 249" (2)(2) +2A(q'(2))*.
From (5), it follows that
242" (2)q(2) +2A(2q'(2))* + 4A(L + 1)2q'(2)q(2) + (2° = 242) (Ag*(z) = A+1) = 0.
Let O = {0} C C and define ¢ : C> x D — C as
P(r,5;2) := 2Atr + 2As* + 4A(L 4+ 1)sr + (2> — 257z) (Ar? — A +1). (14)

It is clear from (14) that ¢(q(z),zq'(z);z) € Q. We shall apply Lemma 2 to show that
Y(r,s,t;z) ¢ Q, which further implies g(z) < V1 + z.
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Now, for —mr/4 <60 < t/4, let

3i0
r = 4/2cos(26 eie, SZL.
(2) 24/2cos(20)

It follows by elementary trigonometric identities that
1?2 —1=12co0s(20)e*® —1 = (2cos?(20) — 1) + i2 cos(26) sin(26) = &**.
Substitute r and s in (18) and a simplification leads to

lw(r,s,t;2)| = [2Atr +2As% +4A(L + 1)sr + (22 — 2nz) (Ar* — A +1)|
= |2Ar(t + ) + 2As* + A(4L +2)sr + (2% — 2572) (Ar? — A+ 1))

2 2i6
46 36 m” Re(e"”)
\/2cos(20) Re(t 2A ARe(4L +2
> |e ( cos(20) Re(t +s)e " + 2 cos(20) + ARe(4L +2)m

— A +2[p])[r? = 1] = (1+2[y))
2 ,
> 3% +2Am? + ARe(4L +2)m — A(1 +2|5))|e*®| — (1 +2|y])

> 4ARe(L) +3A —2[y[(A+1) -3 > 0.

By Lemma 2, it is proved that q(z) < v/1 + z which is equivalent to

\/%(fL—f—A—l):\/l—i—w(z), (15)
for some analytic function w(z) such that |w(z)| < 1. A simplification of (15) gives
TEL+A-1) =1+4w(z) = £ =1+ Aw(z) = £ <1+ Az
This complete the proof. [

Again to validate the Theorem 2, we fix A = 1/2 and # = 1. Lets L be real and then
as per Theorem 2, L > 17/16 ~ 1.1. The Figure 3 indicates that the lower bound for L is
possible sharp.

Figure 3. Image of £7 (D) for L=11and y = 1.

Our next result is about the starlikenes of gy in the disc 1+ Az.

Theorem 3. For#,L € Cand A € (0,1], suppose that

Re(2L — 1) > A—2+%. (16)

Then, zg} (z)/gL(z) < 1+ Az.
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Proof. To prove the result consider

CREICERE! <w>

A calculation yield

zgy (z) 2

=Aq°(z) —A+1

gL(z) 7()

Zzg/L/(Z) _ / _ 20N 20N 2

o) 2Azq'(2)q(z) — (Ag°(z) —A+ 1)+ (Ag°(z) — A +1)
From (6) it follows that

— 2Az4'(2)q(z) + (Ag*(z) —A+1)2+ AQL - 1)(¢*(z) = 1) + 22 =2z —1=0
— 2Azq(2)q(z) + A%(g%(z) — 1)* + 2A(g%(z) — 1) + AQRL — 1)(¢*(z) — 1) + 2% — 25z = 0.

Let QO = {0} C C and define ¢ : C2 x D — C as
¥(r,8;z) :=2Ars + A2(1? = 1)2 4 2A(r* = 1) + AQL - 1)(r* = 1) + 22 —25z.  (18)

It is clear from (18) that ¥(q(z), zq'(z);z) € Q). We shall apply Lemma 2 and proceed similar
to the proof of Theorem 2 to show that ¢(r, s, t;z) ¢ Q). Substitute r and s into (18), and a
simplification leads to
[W(r,5;2)| = |2Ars + A2(r? = 1) +2A(r* = 1) + AQL —1)(r* = 1) + 22 — 2177

= |me*® + A28 £ 2464 + AL — 1) + 2% — 22|

> Re(m + A%e*® 4 2A + ARe(2L — 1)) — 1 —2|y|

= m+ A%cos(40) +2A + ARe(2L — 1) — 1 —2|y|

> —A2 4 2A + ARe(2L — 1) — 25| > 0,

provided Re(2L — 1) > A — 2+ 2|y|/ A.
In view of Lemma 2, it concludes that q(z) < v/1 + z, which is equivalent to

ﬁ(zgggg +4-1) = /1+w()

for some analytic functions w(z) such that |w(z)| < 1. A simplification gives

zgy (z)

gL(z)

zg; (2)
gL(z)

=1+ Aw(z) = <14 Az

This concludes the result. [

2.3. Subordination by &*

In this part, we derive sufficient conditions on L and # for which £} (z) < e*. The ex-

ponential starlikeness of zg] (z)/gr.(z) is discussed in [4]. It is worthy to note here that
Z

exponential starlikeness is equivalent to zg] (z) /gr.(z) < €.
Theorem 4. For 1, L € C, suppose that
Re(L) > || (19)

Then £1(z) < €=
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Proof. To prove the theorem, it is enough to consider the function Y(r,s,t; z) as defined
in (11) and then apply Lemma 3 to show that Y(r,s,t;z) € Qforr,sand t as given in (8).
For m > 1and Re(2L + 1) > 0, it follows that

lp(r,s,t;z)| = ‘(t+s) + (2L +1)s + (2% — 252)r
e (|t +s)e e + (2L + 1)m| =1 -2n])
>eC°S">(R (t+s)e %" + Re(2L + 1)m —1 - 2]y
<) (m(1 4 cos(8)) +2Re(L)m +m —1—2y|) >0

provided Re(L) > |y7|. Lemma 3 implies ¥(r,s,t;z) ¢ Q and hence £ (z) < ¢*. This
completes the proof. [

We validate this result graphically by taking real L and # and L = = 1, 10, 50, 100, 500,
and all of the case are presented in Figure 4. It is evident from Figure 4 that £; (D) C P,
and for larger L = 7.

(@ForL=ny=1 (b)ForL=75 =10

// 7\ ) / // 7\

\
N 2 “ N

(¢) For L =% =50 (d) For L =5 =100

(e) For L = =500

Figure 4. Cases for £1(z) < e* for L = 1.
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2.4. Subordination by (1 + Az)/(1+ Bz)

Theorem 5. Let L,y € Cand —1 < B < A < 1. Suppose that
(A—B)%((1+B)Re(L) + (1 - B)Im(L))” < [((1 +2l)(1+ B2 —24 -1+ B>
X ((1 +2[5)(1 — B)2—2(A — B)((1— B)Re(L) — (1 + B) Im(L)) (20)
+2(1+AB) - (A—B)+ (1 — A)Zﬂ (21)

Then,
zg1(z2) 1+ Az
gr(z) 1+ Bz’

provided (1+ B)zg) (z) # (1+ A)gr(z).

Proof. Define the function

p(z) = — (1— B)Zg/L(Z> —(1-A)gL(z)
~ (1+B)zg(z) - (1+ A)grlz)

A series of calculation and simplification leads to

2 (z) _ (1+A)px)+1-4

g(z)  (1+B)p(z) +1-B

2g/(z) _ 2AA-B)/(2) <1+A>p<z>+1—A+<<1+A>p<z>+1—A>2
B

g(z) (LT Bp() +1-B2  (1+B)p(z) +1-

From (6), it follows that

2g] (2) 281(2) 2 o ory
=) 2LgL(z)+(z 2yz—2L) =0

2(A— B)zp'(z) (A—B)(p(z) - 1)
(T Bpe 18 T VAT B 118
(1+A)p(z) +1—A\?
(G mpaTis) @2 =0
— 2(A—B)zp'(z) + (1 + A)p(z) + 1 — A)? + (2% — 27z)((1 + B)p(z) + 1 — B)?

)p
)p
(
+<(2L(A—B)—(1+A))() L(A—B)— A+1><(1+B)p(z)+1—B):0

Let Q = {0} C C and define ¢ : C> x D — C

¢(r,52) :=2(A—B)s++((1+A)r+1— A)? + (22 —2z) (1 + B)r +1— B)?

+<(2L(AB)(1+A))r2L(AB)A+1) ((1+B)r+1B>

Denoting L; = Re(L) and L, = Im(L), we have
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Re y(ip, 0; z)
< (A=B)(1+p%) +Re((14 A)ip+1— A)?> +Re((z> —252)((1 + B)ip + 1 — B)?)

+Re ((ZL(AB) — (1+ A))ip—2L(A — B) A+1) ((1+B)ip+1 B)

= —(A=B)(1+p*) = (1+A)p* + (1= A+ (1 +2[5)((1 + B)*0* + (1 - B)?)
—2(A—B)((1+4 B)Ly + (1 — B)Ly)p — 2(A — B)((1 — B)L1 + (1+ B)Ly) +2(1 + AB)

= (— (A=B)—(1+A)+ (1+2|17|)(1+B)2>p2 - (2(A— B)((1+B)Ly + (1 — B)L2)>p
+(1+27))(1=B)*=2(A—B)((1 - B)Ly — (1+ B)Ly) +2(1+ AB) — (A — B) + (1 — A)?

% =(A-B)*((1+B)L; + (1—B)L2)2— K(l +2\;7\)(1+B)2—2A—1+B)

X ((1 +2[y])(1 - B)> —2(A—B)((1- B)Ly — (1+ B)Ly) +2(1+ AB) — (A— B) + (1 —A)Z)]

Clearly, by the given hypothesis, A; < 0, and hence Re ¢(ip, 0;z) < 0. This implies that
Y(r,s,t;z) ¢ Q. From Lemma 1 it follows

1+z (1-B)zgj(z)—(1—A)grL(z) 1+z
PO <7, = e ) (T e ~ T

zg; (z) - 1+ Az
gr(z) 1+Bz’

=

This completes the proof. [

By choosing A = —B = 1 in Theorem 5, we have the following result on the star-
likeness of g; .

Corollary 1. For L, 57 € C, suppose that || < Re(L) — 2(Im(L))? — L. Then, g is star like
provided that gy, # 0 for z € D.

Remark 1. The condition for the star-likeness of gy is provided in ([12], Theorem 4) which is the
same as stated in Corollary 1.

3. Conclusions

This study finds the conditions for the parameters L and 7 for which the normalized
function £/ (z) = C; ! (7)z~L71F; ,,(2) is subordinated by three different functions v/1+ z,
1+ Az, and ¢~

We already interpreted Theorems 1, 2 and 4 graphically. Figure 3 describes the sharp-
ness of Theorem 2. On the other hand, Figure 4 indicates the situation related to Theorem 4.
However, we were unable to obtain examples with a similar sharpness using Theorem 1.
Thus, it is expected show some improvement in the obtained results. For example, let
n = 2i, and then by Theorem 4, £;(z) < e* for Re(L) > || = 2. However, Figure 5
indicates that if L is real, then it can be lower than 1 for 57 = 2.
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Figure 5. Image of £ (D) for 7 = 2i and L = 1.05.
Similarly, for # = 2i, Theorem 1 implies that £ (z) < v/1 + z for
Re(L) > 8|y + 1 =9.125.

However, for real L, it follows from Figure 6 that L can be down to 5.5.

04

Figure 6. Image of £ (D) for 7 = 2i and L = 1.05.

From the above discussion, we can finally conclude that Theorems 1, 2 and 4 are
completely valid with respect to the stated hypothesis. However, for some special choice of
parameter 77, there is a possibility for improvement.

This article also derives the conditions for the star-likeness of g; in the disc
(14 Az)/(1+ Bz) and 1+ Az. With the special case for A = 1 and B = —1, the results
lead to a known result ([12], Theorem 4).
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