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Abstract: The functions
√

1 + z, ez, 1 + Az, A ∈ (0, 1] map the unit disc D to a domain which is
symmetric about the x-axis. The Regular Coulomb wave function (RCWF) FL,η is a function involving
two parameters L and η, and FL,η is symmetric about these. In this article, we derive conditions on
the parameter L and η for which the normalized form fL of FL,η are subordinated by

√
1 + z. We

also consider the subordination by ez and 1 + Az, A ∈ (0, 1]. A few more subordination properties
involving RCWF are discussed, which leads to the star-likeness of normalized Regular Coulomb
wave functions.

Keywords: star-like function; Janowski star-like; differential subordination; Regular Coulombwave
functions

1. Introduction

The Regular Coulomb wave function (RCWF) defined in the complex plane is an entire
function and closely associated with the well-known classical Bessel function. The Coulomb
wave functions have a rich literature (See [1–10] and references therein) in terms of mathe-
matical and numerical research articles and its applications in various branches of physics,
especially in nuclear physics. The symmetrical property of RCWF is established in [11].
Entire functions have good geometric characterizations in the unit disc. In this sense, the ex-
ploration of the geometric nature of Coulomb wave functions is limited [4,12]. The aim of
this article is to contribute some results on the geometric properties of RCWF.

The Coulomb differential equation [13] is a second-order differential equation of
the form

d2w
dz2 +

(
1− 2η

z
− L(L + 1)

z2

)
w = 0, η, z ∈ C, (1)

that asserts two independent solutions, namely regular and irregular Coulomb wave
functions. In terms of Kummer confluent hypergeometric functions 1F1, the RCWF is
defined as

FL,η(z) := zL+1e−izCL(η)1F1(L + 1 + iη, 2L + 2; 2iz) = CL(η)
∞

∑
n=0

aL,nzn+L+1. (2)

In this case, z, η, L ∈ C and

CL(η) =
2Le

πη
2
∣∣Γ(L + 1 + iη)

∣∣
Γ(2L + 2)

,

aL,0 = 1, aL,1 =
η

L + 1
, aL,n =

2ηaL,n−1 − aL,n−2

n(n + 2L + 1)
, n ∈ {2, 3, . . .}.
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For the study of the geometric characterization of RCWF, we need a normalized form
such as as h(0) = 1 or h(0) = 0 = h′(0)− 1. Clearly, FL,η defined in (2) does not process
such a normalization. Hence, we consider the following two normalizations:

fL(z) = C−1
L (η)z−L−1FL,η(z) = 1 + η

L+1 z + . . . . . . (3)

gL(z) = C−1
L (η)z−LFL,η(z) = zfL(z) = z + η

L+1 z2 + . . . . . . (4)

By a calculation, it can be shown from (1) that fL satisfies the differential equation

z2y′′(z) + 2(L + 1)zy′(z) + (z2 − 2ηz)y(z) = 0, (5)

while the function gL is the solution of the differential equation

z2y′′(z) + 2Lzy′(z) + (z2 − 2ηz− 2L)y(z) = 0. (6)

Let A denote the class of normalized analytic functions f in the open unit disk
D = {z : |z| < 1} satisfying f (0) = 0 = f ′(0) − 1. Denote by S∗ and C, respectively,
the widely studied subclasses of A consisting of univalent (one-to-one) star-like and con-
vex functions. Geometrically, f ∈ S∗ if the linear segment tw, 0 ≤ t ≤ 1, lies com-
pletely in f (D) whenever w ∈ f (D), while f ∈ C if f (D) is a convex domain. Related to
these subclasses is the Cárathèodory class P consisting of analytic functions p satisfying
p(0) = 1 and Re p(z) > 0 in D. Analytically, f ∈ S∗ if z f ′(z)/ f (z) ∈ P , while f ∈ C if
1 + z f ′′(z)/ f ′(z) ∈ P .

For two analytic functions f and g in D, the function f is subordinate to g, written as
f ≺ g, or f (z) ≺ g(z), z ∈ D, if there is an analytic self-map ω of D satisfying ω(0) = 0 and
f (z) = g(ω(z)), z ∈ D.

Consider now the class P [ϕ] of analytic functions p(z) = 1 + c1z + · · · in D satisfying
p(z) ≺ ϕ(z), where ϕ is an analytic function with a positive real impact on D, ϕ(0) = 1
and ϕ′(0) > 0. This article considers three different ϕ, namely ϕ(z) = (1 + Az)/(1 + Bz),
ϕ(z) =

√
1 + z and ϕ(z) = ez.

For −1 ≤ B < A ≤ 1 and ϕ(z) = (1 + Az)/(1 + Bz), denote the class as P [A, B]. This
family P [A, B] has been widely studied by several authors and most notably by Janowski
in [14], and the class is also referred to as Janowski class of functions. The class P [A, B]
contains several known classes of functions for judicious choices of A and B. For instance,
if 0 ≤ β < 1, then P [1− 2β,−1] is the class of functions p(z) = 1 + c1z + · · · satisfying
Re p(z) > β in D. In the limiting case β = 0, the class reduces to the classical Cárathèodory
class P .

The class of Janowski star-like functions S∗[A, B] consists of f ∈ A satisfying

z f ′(z)
f (z)

∈ P [A, B],

while the Janowski convex functions C[A, B] are functions f ∈ A satisfying

1 +
z f ′′(z)
f ′(z)

∈ P [A, B].

For 0 ≤ β < 1, S∗[1− 2β,−1] := S∗(β) is the classical class of star-like functions of order β;
S∗[1− β, 0] := S∗β = { f ∈ A : |z f ′(z)/ f (z)− 1| < 1− β}, and S∗[β,−β] := S∗[β] = { f ∈
A : |z f ′(z)/ f (z)− 1| < β|z f ′(z)/ f (z) + 1|}. These are all classes that have been widely
studied; see, for example, the works of [14–16].

The next important class is related to the right half of lemniscate of Bernoulli given by{
w : |w2 − 1| = 1

}
. The functions p(z) = 1 + c1z + · · · in D satisfying p(z) ≺

√
1 + z are

known as lemniscate Cárathèodory function, and the corresponding class is denoted by PL.
A lemniscate Cárathèodory function is also Cárathèodory function and hence univalent.
The lemniscate star-like class SL consists of functions f ∈ A such that z f ′(z)/ f (z) ≺
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√
1 + z. The class KL =

{
f ∈ A : 1 + (z f ′′(z))/ f ′(z) ≺

√
1 + z

}
is known as a class of

lemniscate convex functions.
The third important class that is considered in sequence relates with the exponential

functions ez. The functions p(z) = 1 + c1z + · · · in D satisfying p(z) ≺ ez is known as
the exponential Cárathèodory function, and the corresponding class is denoted by PE .
The exponential star-like class SE consists of functions f ∈ A such that z f ′(z)/ f (z) ≺ ez.
The class KE = { f ∈ A : 1 + (z f ′′(z))/ f ′(z) ≺ ez} is known as a class of exponential
convex functions.

The inclusion properties of special functions in the geometric classes are well
known [4,12,17–22]. However, there are limited articles regarding the inclusion of RCWF in
the classes of geometric functions theory. It is proved in [4] that for L, η ∈ C, the function
z→ gL is leminiscate star like provided that

(
√

2− 1)|2L− 1|+ 2|η| <
√

2
4

.

It is also shown that z→ gL is exponentially star like provided that

(e− 1)|2L− 1|+ 2|η| < e− 1
e2 .

The radius of star-likeness, univalency, is discussed in [12] by using the Weierstrassian
canonical product expansion of RCWF. It is proved that for L > −1 and η ≤ 0, the radius of
star-likeness of the order β ∈ (0, 1] for the functions z→ gL is the smallest positive root of

(L + β)FL,η(r)− rF′L,η(r) = 0.

The star-likeness of gL is discussed in ([12], Theorem 4). The conditions for which Re(gL) >
0 were also found in same results ([12], Theorem 4). However, it seems that the obtained
condition for which Re(gL) > 0 is not correct with that fact that gL(0) = 0, while as per
the requirement of ([12], Lemma 2), it should be gL(0) = 1. The aim of this study is
to contribute more results related to the inclusion of normalized RCWF in the classes
of univalent functions theory. In Section 2, we state a proof of the results in which the
function fL is subordinated by three functions,

√
1 + z, 1 + Az and ez. We explain our

results through a graphical representation in some special cases. The star-likeness for gL in
the shifted disc 1 + Az is also considered.

Throughout this study, we used the principle of differential subordination [23,24],
which is an important tool in the investigation of various classes of analytic functions to
proof main result.

Lemma 1 ([23,24]). Let Ω ⊂ C and Ψ : C2 ×D→ C satisfy

Ψ(iρ, σ; z) 6∈ Ω

for z ∈ D, and real ρ, σ such that σ ≤ −(1 + ρ2)/2. If p is analytic in D with p(0) = 1,
and Ψ(p(z), zp′(z); z) ∈ Ω for z ∈ D, then Re p(z) > 0 in D.

Lemma 2 ([25]). Let Ω ⊂ C, and Ψ : C3 ×D→ C satisfy

Ψ(r, s, t; z) 6∈ Ω

whenever z ∈ D, and for m ≥ n ≥ 1, −π/4 ≤ θ ≤ π/4,

r =
√

2 cos(2θ)eiθ , s =
m e3iθ

2
√

2 cos(2θ)
and Re

(
(t + s)e−3iθ

)
≥ 3m2

8
√

2 cos(2θ)
. (7)

If Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω for z ∈ D, then p(z) ≺
√

1 + z in D.
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Lemma 3 ([21]). Let Ω ⊂ C, and Ψ : C3 ×D → C satisfy Ψ(r, s, t; z) 6∈ Ω whenever z ∈ D,
and for m ≥ 1, θ ∈ (0, 2π),

r = eeiθ
, s = meiθeeiθ

and Re
(

1 +
t
s

)
≥ m(1 + cos(θ). (8)

If Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω for z ∈ D, then p(z) ≺ ez in D.

The following Lemma holds for r and s as stated in Lemma 2.

Lemma 4. Consider s and r as in (7) with m ≥ 1. For any α ∈ R, the following inequalities
are true:

1. |s + r2 − α|2 ≥
(

1
2
√

2
+ 2− α

)2

2. |r− α|2 ≤ (α−
√

2)2

Proof. For the r and s along with m ≥ 1, we have

|s + r2 − α|2

=

∣∣∣∣∣ me3iθ

2
√

2 cos(2θ)
+ 2 cos(2θ)e2iθ − α

∣∣∣∣∣
2

=

∣∣∣∣∣ me3iθ

2
√

2 cos(2θ)
+ 2 cos2(2θ) + i sin(4θ)− α

∣∣∣∣∣
2

=

∣∣∣∣∣ me3iθ

2
√

2 cos(2θ)
+ e4iθ − (α− 1)

∣∣∣∣∣
2

=

∣∣∣∣∣ m
2
√

2 cos(2θ)
+ eiθ − (α− 1)e−3iθ

∣∣∣∣∣
2

=

(
m

2
√

2 cos(2θ)
+ cos(θ)− (α− 1) cos(3θ)

)2

+

(
sin(θ) + (α− 1) sin(3θ)

)2

≥
(

1
2
√

2 cos(2θ)
+ cos(θ)− (α− 1) cos(3θ)

)2

+

(
sin(θ) + (α− 1) sin(3θ)

)2

:= g(θ)

A calculation shows

g′(θ) = 1
4

(
2
√

2 sec
3
2 (2θ)((2α− 1) sin(θ) + (α− 1) sin(5θ))

+ tan(2θ) sec(2θ)(8α + 8(α− 1) cos(4θ)− 7)).

For a fixed α > 0, g′(θ) has a zero only at θ = 0 in (−π/4, π/4), and further for
α > 3

(
5 + 2

√
2
)

/(16 + 7
√

2) ≈ 0.906785,

g′′(θ = 0) =
1
4

(
8(α− 1) + 24α + 2

√
2(7α− 6)− 22

)
> 0.

This implies that g has a local minimum at θ = 0 and hence

|s + r2 − α|2 ≥ g(0) =
(

1
2
√

2
+ 2− α

)2
.
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|r− α|2 =

∣∣∣∣√2 cos(2θ)− αe−iθ
∣∣∣∣2

=

(√
2 cos(2θ)− α cos(θ)

)2
+ α2 sin2(θ)

=2 cos(2θ)− 2α cos(θ)
√

2 cos(2θ) + α2

≤ α2 − 2
√

2α + 2.

This complete the proof.

2. Geometric Properties of Coulomb Wave Functions (CWF)

2.1. Subordination by
√

1 + z

In [4], sufficient conditions based on L and η is derived for which zg′L(z)/gL(z) ≺√
1 + z, that is gL, is Lemniscate star like. This section derives conditions on L and η for

which fL(z) ≺
√

1 + z, which we termed as fL is the Lemniscate Catathéodory function.

Theorem 1. For η, L ∈ C, suppose that

Re(2L + 1) > max
{

0, 8|η|+ 13
4

}
, (9)

then fL(z) ≺
√

1 + z.

Proof. Suppose that p(z) = fL(z). Since fL is the solution of the differential equation (5), p
is the solution of

z2p′′(z) + 2(L + 1)zp′(z) + (z2 − 2ηz)p(z) = 0. (10)

Let Ω = {0} ⊂ C and define ψ : C3 ×D→ C as

ψ(r, s, t; z) := t + 2(L + 1)s + (z2 − 2ηz)r. (11)

It is clear from (10) that ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω. We shall apply Lemma 2 to show
ψ(r, s, t; z) /∈ Ω, which further implies p(z) ≺

√
1 + z.

For r, s, t as given (7), it follows from (11) that

|ψ(r, s, t; z)| =
∣∣∣∣(t + s) + (2L + 1)s + (z2 − 2ηz)r

∣∣∣∣
>

∣∣∣∣(t + s)e−3iθ +
(2L + 1)m

2
√

2cos(2θ)

∣∣∣∣− ∣∣z− 2η
∣∣√2cos(2θ)

>
3m2

8
√

2cos(2θ)
+

Re (2L + 1)m
2
√

2cos(2θ)
− |z− 2η|

√
2cos(2θ)

=
1

8
√

2cos(2θ)

[
3m2 + 4m Re (2L + 1)− 16− 32|η|

]
> 0,

provided Re(2L + 1) > (13 + 32|η|)/4.

It is well known that for univalent function g, if f ≺ g, then f (D) ⊂ g(D). Using
this fact, we chose some real and complex η, and validated Theorem 1. For the first case,
consider η = 1, i, and L is a real number. Using Theorem 1, in both cases, L > 5.25. This
fact is represented in Figure 1.
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(a) For L = 5.25 and η = 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.0

0.2

0.4

(b) For L = 5.25 and η = i

Figure 1. Image of fL(D) for L = 5.25.

We consider another case by taking η = (1 + i). By Theorem 1, in this case for real
L > 6.78185, and Figure 2 validate the result.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.0

0.2

0.4

Figure 2. Image of fL(D) for L = 6.78185.

2.2. Subordination by 1 + Az

In this part we proved that result related to the subordination fL ≺ 1 + Az and
zg′L(z)/gL(z) ≺ 1 + Az which describe the nature of fL and gL in the disc center at (1, 0)
and radius A. The results in this section are proved by using Lemma 2.

Theorem 2. For η, L ∈ C and A ∈ (0, 1], suppose that

4A Re(L) > 2|η|(A + 1)− 3A + 5
8 (12)

Then, fL(z) ≺ 1 + Az.

Proof. Consider

q(z) =
√

1
A (fL(z) + A− 1). (13)

A simplification gives

fL(z) = Aq2(z)− A + 1, f′L(z) = 2Aq′(z)q(z) f′′L(z) = 2Aq′′(z)q(z) + 2A(q′(z))2.

From (5), it follows that

2Az2q′′(z)q(z) + 2A(zq′(z))2 + 4A(L + 1)zq′(z)q(z) + (z2 − 2ηz)(Aq2(z)− A + 1) = 0.

Let Ω = {0} ⊂ C and define ψ : C2 ×D→ C as

ψ(r, s; z) := 2Atr + 2As2 + 4A(L + 1)sr + (z2 − 2ηz)(Ar2 − A + 1). (14)

It is clear from (14) that ψ(q(z), zq′(z); z) ∈ Ω. We shall apply Lemma 2 to show that
ψ(r, s, t; z) /∈ Ω, which further implies q(z) ≺

√
1 + z.
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Now, for −π/4 ≤ θ ≤ π/4, let

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
.

It follows by elementary trigonometric identities that

r2 − 1 = 2 cos(2θ)e2iθ − 1 = (2 cos2(2θ)− 1) + i2 cos(2θ) sin(2θ) = e4iθ .

Substitute r and s in (18) and a simplification leads to

|ψ(r, s, t; z)| = |2Atr + 2As2 + 4A(L + 1)sr + (z2 − 2ηz)(Ar2 − A + 1)|
= |2Ar(t + s) + 2As2 + A(4L + 2)sr + (z2 − 2ηz)(Ar2 − A + 1)|

> |e4iθ |
(√

2 cos(2θ)Re(t + s)e−3iθ + 2A
m2 Re(e2iθ)

2 cos(2θ)
+ A Re(4L + 2)m

)
− A(1 + 2|η|)|r2 − 1| − (1 + 2|η|)

>
3m2

8
+ 2Am2 + A Re(4L + 2)m− A(1 + 2|η|)|e4iθ | − (1 + 2|η|)

> 4A Re(L) + 3A− 2|η|(A + 1)− 5
8 > 0.

By Lemma 2, it is proved that q(z) ≺
√

1 + z which is equivalent to√
1
A (fL + A− 1) =

√
1 + w(z), (15)

for some analytic function w(z) such that |w(z)| < 1. A simplification of (15) gives

1
A (fL + A− 1) = 1 + w(z) =⇒ fL = 1 + Aw(z) =⇒ fL ≺ 1 + Az.

This complete the proof.

Again to validate the Theorem 2, we fix A = 1/2 and η = 1. Lets L be real and then
as per Theorem 2, L > 17/16 ≈ 1.1. The Figure 3 indicates that the lower bound for L is
possible sharp.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

Figure 3. Image of fL(D) for L = 1.1 and η = 1.

Our next result is about the starlikenes of gL in the disc 1 + Az.

Theorem 3. For η, L ∈ C and A ∈ (0, 1], suppose that

Re(2L− 1) > A− 2 +
2|η|

A
. (16)

Then, zg′L(z)/gL(z) ≺ 1 + Az.



Symmetry 2022, 14, 1007 8 of 13

Proof. To prove the result consider

q(z) =
√

1
A

(
zg′L(z)
gL(z)

+ A− 1
)

. (17)

A calculation yield

zg′L(z)
gL(z)

= Aq2(z)− A + 1

z2g′′L(z)
gL(z)

= 2Azq′(z)q(z)− (Aq2(z)− A + 1) + (Aq2(z)− A + 1)2

From (6) it follows that

z2g′′(z)
g(z)

+ 2L
zg′(z)
g(z)

+ (z2 − 2ηz− 2L) = 0

=⇒ 2Azq′(z)q(z) + (Aq2(z)− A + 1)2 + A(2L− 1)(q2(z)− 1) + z2 − 2ηz− 1 = 0

=⇒ 2Azq′(z)q(z) + A2(q2(z)− 1)2 + 2A(q2(z)− 1) + A(2L− 1)(q2(z)− 1) + z2 − 2ηz = 0.

Let Ω = {0} ⊂ C and define ψ : C2 ×D→ C as

ψ(r, s; z) := 2Ars + A2(r2 − 1)2 + 2A(r2 − 1) + A(2L− 1)(r2 − 1) + z2 − 2ηz. (18)

It is clear from (18) that ψ(q(z), zq′(z); z) ∈ Ω. We shall apply Lemma 2 and proceed similar
to the proof of Theorem 2 to show that ψ(r, s, t; z) /∈ Ω. Substitute r and s into (18), and a
simplification leads to

|ψ(r, s; z)| = |2Ars + A2(r2 − 1)2 + 2A(r2 − 1) + A(2L− 1)(r2 − 1) + z2 − 2ηz|
= |me4iθ + A2e8iθ + 2Ae4iθ + A(2L− 1)e4iθ + z2 − 2ηz|
> Re(m + A2e4iθ + 2A + A Re(2L− 1))− 1− 2|η|
= m + A2 cos(4θ) + 2A + A Re(2L− 1)− 1− 2|η|
> −A2 + 2A + A Re(2L− 1)− 2|η| > 0,

provided Re(2L− 1) > A− 2 + 2|η|/A.
In view of Lemma 2, it concludes that q(z) ≺

√
1 + z, which is equivalent to√

1
A

(
zg′L(z)
gL(z)

+ A− 1
)
=
√

1 + w(z)

for some analytic functions w(z) such that |w(z)| < 1. A simplification gives

zg′L(z)
gL(z)

= 1 + Aw(z) =⇒
zg′L(z)
gL(z)

≺ 1 + Az.

This concludes the result.

2.3. Subordination by ez

In this part, we derive sufficient conditions on L and η for which fL(z) ≺ ez. The ex-
ponential starlikeness of zg′L(z)/gL(z) is discussed in [4]. It is worthy to note here that
exponential starlikeness is equivalent to zg′L(z)/gL(z) ≺ ez.

Theorem 4. For η, L ∈ C, suppose that

Re(L) ≥ |η| (19)

Then fL(z) ≺ ez.
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Proof. To prove the theorem, it is enough to consider the function Ψ(r, s, t; z) as defined
in (11) and then apply Lemma 3 to show that Ψ(r, s, t; z) /∈ Ω for r, s and t as given in (8).
For m ≥ 1 and Re(2L + 1) > 0, it follows that

|ψ(r, s, t; z)| =
∣∣∣∣(t + s) + (2L + 1)s + (z2 − 2ηz)r

∣∣∣∣
> ecos(θ)

(∣∣∣(t + s)e−iθe−eiθ
+ (2L + 1)m

∣∣∣− 1− 2
∣∣η∣∣)

> ecos(θ)
(

Re(t + s)e−iθe−eiθ
+ Re(2L + 1)m− 1− 2

∣∣η∣∣)
> ecos(θ)(m(1 + cos(θ)) + 2 Re(L)m + m− 1− 2

∣∣η∣∣) > 0,

provided Re(L) ≥
∣∣η∣∣. Lemma 3 implies Ψ(r, s, t; z) /∈ Ω and hence fL(z) ≺ ez. This

completes the proof.

We validate this result graphically by taking real L and η and L = η = 1, 10, 50, 100, 500,
and all of the case are presented in Figure 4. It is evident from Figure 4 that fL(D) ⊂ eD,
and for larger L = η.

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.5

1.0

(a) For L = η = 1

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.5

1.0

(b) For L = η = 10

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.5

1.0

(c) For L = η = 50

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.5

1.0

(d) For L = η = 100

0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.5

1.0

(e) For L = η = 500

Figure 4. Cases for fL(z) ≺ ez for L = η.
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2.4. Subordination by (1 + Az)/(1 + Bz)

Theorem 5. Let L, η ∈ C and −1 ≤ B < A ≤ 1. Suppose that

(A− B)2((1 + B)Re(L) + (1− B) Im(L)
)2

<

[(
(1 + 2|η|)(1 + B)2 − 2A− 1 + B

)
×
(
(1 + 2|η|)(1− B)2 − 2(A− B)

(
(1− B)Re(L)− (1 + B) Im(L)

)
(20)

+ 2(1 + AB)− (A− B) + (1− A)2
)]

(21)

Then,
zg′L(z)
gL(z)

≺ 1 + Az
1 + Bz

,

provided (1 + B)zg′L(z) 6= (1 + A)gL(z).

Proof. Define the function

p(z) := −
(1− B)zg′L(z)− (1− A)gL(z)
(1 + B)zg′L(z)− (1 + A)gL(z)

.

A series of calculation and simplification leads to

zg′L(z)
gL(z)

=
(1 + A)p(z) + 1− A
(1 + B)p(z) + 1− B

z2g′′L(z)
gL(z)

=
2(A− B)zp′(z)

((1 + B)p(z) + 1− B)2 −
(1 + A)p(z) + 1− A
(1 + B)p(z) + 1− B

+

(
(1 + A)p(z) + 1− A
(1 + B)p(z) + 1− B

)2

From (6), it follows that

z2g′′L(z)
gL(z)

+ 2L
zg′L(z)
gL(z)

+ (z2 − 2ηz− 2L) = 0

=⇒ 2(A− B)zp′(z)
((1 + B)p(z) + 1− B)2 + (2L− 1)

(A− B)(p(z)− 1)
(1 + B)p(z) + 1− B

+

(
(1 + A)p(z) + 1− A
(1 + B)p(z) + 1− B

)2

+ (z2 − 2ηz) = 0

=⇒ 2(A− B)zp′(z) + ((1 + A)p(z) + 1− A)2 + (z2 − 2ηz)((1 + B)p(z) + 1− B)2

+

(
(2L(A− B)− (1 + A))p(z)− 2L(A− B)− A + 1

)(
(1 + B)p(z) + 1− B

)
= 0

Let Ω = {0} ⊂ C and define ψ : C2 ×D→ C

ψ(r, s; z) := 2(A− B)s ++((1 + A)r + 1− A)2 + (z2 − 2ηz)((1 + B)r + 1− B)2

+

(
(2L(A− B)− (1 + A))r− 2L(A− B)− A + 1

)(
(1 + B)r + 1− B

)
Denoting L1 = Re(L) and L2 = Im(L), we have
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Re ψ(iρ, σ; z)

< (A− B)(1 + ρ2) + Re((1 + A)iρ + 1− A)2 + Re((z2 − 2ηz)((1 + B)iρ + 1− B)2)

+ Re
(
(2L(A− B)− (1 + A))iρ− 2L(A− B)− A + 1

)(
(1 + B)iρ + 1− B

)
= −(A− B)(1 + ρ2)− (1 + A)ρ2 + (1− A)2 + (1 + 2|η|)((1 + B)2ρ2 + (1− B)2)

− 2(A− B)((1 + B)L1 + (1− B)L2)ρ− 2(A− B)((1− B)L1 + (1 + B)L2) + 2(1 + AB)

=

(
− (A− B)− (1 + A) + (1 + 2|η|)(1 + B)2

)
ρ2 −

(
2(A− B)((1 + B)L1 + (1− B)L2)

)
ρ

+ (1 + 2|η|)(1− B)2 − 2(A− B)
(
(1− B)L1 − (1 + B)L2

)
+ 2(1 + AB)− (A− B) + (1− A)2

∆1
4

= (A− B)2((1 + B)L1 + (1− B)L2
)2 −

[(
(1 + 2|η|)(1 + B)2 − 2A− 1 + B

)
×
(
(1 + 2|η|)(1− B)2 − 2(A− B)

(
(1− B)L1 − (1 + B)L2

)
+ 2(1 + AB)− (A− B) + (1− A)2

)]
Clearly, by the given hypothesis, ∆1 < 0, and hence Re ψ(iρ, σ; z) < 0. This implies that
Ψ(r, s, t; z) /∈ Ω. From Lemma 1 it follows

p(z) ≺ 1 + z
1− z

=⇒ −
(1− B)zg′L(z)− (1− A)gL(z)
(1 + B)zg′L(z)− (1 + A)gL(z)

≺ 1 + z
1− z

=⇒
zg′L(z)
gL(z)

≺ 1 + Az
1 + Bz

.

This completes the proof.

By choosing A = −B = 1 in Theorem 5, we have the following result on the star-
likeness of gL.

Corollary 1. For L, η ∈ C, suppose that |η| < Re(L)− 1
3 (Im(L))2 − 1

4 . Then, gL is star like
provided that gL 6= 0 for z ∈ D.

Remark 1. The condition for the star-likeness of gL is provided in ([12], Theorem 4) which is the
same as stated in Corollary 1.

3. Conclusions

This study finds the conditions for the parameters L and η for which the normalized
function fL(z) = C−1

L (η)z−L−1FL,η(z) is subordinated by three different functions
√

1 + z,
1 + Az, and ez.

We already interpreted Theorems 1, 2 and 4 graphically. Figure 3 describes the sharp-
ness of Theorem 2. On the other hand, Figure 4 indicates the situation related to Theorem 4.
However, we were unable to obtain examples with a similar sharpness using Theorem 1.
Thus, it is expected show some improvement in the obtained results. For example, let
η = 2i, and then by Theorem 4, fL(z) ≺ ez for Re(L) > |η| = 2. However, Figure 5
indicates that if L is real, then it can be lower than 1 for η = 2i.
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Figure 5. Image of fL(D) for η = 2i and L = 1.05.

Similarly, for η = 2i, Theorem 1 implies that fL(z) ≺
√

1 + z for

Re(L) > 8|η|+ 13
4 = 9.125.

However, for real L, it follows from Figure 6 that L can be down to 5.5.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.2

0.4

Figure 6. Image of fL(D) for η = 2i and L = 1.05.

From the above discussion, we can finally conclude that Theorems 1, 2 and 4 are
completely valid with respect to the stated hypothesis. However, for some special choice of
parameter η, there is a possibility for improvement.

This article also derives the conditions for the star-likeness of gL in the disc
(1 + Az)/(1 + Bz) and 1 + Az. With the special case for A = 1 and B = −1, the results
lead to a known result ([12], Theorem 4).
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