

Article **Subordination Involving Regular Coulomb Wave Functions**

Saiful R. Mondal

Citation: Mondal, S.R. Subordination Involving Regular Coulomb Wave Functions. *Symmetry* **2022**, *14*, 1007. [https://doi.org/10.3390/](https://doi.org/10.3390/sym14051007) [sym14051007](https://doi.org/10.3390/sym14051007)

Academic Editor: Boris Malomed

Received: 8 April 2022 Accepted: 10 May 2022 Published: 16 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

Department of Mathematics and Statistics, College of Science, King Faisal University, Al Hasa 31982, Saudi Arabia; smondal@kfu.edu.sa

Abstract: The functions $\sqrt{1+z}$, e^z , $1+Az$, $A \in (0,1]$ map the unit disc $\mathbb D$ to a domain which is symmetric about the *x*-axis. The Regular Coulomb wave function (*RCWF*) F*L*,*^η* is a function involving two parameters *L* and *η*, and F*L*,*^η* is symmetric about these. In this article, we derive conditions on the parameter *L* and *η* for which the normalized form f_L of $F_{L,\eta}$ are subordinated by $\sqrt{1+z}$. We also consider the subordination by e^z and $1 + Az$, $A \in (0,1]$. A few more subordination properties involving RCWF are discussed, which leads to the star-likeness of normalized Regular Coulomb wave functions.

Keywords: star-like function; Janowski star-like; differential subordination; Regular Coulombwave functions

1. Introduction

The Regular Coulomb wave function (*RCWF*) defined in the complex plane is an entire function and closely associated with the well-known classical Bessel function. The Coulomb wave functions have a rich literature (See $[1-10]$ $[1-10]$ and references therein) in terms of mathematical and numerical research articles and its applications in various branches of physics, especially in nuclear physics. The symmetrical property of *RCWF* is established in [\[11\]](#page-12-1). Entire functions have good geometric characterizations in the unit disc. In this sense, the exploration of the geometric nature of Coulomb wave functions is limited [\[4](#page-11-1)[,12\]](#page-12-2). The aim of this article is to contribute some results on the geometric properties of *RCWF*.

The Coulomb differential equation [\[13\]](#page-12-3) is a second-order differential equation of the form

$$
\frac{d^2w}{dz^2} + \left(1 - \frac{2\eta}{z} - \frac{L(L+1)}{z^2}\right)w = 0, \quad \eta, \quad z \in \mathbb{C},
$$
 (1)

that asserts two independent solutions, namely regular and irregular Coulomb wave functions. In terms of Kummer confluent hypergeometric functions ¹*F*1, the *RCWF* is defined as

$$
F_{L,\eta}(z) := z^{L+1} e^{-iz} C_L(\eta) \cdot 1 F_1(L+1+i\eta, 2L+2; 2iz) = C_L(\eta) \sum_{n=0}^{\infty} a_{L,n} z^{n+L+1}.
$$
 (2)

In this case, $z, \eta, L \in \mathbb{C}$ and

$$
C_{L}(\eta) = \frac{2^{L} e^{\frac{n\eta}{2}} |\Gamma(L+1+i\eta)|}{\Gamma(2L+2)},
$$

$$
a_{L,0} = 1, \quad a_{L,1} = \frac{\eta}{L+1}, \quad a_{L,n} = \frac{2\eta a_{L,n-1} - a_{L,n-2}}{\eta(n+2L+1)}, n \in \{2,3,...\}.
$$

πη

For the study of the geometric characterization of *RCWF*, we need a normalized form such as as $h(0) = 1$ or $h(0) = 0 = h'(0) - 1$. Clearly, $F_{L,\eta}$ defined in [\(2\)](#page-0-0) does not process such a normalization. Hence, we consider the following two normalizations:

$$
\mathbf{f}_L(z) = C_L^{-1}(\eta) z^{-L-1} F_{L,\eta}(z) = 1 + \frac{\eta}{L+1} z + \dots \tag{3}
$$

$$
g_L(z) = C_L^{-1}(\eta) z^{-L} F_{L,\eta}(z) = z f_L(z) = z + \frac{\eta}{L+1} z^2 + \dots
$$
 (4)

By a calculation, it can be shown from (1) that f_L satisfies the differential equation

$$
z2y''(z) + 2(L+1)zy'(z) + (z2 – 2\eta z)y(z) = 0,
$$
\n(5)

while the function g_L is the solution of the differential equation

$$
z2y''(z) + 2Lzy'(z) + (z2 – 2\eta z – 2L)y(z) = 0.
$$
 (6)

Let A denote the class of normalized analytic functions *f* in the open unit disk $\mathbb{D} = \{z : |z| < 1\}$ satisfying $f(0) = 0 = f'(0) - 1$. Denote by \mathcal{S}^* and \mathcal{C} , respectively, the widely studied subclasses of A consisting of univalent (one-to-one) star-like and convex functions. Geometrically, $f \in S^*$ if the linear segment $tw, 0 \leq t \leq 1$, lies completely in *f*(\mathbb{D}) whenever $w \in f(\mathbb{D})$, while $f \in C$ if $f(\mathbb{D})$ is a convex domain. Related to these subclasses is the Cárathèodory class P consisting of analytic functions p satisfying *p*(0) = 1 and Re *p*(*z*) > 0 in **D**. Analytically, *f* ∈ S^* if $zf'(z)/f(z)$ ∈ P , while *f* ∈ C if $1 + zf''(z)/f'(z) \in \mathcal{P}.$

For two analytic functions f and g in \mathbb{D} , the function f is *subordinate* to g , written as $f \prec g$, or $f(z) \prec g(z)$, $z \in \mathbb{D}$, if there is an analytic self-map ω of \mathbb{D} satisfying $\omega(0) = 0$ and $f(z) = g(\omega(z))$, $z \in \mathbb{D}$.

Consider now the class $\mathcal{P}[\varphi]$ of analytic functions $p(z) = 1 + c_1 z + \cdots$ in $\mathbb D$ satisfying $p(z) \prec \varphi(z)$, where φ is an analytic function with a positive real impact on $\mathbb{D}, \varphi(0) = 1$ and $\varphi'(0) > 0$. This article considers three different φ , namely $\varphi(z) = (1 + Az)/(1 + Bz)$, $\varphi(z) = \sqrt{1+z}$ and $\varphi(z) = e^z$.

For $-1 \leq B \leq A \leq 1$ and $\varphi(z) = (1 + Az)/(1 + Bz)$, denote the class as $\mathcal{P}[A, B]$. This family $\mathcal{P}[A, B]$ has been widely studied by several authors and most notably by Janowski in [\[14\]](#page-12-4), and the class is also referred to as *Janowski class of functions*. The class $\mathcal{P}[A, B]$ contains several known classes of functions for judicious choices of *A* and *B*. For instance, if $0 \le \beta < 1$, then $\mathcal{P}[1 - 2\beta, -1]$ is the class of functions $p(z) = 1 + c_1 z + \cdots$ satisfying Re $p(z) > β$ in D. In the limiting case $β = 0$, the class reduces to the classical Cárathèodory class P.

The class of Janowski star-like functions $S^*[A, B]$ consists of $f \in A$ satisfying

$$
\frac{zf'(z)}{f(z)} \in \mathcal{P}[A, B],
$$

while the Janowski convex functions $C[A, B]$ are functions $f \in A$ satisfying

$$
1+\frac{zf''(z)}{f'(z)}\in \mathcal{P}[A,B].
$$

For $0 \leq \beta < 1$, $\mathcal{S}^*[1-2\beta,-1] := \mathcal{S}^*(\beta)$ is the classical class of *star-like functions of order* β ; $\mathcal{S}^*[1-\beta,0]:=\mathcal{S}^*_{\beta}=\{f\in\mathcal{A}:|zf'(z)/f(z)-1|<1-\beta\}$, and $\mathcal{S}^*[\beta,-\beta]:=\mathcal{S}^*[\beta]=\{f\in\mathcal{S}^*|\beta\}$ $\mathcal{A}: |zf'(z)/f(z)-1| < \beta |zf'(z)/f(z)+1|$. These are all classes that have been widely studied; see, for example, the works of [\[14–](#page-12-4)[16\]](#page-12-5).

The next important class is related to the right half of lemniscate of Bernoulli given by $\{w : |w^2 - 1| = 1\}$. The functions $p(z) = 1 + c_1 z + \cdots$ in D satisfying $p(z) \prec \sqrt{1+z}$ are known as lemniscate Cárathèodory function, and the corresponding class is denoted by \mathcal{P}_f . A lemniscate Cárathèodory function is also Cárathèodory function and hence univalent. The lemniscate star-like class $\mathcal{S}_{\mathcal{L}}$ consists of functions $\dot{f} \in \mathcal{A}$ such that $zf'(z)/f(z) \prec$

√ $\overline{1+z}$. The class $\mathcal{K}_{\mathcal{L}} = \{f \in \mathcal{A} : 1 + (zf''(z))/f'(z) \prec$ √ $\overline{1+z} \}$ is known as a class of lemniscate convex functions.

The third important class that is considered in sequence relates with the exponential functions e^z . The functions $p(z) = 1 + c_1 z + \cdots$ in \overline{D} satisfying $p(z) \prec e^z$ is known as the exponential Cárathèodory function, and the corresponding class is denoted by $P_{\mathcal{E}}$. The exponential star-like class $S_{\mathcal{E}}$ consists of functions $\tilde{f} \in \mathcal{A}$ such that $zf'(z)/f(z) \prec e^z$. The class $\mathcal{K}_{\mathcal{E}} = \{f \in \mathcal{A} : 1 + (zf''(z))/f'(z) \prec e^z\}$ is known as a class of exponential convex functions.

The inclusion properties of special functions in the geometric classes are well known [\[4](#page-11-1)[,12,](#page-12-2)[17](#page-12-6)[–22\]](#page-12-7). However, there are limited articles regarding the inclusion of RCWF in the classes of geometric functions theory. It is proved in [\[4\]](#page-11-1) that for $L, \eta \in \mathbb{C}$, the function $z \rightarrow g_L$ is leminiscate star like provided that

$$
(\sqrt{2}-1)|2L-1|+2|\eta|<\frac{\sqrt{2}}{4}.
$$

It is also shown that $z \rightarrow g_L$ is exponentially star like provided that

$$
(e-1)|2L-1|+2|\eta|<\frac{e-1}{e^2}.
$$

The radius of star-likeness, univalency, is discussed in [\[12\]](#page-12-2) by using the Weierstrassian canonical product expansion of RCWF. It is proved that for *L* > −1 and *η* ≤ 0, the radius of star-likeness of the order $\beta \in (0,1]$ for the functions $z \to g_L$ is the smallest positive root of

$$
(L+\beta)F_{L,\eta}(r)-rF'_{L,\eta}(r)=0.
$$

The star-likeness of g_L is discussed in ([\[12\]](#page-12-2), Theorem [4\)](#page-7-0). The conditions for which $Re(g_L)$ 0 were also found in same results ([\[12\]](#page-12-2), Theorem [4\)](#page-7-0). However, it seems that the obtained condition for which $Re(g_L) > 0$ is not correct with that fact that $g_L(0) = 0$, while as per the requirement of ([\[12\]](#page-12-2), Lemma [2\)](#page-2-0), it should be $g_L(0) = 1$. The aim of this study is to contribute more results related to the inclusion of normalized RCWF in the classes of univalent functions theory. In Section [2,](#page-4-0) we state a proof of the results in which the or univalent runctions theory. In section 2, we state a proor or the results in which the function f_L is subordinated by three functions, $\sqrt{1+z}$, $1+Az$ and e^z . We explain our results through a graphical representation in some special cases. The star-likeness for g*^L* in the shifted disc $1 + Az$ is also considered.

Throughout this study, we used the principle of differential subordination [\[23,](#page-12-8)[24\]](#page-12-9), which is an important tool in the investigation of various classes of analytic functions to proof main result.

Lemma 1 ([\[23,](#page-12-8)[24\]](#page-12-9)). Let $\Omega \subset \mathbb{C}$ and $\Psi : \mathbb{C}^2 \times \mathbb{D} \to \mathbb{C}$ satisfy

$$
\Psi(i\rho,\sigma;z)\not\in\Omega
$$

for $z \in \mathbb{D}$, and real ρ , σ such that $\sigma \le -(1+\rho^2)/2$. If p is analytic in $\mathbb D$ with $p(0) = 1$, \mathbf{a} *nd* $\Psi(p(z), zp'(z); z) \in \Omega$ for $z \in \mathbb{D}$, then $\operatorname{Re} p(z) > 0$ in \mathbb{D} .

Lemma 2 ([\[25\]](#page-12-10)). *Let* $\Omega \subset \mathbb{C}$, and $\Psi : \mathbb{C}^3 \times \mathbb{D} \to \mathbb{C}$ *satisfy*

$$
\Psi(r,s,t;z) \not\in \Omega
$$

whenever $z \in \mathbb{D}$, *and for* $m \geq n \geq 1$, $-\pi/4 \leq \theta \leq \pi/4$,

$$
r = \sqrt{2\cos(2\theta)}e^{i\theta}, \quad s = \frac{m e^{3i\theta}}{2\sqrt{2\cos(2\theta)}} \quad \text{and} \quad \text{Re}\left((t+s)e^{-3i\theta}\right) \ge \frac{3m^2}{8\sqrt{2\cos(2\theta)}}. \tag{7}
$$

If
$$
\Psi(p(z), z p'(z), z^2 p''(z); z) \in \Omega
$$
 for $z \in \mathbb{D}$, then $p(z) \prec \sqrt{1+z}$ in \mathbb{D} .

Lemma 3 ([\[21\]](#page-12-11)). Let $\Omega \subset \mathbb{C}$, and $\Psi : \mathbb{C}^3 \times \mathbb{D} \to \mathbb{C}$ *satisfy* $\Psi(r, s, t; z) \notin \Omega$ *whenever* $z \in \mathbb{D}$, *and for* $m \ge 1$, $\theta \in (0, 2\pi)$,

$$
r = e^{e^{i\theta}}, \quad s = me^{i\theta}e^{e^{i\theta}} \quad and \quad \text{Re}\left(1 + \frac{t}{s}\right) \ge m(1 + \cos(\theta)).
$$
 (8)

 $\iint \Psi(p(z), z p'(z), z^2 p''(z); z) \in \Omega$ for $z \in \mathbb{D}$, then $p(z) \prec e^z$ in \mathbb{D} .

The following Lemma holds for *r* and *s* as stated in Lemma [2.](#page-2-0)

Lemma 4. *Consider s and r as in* [\(7\)](#page-2-1) *with* $m \geq 1$ *. For any* $\alpha \in \mathbb{R}$ *, the following inequalities are true:*

1.
$$
|s+r^2-\alpha|^2 \ge \left(\frac{1}{2\sqrt{2}}+2-\alpha\right)^2
$$

2. $|r-\alpha|^2 \le (\alpha-\sqrt{2})^2$

Proof. For the *r* and *s* along with $m \geq 1$, we have

$$
|s + r^2 - \alpha|^2
$$

= $\left| \frac{me^{3i\theta}}{2\sqrt{2\cos(2\theta)}} + 2\cos(2\theta)e^{2i\theta} - \alpha \right|^2$
= $\left| \frac{me^{3i\theta}}{2\sqrt{2\cos(2\theta)}} + 2\cos^2(2\theta) + i\sin(4\theta) - \alpha \right|^2$
= $\left| \frac{me^{3i\theta}}{2\sqrt{2\cos(2\theta)}} + e^{4i\theta} - (\alpha - 1)\right|^2$
= $\left| \frac{m}{2\sqrt{2\cos(2\theta)}} + e^{i\theta} - (\alpha - 1)e^{-3i\theta} \right|^2$
= $\left(\frac{m}{2\sqrt{2\cos(2\theta)}} + \cos(\theta) - (\alpha - 1)\cos(3\theta) \right)^2 + \left(\sin(\theta) + (\alpha - 1)\sin(3\theta) \right)^2$
 $\ge \left(\frac{1}{2\sqrt{2\cos(2\theta)}} + \cos(\theta) - (\alpha - 1)\cos(3\theta) \right)^2 + \left(\sin(\theta) + (\alpha - 1)\sin(3\theta) \right)^2 := g(\theta)$

A calculation shows

$$
g'(\theta) = \frac{1}{4} \Big(2\sqrt{2} \sec^{\frac{3}{2}}(2\theta) ((2\alpha - 1) \sin(\theta) + (\alpha - 1) \sin(5\theta)) + \tan(2\theta) \sec(2\theta) (8\alpha + 8(\alpha - 1) \cos(4\theta) - 7) \Big).
$$

For a fixed $\alpha > 0$, $g'(\theta)$ has a zero only at $\theta = 0$ in $(-\pi/4, \pi/4)$, and further for $\alpha > 3(5 + 2)$ √ $\left(\frac{1}{2} \right) / (16 + 7)$ √ $(2)\approx 0.906785$,

$$
g''(\theta=0)=\frac{1}{4}\Big(8(\alpha-1)+24\alpha+2\sqrt{2}(7\alpha-6)-22\Big)>0.
$$

This implies that *g* has a local minimum at $\theta = 0$ and hence

$$
|s+r^2-\alpha|^2 \ge g(0) = \left(\frac{1}{2\sqrt{2}}+2-\alpha\right)^2.
$$

$$
|r - \alpha|^2 = \left| \sqrt{2 \cos(2\theta)} - \alpha e^{-i\theta} \right|^2
$$

= $\left(\sqrt{2 \cos(2\theta)} - \alpha \cos(\theta) \right)^2 + \alpha^2 \sin^2(\theta)$
= $2 \cos(2\theta) - 2\alpha \cos(\theta) \sqrt{2 \cos(2\theta)} + \alpha^2$
 $\leq \alpha^2 - 2\sqrt{2}\alpha + 2.$

This complete the proof. \square

2. Geometric Properties of Coulomb Wave Functions (CWF)

2.1. Subordination by $\sqrt{1+z}$

<u>In</u> [\[4\]](#page-11-1), sufficient conditions based on *L* and *η* is derived for which $zg_L'(z)/g_L(z)$ ≺ √ 1 + *z*, that is g*L*, is Lemniscate star like. This section derives conditions on *L* and *η* for √ which ${\tt f}_L(z)\prec \sqrt{1+z}$, which we termed as ${\tt f}_L$ is the Lemniscate Catathéodory function.

Theorem 1. *For* η , $L \in \mathbb{C}$, *suppose that*

$$
\text{Re}(2L+1) > \max\bigg\{0,8|\eta| + \frac{13}{4}\bigg\},\tag{9}
$$

then $f_L(z) \prec$ √ $\frac{1+z}{2}$

Proof. Suppose that $p(z) = f_L(z)$. Since f_L is the solution of the differential equation [\(5\)](#page-1-0), p is the solution of

$$
z^{2}p''(z) + 2(L+1)zp'(z) + (z^{2} - 2\eta z)p(z) = 0.
$$
 (10)

Let $\Omega = \{0\} \subset \mathbb{C}$ and define $\psi : \mathbb{C}^3 \times \mathbb{D} \to \mathbb{C}$ as

$$
\psi(r,s,t;z) := t + 2(L+1)s + (z^2 - 2\eta z)r.
$$
\n(11)

It is clear from [\(10\)](#page-4-1) that $\psi(p(z), zp'(z), z^2p''(z); z) \in \Omega$ $\psi(p(z), zp'(z), z^2p''(z); z) \in \Omega$ $\psi(p(z), zp'(z), z^2p''(z); z) \in \Omega$. We shall apply Lemma 2 to show $\psi(r, s, t; z) \notin \Omega$, which further implies $p(z) \prec \sqrt{1+z}$.

For *r*,*s*, *t* as given [\(7\)](#page-2-1), it follows from [\(11\)](#page-4-2) that

$$
|\psi(r,s,t;z)| = |(t+s) + (2L+1)s + (z^2 - 2\eta z)r|
$$

>
$$
| (t+s)e^{-3i\theta} + \frac{(2L+1)m}{2\sqrt{2cos(2\theta)}} | - |z - 2\eta| \sqrt{2cos(2\theta)}
$$

>
$$
\frac{3m^2}{8\sqrt{2cos(2\theta)}} + \frac{\text{Re}(2L+1)m}{2\sqrt{2cos(2\theta)}} - |z - 2\eta| \sqrt{2cos(2\theta)}
$$

=
$$
\frac{1}{8\sqrt{2cos(2\theta)}} [3m^2 + 4m \text{ Re}(2L+1) - 16 - 32|\eta|] > 0,
$$

provided $Re(2L + 1) > (13 + 32|\eta|)/4. \quad \Box$

It is well known that for univalent function *g*, if $f \prec g$, then $f(D) \subset g(D)$. Using this fact, we chose some real and complex *η*, and validated Theorem [1.](#page-4-3) For the first case, consider $\eta = 1$, *i*, and *L* is a real number. Using Theorem [1,](#page-4-3) in both cases, $L > 5.25$. This fact is represented in Figure [1.](#page-5-0)

Figure 1. Image of $f_L(\mathbb{D})$ for $L = 5.25$.

We consider another case by taking $\eta = (1 + i)$. By Theorem [1,](#page-4-3) in this case for real $L > 6.78185$, and Figure [2](#page-5-1) validate the result.

Figure 2. Image of $f_L(\mathbb{D})$ for $L = 6.78185$.

2.2. Subordination by $1 + Az$

In this part we proved that result related to the subordination $f_L \prec 1 + Az$ and $zg_L'(z)/g_L(z) \prec 1 + \tilde{Az}$ which describe the nature of f_L and g_L in the disc center at $(1,0)$ and radius *A*. The results in this section are proved by using Lemma [2.](#page-2-0)

Theorem 2. *For* η , $L \in \mathbb{C}$ *and* $A \in (0,1]$ *, suppose that*

$$
4A\operatorname{Re}(L) > 2|\eta|(A+1) - 3A + \frac{5}{8} \tag{12}
$$

Then, $f_L(z) \prec 1 + Az$.

Proof. Consider

$$
q(z) = \sqrt{\frac{1}{A}(\mathbf{f}_L(z) + A - 1)}.
$$
 (13)

A simplification gives

$$
f_L(z) = Aq^2(z) - A + 1
$$
, $f'_L(z) = 2Aq'(z)q(z)$, $f''_L(z) = 2Aq''(z)q(z) + 2A(q'(z))^2$.

From [\(5\)](#page-1-0), it follows that

$$
2Az2q''(z)q(z) + 2A(zq'(z))2 + 4A(L+1)zq'(z)q(z) + (z2 – 2\eta z)(Aq2(z) – A + 1) = 0.
$$

Let $\Omega = \{0\} \subset \mathbb{C}$ and define $\psi : \mathbb{C}^2 \times \mathbb{D} \to \mathbb{C}$ as

$$
\psi(r,s;z) := 2Atr + 2As^2 + 4A(L+1)sr + (z^2 - 2\eta z)(Ar^2 - A + 1).
$$
 (14)

It is clear from [\(14\)](#page-5-2) that $\psi(q(z), zq'(z); z) \in \Omega$. We shall apply Lemma [2](#page-2-0) to show that $\psi(r, s, t; z) \notin \Omega$, which further implies $q(z) \prec \sqrt{1+z}$.

Now, for $-\pi/4 \le \theta \le \pi/4$, let

$$
r = \sqrt{2\cos(2\theta)}e^{i\theta}, \quad s = \frac{me^{3i\theta}}{2\sqrt{2\cos(2\theta)}}.
$$

It follows by elementary trigonometric identities that

$$
r^2 - 1 = 2\cos(2\theta)e^{2i\theta} - 1 = (2\cos^2(2\theta) - 1) + i2\cos(2\theta)\sin(2\theta) = e^{4i\theta}.
$$

Substitute *r* and *s* in [\(18\)](#page-7-1) and a simplification leads to

$$
|\psi(r,s,t;z)| = |2Atr + 2As^{2} + 4A(L+1)sr + (z^{2} - 2\eta z)(Ar^{2} - A + 1)|
$$

\n
$$
= |2Ar(t+s) + 2As^{2} + A(4L+2)sr + (z^{2} - 2\eta z)(Ar^{2} - A + 1)|
$$

\n
$$
> |e^{4i\theta}| \left(\sqrt{2\cos(2\theta)} \operatorname{Re}(t+s)e^{-3i\theta} + 2A\frac{m^{2}\operatorname{Re}(e^{2i\theta})}{2\cos(2\theta)} + A\operatorname{Re}(4L+2)m\right)
$$

\n
$$
- A(1+2|\eta|)|r^{2} - 1| - (1+2|\eta|)
$$

\n
$$
> \frac{3m^{2}}{8} + 2Am^{2} + A\operatorname{Re}(4L+2)m - A(1+2|\eta|)|e^{4i\theta}| - (1+2|\eta|)
$$

\n
$$
> 4A\operatorname{Re}(L) + 3A - 2|\eta|(A+1) - \frac{5}{8} > 0.
$$

By Lemma [2,](#page-2-0) it is proved that $q(z) \prec$ √ $1 + z$ which is equivalent to

$$
\sqrt{\frac{1}{A}(\mathbf{f}_L + A - 1)} = \sqrt{1 + w(z)},
$$
\n(15)

for some analytic function $w(z)$ such that $|w(z)| < 1$. A simplification of [\(15\)](#page-6-0) gives

$$
\frac{1}{A}(\mathbf{f}_L + A - 1) = 1 + w(z) \implies \mathbf{f}_L = 1 + Aw(z) \implies \mathbf{f}_L \prec 1 + Az.
$$

This complete the proof. \square

Again to validate the Theorem [2,](#page-5-3) we fix $A = 1/2$ and $\eta = 1$. Lets *L* be real and then as per Theorem [2,](#page-5-3) $L > 17/16 \approx 1.1$. The Figure [3](#page-6-1) indicates that the lower bound for *L* is possible sharp.

Figure 3. Image of $f_L(\mathbb{D})$ for $L = 1.1$ and $\eta = 1$.

Our next result is about the starlikenes of g_L in the disc $1 + Az$.

Theorem 3. *For* η , $L \in \mathbb{C}$ *and* $A \in (0,1]$ *, suppose that*

$$
Re(2L-1) > A - 2 + \frac{2|\eta|}{A}.
$$
 (16)

Then, $z\mathbf{g}'_L(z)/\mathbf{g}_L(z) \prec 1 + Az$.

Proof. To prove the result consider

$$
q(z) = \sqrt{\frac{1}{A} \left(\frac{z g_L'(z)}{g_L(z)} + A - 1 \right)}.
$$
\n(17)

A calculation yield

$$
\frac{z\mathbf{g}'_L(z)}{\mathbf{g}_L(z)} = Aq^2(z) - A + 1
$$

$$
\frac{z^2\mathbf{g}''_L(z)}{\mathbf{g}_L(z)} = 2Azq'(z)q(z) - (Aq^2(z) - A + 1) + (Aq^2(z) - A + 1)^2
$$

From [\(6\)](#page-1-1) it follows that

$$
\frac{z^2 \mathbf{g''}(z)}{\mathbf{g}(z)} + 2L \frac{z \mathbf{g'}(z)}{\mathbf{g}(z)} + (z^2 - 2\eta z - 2L) = 0
$$
\n
$$
\implies 2Azq'(z)q(z) + (Aq^2(z) - A + 1)^2 + A(2L - 1)(q^2(z) - 1) + z^2 - 2\eta z - 1 = 0
$$
\n
$$
\implies 2Azq'(z)q(z) + A^2(q^2(z) - 1)^2 + 2A(q^2(z) - 1) + A(2L - 1)(q^2(z) - 1) + z^2 - 2\eta z = 0.
$$

Let $\Omega = \{0\} \subset \mathbb{C}$ and define $\psi : \mathbb{C}^2 \times \mathbb{D} \to \mathbb{C}$ as

$$
\psi(r,s;z) := 2Ars + A^2(r^2 - 1)^2 + 2A(r^2 - 1) + A(2L - 1)(r^2 - 1) + z^2 - 2\eta z.
$$
 (18)

It is clear from [\(18\)](#page-7-1) that $\psi(q(z),zq'(z);z) \in \Omega$. We shall apply Lemma [2](#page-2-0) and proceed similar to the proof of Theorem [2](#page-5-3) to show that $\psi(r, s, t; z) \notin \Omega$. Substitute *r* and *s* into [\(18\)](#page-7-1), and a simplification leads to

$$
|\psi(r,s;z)| = |2Ars + A^2(r^2 - 1)^2 + 2A(r^2 - 1) + A(2L - 1)(r^2 - 1) + z^2 - 2\eta z|
$$

= |me^{4i\theta} + A²e^{8i\theta} + 2Ae^{4i\theta} + A(2L - 1)e^{4i\theta} + z² - 2\eta z|
> Re(m + A²e^{4i\theta} + 2A + A Re(2L - 1)) - 1 - 2|\eta|
= m + A² cos(4\theta) + 2A + A Re(2L - 1) - 1 - 2|\eta|
> -A² + 2A + A Re(2L - 1) - 2|\eta| > 0,

provided $Re(2L - 1) > A - 2 + 2|\eta|/A$.

In view of Lemma [2,](#page-2-0) it concludes that $q(z)$ \prec √ $1 + z$, which is equivalent to

$$
\sqrt{\frac{1}{A}\left(\frac{z\mathbf{g}_L'(z)}{\mathbf{g}_L(z)} + A - 1\right)} = \sqrt{1 + w(z)}
$$

for some analytic functions $w(z)$ such that $|w(z)| < 1$. A simplification gives

$$
\frac{z\mathbf{g}'_L(z)}{\mathbf{g}_L(z)} = 1 + A w(z) \implies \frac{z\mathbf{g}'_L(z)}{\mathbf{g}_L(z)} \prec 1 + Az.
$$

This concludes the result. \square

2.3. Subordination by e^z

In this part, we derive sufficient conditions on *L* and *η* for which $f_L(z) \prec e^z$. The exponential starlikeness of $zg_L'(z)/g_L(z)$ is discussed in [\[4\]](#page-11-1). It is worthy to note here that exponential starlikeness is equivalent to $zg_L'(z)/g_L(z) \prec e^z$.

Theorem 4. *For* η , $L \in \mathbb{C}$, *suppose that*

$$
Re(L) \ge |\eta| \tag{19}
$$

Then $f_L(z) \prec e^z$.

Proof. To prove the theorem, it is enough to consider the function $\Psi(r, s, t; z)$ as defined in [\(11\)](#page-4-2) and then apply Lemma [3](#page-3-0) to show that $\Psi(r, s, t; z) \notin \Omega$ for *r*, *s* and *t* as given in [\(8\)](#page-3-1). For $m \geq 1$ and $Re(2L + 1) > 0$, it follows that

$$
|\psi(r,s,t;z)| = |(t+s) + (2L+1)s + (z^2 - 2\eta z)r|
$$

> $e^{\cos(\theta)} (|(t+s)e^{-i\theta}e^{-e^{i\theta}} + (2L+1)m|-1-2|\eta|)$
> $e^{\cos(\theta)} (\text{Re}(t+s)e^{-i\theta}e^{-e^{i\theta}} + \text{Re}(2L+1)m-1-2|\eta|)$
> $e^{\cos(\theta)} (m(1+\cos(\theta)) + 2\text{Re}(L)m + m-1-2|\eta|) > 0,$

provided $\text{Re}(L) \geq |\eta|$. Lemma [3](#page-3-0) implies $\Psi(r, s, t; z) \notin \Omega$ and hence $f_L(z) \prec e^z$. This completes the proof. \square

We validate this result graphically by taking real *L* and η and $L = \eta = 1, 10, 50, 100, 500$, and all of the case are presented in Figure [4.](#page-8-0) It is evident from Figure [4](#page-8-0) that $f_L(\mathbb{D}) \subset e^{\mathbb{D}}$, and for larger $L = \eta$.

Figure 4. Cases for $f_L(z) \prec e^z$ for $L = \eta$.

2.4. Subordination by $(1 + Az)/(1 + Bz)$

Theorem 5. *Let* $L, \eta \in \mathbb{C}$ *and* $-1 \leq B < A \leq 1$ *. Suppose that*

$$
(A - B)^{2}((1 + B) \operatorname{Re}(L) + (1 - B) \operatorname{Im}(L))^{2} < \left[\left((1 + 2|\eta|)(1 + B)^{2} - 2A - 1 + B \right) \times \left((1 + 2|\eta|)(1 - B)^{2} - 2(A - B)((1 - B) \operatorname{Re}(L) - (1 + B) \operatorname{Im}(L)) \right) \right]
$$
\n
$$
+ 2(1 + AB) - (A - B) + (1 - A)^{2} \Big) \Big]
$$
\n(21)

Then,

$$
\frac{z\mathbf{g}'_L(z)}{\mathbf{g}_L(z)} \prec \frac{1 + Az}{1 + Bz'}
$$

provided $(1 + B)z\mathbf{g}'_L(z) \neq (1 + A)\mathbf{g}_L(z)$.

Proof. Define the function

$$
p(z):=-\frac{(1-B)z\mathbf{g}_{L}'(z)-(1-A)\mathbf{g}_{L}(z)}{(1+B)z\mathbf{g}_{L}'(z)-(1+A)\mathbf{g}_{L}(z)}.
$$

A series of calculation and simplification leads to

$$
\frac{z\mathbf{g}'_L(z)}{\mathbf{g}_L(z)} = \frac{(1+A)p(z) + 1 - A}{(1+B)p(z) + 1 - B}
$$

$$
\frac{z^2\mathbf{g}''_L(z)}{\mathbf{g}_L(z)} = \frac{2(A-B)zp'(z)}{((1+B)p(z) + 1 - B)^2} - \frac{(1+A)p(z) + 1 - A}{(1+B)p(z) + 1 - B} + \left(\frac{(1+A)p(z) + 1 - A}{(1+B)p(z) + 1 - B}\right)^2
$$

From [\(6\)](#page-1-1), it follows that

$$
\frac{z^2 g_L''(z)}{g_L(z)} + 2L \frac{z g_L'(z)}{g_L(z)} + (z^2 - 2\eta z - 2L) = 0
$$
\n
$$
\implies \frac{2(A - B)z p'(z)}{((1 + B)p(z) + 1 - B)^2} + (2L - 1) \frac{(A - B)(p(z) - 1)}{(1 + B)p(z) + 1 - B}
$$
\n
$$
+ \left(\frac{(1 + A)p(z) + 1 - A}{(1 + B)p(z) + 1 - B}\right)^2 + (z^2 - 2\eta z) = 0
$$
\n
$$
\implies 2(A - B)z p'(z) + ((1 + A)p(z) + 1 - A)^2 + (z^2 - 2\eta z)((1 + B)p(z) + 1 - B)^2
$$
\n
$$
+ \left((2L(A - B) - (1 + A))p(z) - 2L(A - B) - A + 1\right)\left((1 + B)p(z) + 1 - B\right) = 0
$$

Let $\Omega = \{0\} \subset \mathbb{C}$ and define $\psi: \mathbb{C}^2 \times \mathbb{D} \to \mathbb{C}$

$$
\psi(r,s;z) := 2(A-B)s + \left((1+A)r + 1 - A \right)^2 + (z^2 - 2\eta z)((1+B)r + 1 - B)^2
$$

$$
+ \left((2L(A-B) - (1+A))r - 2L(A-B) - A + 1 \right) \left((1+B)r + 1 - B \right)
$$

Denoting $L_1 = \text{Re}(L)$ and $L_2 = \text{Im}(L)$, we have

Re
$$
\psi(i\rho, \sigma; z)
$$

\n
$$
\langle (A - B)(1 + \rho^2) + \text{Re}((1 + A)i\rho + 1 - A)^2 + \text{Re}((z^2 - 2\eta z)((1 + B)i\rho + 1 - B)^2)
$$
\n
$$
+ \text{Re}\left((2L(A - B) - (1 + A))i\rho - 2L(A - B) - A + 1\right)\left((1 + B)i\rho + 1 - B\right)
$$
\n
$$
= -(A - B)(1 + \rho^2) - (1 + A)\rho^2 + (1 - A)^2 + (1 + 2|\eta|)((1 + B)^2\rho^2 + (1 - B)^2)
$$
\n
$$
- 2(A - B)((1 + B)L_1 + (1 - B)L_2)\rho - 2(A - B)((1 - B)L_1 + (1 + B)L_2) + 2(1 + AB)
$$
\n
$$
= \left(-(A - B) - (1 + A) + (1 + 2|\eta|)(1 + B)^2\right)\rho^2 - \left(2(A - B)((1 + B)L_1 + (1 - B)L_2)\right)\rho
$$
\n
$$
+ (1 + 2|\eta|)(1 - B)^2 - 2(A - B)((1 - B)L_1 - (1 + B)L_2) + 2(1 + AB) - (A - B) + (1 - A)^2
$$
\n
$$
\frac{\Delta_1}{4} = (A - B)^2((1 + B)L_1 + (1 - B)L_2)^2 - \left[\left((1 + 2|\eta|)(1 + B)^2 - 2A - 1 + B\right) + (1 - A)^2\right]
$$
\n
$$
\times \left((1 + 2|\eta|)(1 - B)^2 - 2(A - B)((1 - B)L_1 - (1 + B)L_2) + 2(1 + AB) - (A - B) + (1 - A)^2\right)\right]
$$

Clearly, by the given hypothesis, $\Delta_1 < 0$, and hence Re $\psi(i\rho, \sigma; z) < 0$. This implies that $Ψ(r, s, t; z) \notin Ω$. From Lemma [1](#page-2-2) it follows

$$
p(z) \prec \frac{1+z}{1-z} \implies -\frac{(1-B)zg'_L(z) - (1-A)g_L(z)}{(1+B)zg'_L(z) - (1+A)g_L(z)} \prec \frac{1+z}{1-z}
$$

$$
\implies \frac{zg'_L(z)}{g_L(z)} \prec \frac{1+Az}{1+Bz}.
$$

This completes the proof. \square

By choosing $A = -B = 1$ in Theorem [5,](#page-9-0) we have the following result on the starlikeness of g*L*.

Corollary 1. For $L, \eta \in \mathbb{C}$, suppose that $|\eta| < \text{Re}(L) - \frac{1}{3}(\text{Im}(L))^2 - \frac{1}{4}$. Then, g_L is star like *provided that* $g_L \neq 0$ *for* $z \in \mathbb{D}$ *.*

Remark 1. *The condition for the star-likeness of* g*^L is provided in ([\[12\]](#page-12-2), Theorem [4\)](#page-7-0) which is the same as stated in Corollary [1.](#page-10-0)*

3. Conclusions

This study finds the conditions for the parameters *L* and *η* for which the normalized function $f_L(z) = C_L^{-1}(\eta) z^{-L-1} F_{L,\eta}(z)$ is subordinated by three different functions $\sqrt{1+z}$, $1 + Az$, and e^z .

We already interpreted Theorems [1,](#page-4-3) [2](#page-5-3) and [4](#page-7-0) graphically. Figure [3](#page-6-1) describes the sharpness of Theorem [2.](#page-5-3) On the other hand, Figure [4](#page-8-0) indicates the situation related to Theorem [4.](#page-7-0) However, we were unable to obtain examples with a similar sharpness using Theorem [1.](#page-4-3) Thus, it is expected show some improvement in the obtained results. For example, let $\eta = 2i$, and then by Theorem [4,](#page-7-0) $f_L(z) \prec e^z$ for Re $(L) > |\eta| = 2$. However, Figure [5](#page-11-2) indicates that if *L* is real, then it can be lower than 1 for $\eta = 2i$.

Figure 5. Image of $f_L(\mathbb{D})$ for $\eta = 2i$ and $L = 1.05$.

Similarly, for $\eta = 2i$, Theorem [1](#page-4-3) implies that $f_L(z) \prec$ √ $1 + z$ for

$$
Re(L) > 8|\eta| + \frac{13}{4} = 9.125.
$$

However, for real *L*, it follows from Figure [6](#page-11-3) that *L* can be down to 5.5.

Figure 6. Image of $f_L(\mathbb{D})$ for $\eta = 2i$ and $L = 1.05$.

From the above discussion, we can finally conclude that Theorems [1,](#page-4-3) [2](#page-5-3) and [4](#page-7-0) are completely valid with respect to the stated hypothesis. However, for some special choice of parameter *η*, there is a possibility for improvement.

This article also derives the conditions for the star-likeness of g*^L* in the disc $(1 + Az)/(1 + Bz)$ and $1 + Az$. With the special case for $A = 1$ and $B = -1$, the results lead to a known result ([\[12\]](#page-12-2), Theorem [4\)](#page-7-0).

Funding: This work was supported through the Annual Funding track by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No. AN00097].

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Baricz, Á. Turán type inequalities for regular Coulomb wave functions. *J. Math. Anal. Appl.* **2015**, *430*, 166–180. [\[CrossRef\]](http://doi.org/10.1016/j.jmaa.2015.04.082)
- 2. Ikebe, Y. The zeros of regular Coulomb wave functions and of their derivatives. *Math. Comput.* **1975**, *29*, 878–887.
- 3. Miyazaki, Y.; Kikuchi, Y.; Cai, D.; Ikebe, Y. Error analysis for the computation of zeros of regular Coulomb wave function and its first derivative. *Math. Comput.* **2001**, *70*, 1195–1204. [\[CrossRef\]](http://dx.doi.org/10.1090/S0025-5718-00-01241-2)
- 4. Akta¸s,˙I. Lemniscate and exponential starlikeness of regular Coulomb wave functions. *Stud. Sci. Math. Hung.* **2020**, *57*, 372–384. [\[CrossRef\]](http://dx.doi.org/10.1556/012.2020.57.3.1468)
- 5. Humblet, J. Bessel function expansions of Coulomb wave functions. *J. Math. Phys.* **1985**, *26*, 656–659. [\[CrossRef\]](http://dx.doi.org/10.1063/1.526602)
- 6. Humblet, J. Analytical structure and properties of Coulomb wave functions for real and complex energies. *Ann. Phys.* **1984**, *155*, 461–493. [\[CrossRef\]](http://dx.doi.org/10.1016/0003-4916(84)90009-5)
- 7. Thompson, I.J.; Barnett, A.R. Coulomb and Bessel functions of complex arguments and order. *J. Comput. Phys.* **1986**, *64*, 490–509. [\[CrossRef\]](http://dx.doi.org/10.1016/0021-9991(86)90046-X)
- 8. Michel, N. Precise Coulomb wave functions for a wide range of complex *l*, *η* and *z*. *Comput. Phys. Commun.* **2007**, *176*, 232–249. [\[CrossRef\]](http://dx.doi.org/10.1016/j.cpc.2006.10.004)
- 9. Štampach, F.; Št'ovíˇcek, P. Orthogonal polynomials associated with Coulomb wave functions. *J. Math. Anal. Appl.* **2014**, *419*, 231–254. [\[CrossRef\]](http://dx.doi.org/10.1016/j.jmaa.2014.04.049)
- 10. Nishiyama, T. Application of Coulomb wave functions to an orthogonal series associated with steady axisymmetric Euler flows. *J. Approx. Theory* **2008**, *151*, 42–59. [\[CrossRef\]](http://dx.doi.org/10.1016/j.jat.2007.09.001)
- 11. Gaspard. D. Connection formulas between Coulomb wave functions. *J. Math. Phys.* **2018**, *59*, 112104. [\[CrossRef\]](http://dx.doi.org/10.1063/1.5054368)
- 12. Baricz, Á.; Çağlar, M.; Deniz,E.; Toklu, E. Radii of starlikeness and convexity of regular Coulomb wave functions. $arXiv$ 2016, arXiv:1605.06763
- 13. Abramowitz, M.; Stegun, I.A. *Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables*; Dover Publications, Inc.: New York, NY, USA, 1966.
- 14. Janowski, W. Some extremal problems for certain families of analytic functions. *I. Ann. Polon. Math.* **1973**, *28*, 297–326. [\[CrossRef\]](http://dx.doi.org/10.4064/ap-28-3-297-326) 15. Ali, Rosihan M.; Ravichandran, V.; Seenivasagan, N. Sufficient conditions for Janowski starlikeness. *Int. J. Math. Math. Sci.* **2007**, *2007*, 062925. [\[CrossRef\]](http://dx.doi.org/10.1155/2007/62925)
- 16. Ali, R.M.; Chandrashekar, R.; Ravichandran, V. Janowski starlikeness for a class of analytic functions. *Appl. Math. Lett.* **2011**, *24*, 501–505. [\[CrossRef\]](http://dx.doi.org/10.1016/j.aml.2010.11.001)
- 17. Kanas, S.; Mondal, S.R.; Mohammed, A.D. Relations between the generalized Bessel functions and the Janowski class. *Math. Inequal. Appl.* **2018**, *21*, 165–178.
- 18. Mondal, S.R.; Swaminathan, A. Geometric properties of generalized Bessel functions. *Bull. Malays. Math. Sci. Soc.* **2012**, *35*, 179–194.
- 19. Madaan, V.; Kumar, A.; Ravichandran, V. Lemniscate convexity of generalized Bessel functions. *Stud. Sci. Math. Hung.* **2019**, *56*, 404–419. [\[CrossRef\]](http://dx.doi.org/10.1556/012.2019.56.4.1445)
- 20. Naz, A.; Nagpal, S.; Ravichandran, V. Exponential starlikeness and convexity of confluent hypergeometric, Lommel, and Struve functions. *Mediterr. J. Math.* **2020**, *17*, 22. [\[CrossRef\]](http://dx.doi.org/10.1007/s00009-020-01621-4)
- 21. Naz, A.; Nagpal, S.; Ravichandran, V. Star-likeness associated with the exponential function. *Turk. J. Math.* **2019**, *43*, 1353–1371. [\[CrossRef\]](http://dx.doi.org/10.3906/mat-1902-34)
- 22. Baricz, Á.; Štampach, F. The Hurwitz-type theorem for the regular Coulomb wave function via Hankel determinants. *Linear Algebra Appl.* **2018**, *548*, 259–272. [\[CrossRef\]](http://dx.doi.org/10.1016/j.laa.2018.03.012)
- 23. Miller, S.S.; Mocanu, P.T. Differential subordinations and inequalities in the complex plane. *J. Differ. Equ.* **1987**, *67*, 199–211. [\[CrossRef\]](http://dx.doi.org/10.1016/0022-0396(87)90146-X)
- 24. Miller, S.S.; Mocanu, P.T. Differential Subordinations. In *Monographs and Textbooks in Pure and Applied Mathematics*; Dekker: New York, NY, USA, 2000; p. 225.
- 25. Madaan, V.; Kumar, A.; Ravichandran, V. Starlikeness associated with lemniscate of Bernoulli. *Filomat* **2019**, *33*, 1937–1955. [\[CrossRef\]](http://dx.doi.org/10.2298/FIL1907937M)