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Abstract: Gene regulatory networks represent collections of regulators that interact with each other
and with other molecules to govern gene expression. Biological signalling networks model how
signals are transmitted and how activities are coordinated in the cell. The study of the structure
of such networks in complex diseases such as cancer can provide insights into how they function,
and consequently, suggest suitable treatment approaches. Here, we explored such topological
characteristics in the example of a mitogen-activated protein kinase (MAPK) signalling network
derived from published studies in cancer. We employed well-established techniques to conduct
network analyses, and collected information on gene function as obtained from large-scale public
databases. This allowed us to map topological and functional relationships, and build hypotheses
on this network’s functional consequences. In particular, we find that the topology of this MAPK
network is highly non-random, modular and robust. Moreover, analysis of the network’s structure
indicates the presence of organisational features of cancer hallmarks, expressed in an asymmetrical
manner across communities of the network. Finally, our results indicate that the organisation of this
network renders it problematic to use treatment approaches that focus on a single target. Our analysis
suggests that multi-target attacks in a well-orchestrated manner are required to alter how the network
functions. Overall, we propose that complex network analyses combined with pharmacological
insights will help inform on future treatment strategies, exploiting structural vulnerabilities of
signalling and regulatory networks in cancer.

Keywords: cancer; hallmarks; complex networks; network analysis

1. Introduction

It is estimated that each year, approximately 20 million people worldwide are afflicted
with cancer, and 10 million lose their lives to it [1]. In most countries, cancer is the first or
second leading cause of death before the age of 70. Despite significant biomedical advances
in the last decades, and although there exist treatments that have proven highly effective
in certain types of cancer, survival rates in many cancer types remain low. Hence, new
treatments are needed, as well as methods to improve existing treatment strategies. To
this end, a better understanding of the origins and progression of cancer would be of
immense benefit.

Cancer is a highly complex phenomenon, involving numerous genetic factors, and
processes across various spatial and temporal scales, as well as interactions across cells and
the tumour microenvironment. A well-supported conceptual framework for understanding
the workings of cancer was proposed by Hanahan and Weinberg in their seminal study “The
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hallmarks of cancer” [2]. In this study, the authors proposed that cancer entails six essential
alterations in cell physiology that lead to malignant growth, namely: self-sufficiency in
growth signals, insensitivity to anti-growth signals, evading apoptosis, limitless replicative
potential, sustained angiogenesis, tissue invasion and metastasis. In 2011, this hypothesis
was extended by two additional hallmarks [3]—reprogramming energy metabolism and
evading immune response.

However, it is currently unclear whether these hallmarks are based on individual
cell behaviour, or are emerging phenomena only at the tissue level. Indeed, despite vast
amounts of experimental data having been collected since then, it remains an open question
as to how cellular pathways and genetic factors can give rise to such hallmarks. In particular,
it is unknown how the symmetry-breaking dynamics [4] necessary for cancer development
are controlled by cellular pathways and signalling. In other words, we lack a mechanistic
understanding of how the capabilities necessary for the progression of cancer arise.

Computational analysis and modelling can help better understand the origins [5],
progression [6] as well as treatment options [7] of cancer. The latter includes recent pro-
posals of artificial intelligence (Al) based approaches to targeted therapeutics, directed at
the control of Boolean network models [8] of signalling and regulatory networks, namely
rule-based machine learning [9], reinforcement learning [10,11], and deep reinforcement
learning [12] to address larger networks. We note that the Boolean paradigm allows the
modelling of cellular functioning through attractor theory [13], where attractors model
phenotypes [14], without the need for estimating a large number of parameters. To realise
the promise of such computational approaches, it is imperative to apply them to networks
that faithfully capture the origins and progression of cancer.

In this paper, we make initial steps towards mechanistically mapping signalling
and regulatory networks to the hallmarks of cancer. To this end, we analyse a literature-
based Boolean model of one of the arguably best-established cancer networks, namely the
mitogen-activated protein kinase (MAPK) pathway, which is deregulated in numerous
cancer types [15,16]. We employ complex network analysis [17] tools to characterise
the topological organisation, as well as incorporating well-established information on
biomolecular function. Overall, we present a connectomic analysis of a core network in
cancer, providing insights into potential genetic interactions governing the progression
of cancer. Notably, our results have implications in the context of treatment strategies to
interrupt progression.

2. Methods

In this section, we present the key methods that allow a computational approach to
the connectomic characterisation of the MAPK network in the sequel.

2.1. Complex Network Analysis

We start by listing a number of measures, or network metrics, found in complex
networks [17] that are central to the subsequent study and topological analysis of the
MAPK network.

To compute the complex network measurements, the publicly available Python library
NetworkX [18] was used with minor modifications, which we open-sourced at https:
/ /github.com/UoS-PLCCN/grn-metrics (accessed on the 11 May 2022).

All computations were made on a standard laptop with an Intel Core i7 Processor and
32 GB of RAM.

Communities. Community structure is one of the most studied features of networked
systems [19]. Communities in a network are usually described as groups of densely
connected nodes with sparse connections to the nodes of other groups.

Communities in our study were identified using the Clauset-Newman-Moore greedy
modularity maxim [20], and were implemented using NetworkX’s implementation of the
function greedy_modularity_communities(). Greedy modularity maximization begins
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with each node in its own community, then joins the pair of communities that most increases
the modularity metric until no such pair exists.

Modularity. With the communities identified using greedy modularity maximization,
we can additionally compute the resulting modularity of this particular partition of the
graph. This will naturally be the maximal modularity value.

Given a set of n communities C, Clauset et al in [20] proved that modularity can be
computed as

_yyke ke 1
Q= Ll G M
where L. is the number of intra-community links, k. the sum of degrees within the commu-
nity and vy the resolution parameter.

A high modularity value naturally implies that the network naturally lends itself to
division into modules. We use the pre-computed communities along with NetworkX’s
modularity function to calculate it.

Small-world coefficient. Next, we are interested in degrees of small-worldness of
the network under study [21]. A small-world network is more clustered with a smaller
characteristic path length than degree-preserved random networks. In other words, most
nodes can be reached from every other node by a small number of hops or steps. The
small-world coefficient that determines how intense this effect is in a network refers to the
ratio of clustering coefficient and characteristic path length, which are normalized relative
to those of the random networks.

The small-world coefficient in our study was calculated using a modified implemen-
tation from NetworkX’s sigma function from the smallworld module. Specifically, the
original implementation uses a random reference graph, which we deem insufficient, and
thus modify the function to use Erdos—Renyi graphs instead.

Clustering coefficient. The global clustering coefficient measures the clustering present
in the entire network, as opposed to localization around a single node’s neighbourhood.

It is defined as the total number of triangles present in the network divided by the
number of all possible triangles that the network could have [22]. Given a network with n
vertices and t triangles, the global clustering coefficient can be computed as C = (3) 't We
use NetworkX'’s triangles function to calculate t.

Characteristic path length.The characteristic path length of a graph G = (V, E), also
known as the average path length, is the the average distance between any two pair of

nodes in the graph, I(G) = ¥, ,ev %
and v. A smaller characteristic path length is linked to a higher efficiency in the transfer of
information in the graph [23].

We compute the characteristic path length using NetworkX’s average_shortest_path_
length function.

Erdos-Renyi graphs. A G, = (V,E) Erdos—Renyi graph [24] is a random graph
with |V| = n vertices, where the presence of each edge (1, v) Vu,v € V is determined to be
independent and identically distributed with probability p. By the law of large numbers,
as the number of nodes in such random graph tends to infinity, the number of generated
edges approaches (5)p. The likelihood of generating a network G of n vertices and m edges
is given by

, where d(u,v) is the shortest path between u

P(G) = p"(1—p)D™ )

We compute Erdos-Renyi graphs according to the procedure outlined in Algorithm 1.
We use n = 49, m;,j1ia = 97, which is the number of nodes and edges in the network that
is the object of our study, and p = 1 ~ 0.02. All other random samples—e.g., during
the operations that guarantee that the result graph is connected—are from a uniform
probability distribution.

Rich-club coefficient. Afterwards, we turn our attention to the rich-club coefficient of
a complex network [25], a feature which describes how well connected a set of hub nodes
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are to one another and has been shown to influence structural and functional characteristics
of networks, including topology, the efficiency of paths and distribution of load [26].
Intuitively, a subnetwork with only rich-club nodes should have more connections than a
random network with the same degree and edge distributions.

Algorithm 1 ER graph generation algorithm.

Input: 1, Minjtia1, p

Output: Gy,
Vo {x1,x2,..., %} > 1 nodes
E+ @

E+ EU{(u,0)}

end while

while G, not connected do
ediscard ~ E

E«—E \ {ediscurd}
c + connected_components(E) > the function is provided from NetworkX

1D, @
while c1 = c2 do
c1,60 ~¢C
end while
U~ C,0~Cy
E«+ EU{(u,0)}
end while

For each degree k in a complex network, given the amount of vertices N~ with degree
larger than k, and the amount of edges E; present between said vertices, the rich-club
coefficient is defined as:

. 2Ey,
o(k) = N>k(N>>k —-1)

Intuitively, this is the ratio of the amount of possible edges between nodes with degree
larger than k (N~ (Nsx — 1)/2) and the actual amount of edges present in said nodes.

In our study, similar to [27] we normalize the above value with the rich-club coefficient
value of a random network, ¢,,,4(k). As our null-model, we use random networks with the
same number of edges and degree distribution as our original graph, generated according
to the Maslov and Sneppen (MS) procedure [28]. Specifically, we use the original network
as a starting point, then perform 100 * m degree-preserving edge swaps, where m is the
number of edges in the network.

Unlike [27], however, our ¢,,,,4(k) is the average of ¢(k) for 1000 random networks.
To this end, we modified NetworkX'’s the rich_club_coefficient implementation.

It is worth noting that given the denominator in Equation (3), the rich-club coefficient
is only defined for degrees k such that N.; > 1. In other words, we can only calculate
the coefficient for degrees k such that the subgraph with vertices of degree higher than k
has at least two nodes. Thus, given the degree distribution in the MAPK network, which
will be further discussed in Section 3.2.1, we can only compute the coefficient for degrees
k=0,...,8 since N»g = 1 and N-1; = 0. Specifically, we compute RCC Fork = 2,...,8§,
as its value for k = 0 and k = 1 is generally not informative.

®)

2.2. Mapping to Hallmarks of Cancer

Gene ontology (GO) IDs were manually associated with individual hallmarks of
cancer (see Table S1). Subsequently, the sets of genes captured by the communities that
were identified using the above-mentioned techniques were input to the BINGO [29],
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a Cytoscape plugin that has the ability to analytically infer the over-represented gene
ontology biological process terms present in a network, or any of its subgraphs. We applied
BiNGO to each identified community configured with a p-value threshold of 0.05, using
hypergeometric statistical testing and the Benjamini and Hochberg false discovery rate
(FDR) correction, to compute statistically significant GO IDs.

The top ten GO IDs that were linked to hallmarks of cancer (using Table S1) were then
counted. A community was associated with a hallmark if at least two GO IDs linked to the
same hallmark. This allowed us to associate each community to at least two hallmarks.

To further quantify how strongly the communities associate with their hallmarks, we
computed a measure of prominence (MOP). The MOP of a hallmark for a given community
is defined as the ratio between the number of GO IDs linked to that hallmark in that
community, divided by the average number of GO IDs linked to that hallmark across all six
communities, i.e., it is given by

()

Nc(j)

where N, (j) is the number of GO IDs in community i linked to hallmark j, and Nc(j)
denotes the average number of GO IDs for hallmark j. Hence, the MOP quantifies how
much the occurrence of a community’s associated hallmark differs across all communities.

To quantify statistical significance, we conducted for each community and hallmark
a one-sided binomial test using the Matlab function “myBinomTest()” implemented by
Matthew Nelson [30]. The p-values for each community and its dominant hallmarks were
calculated using Mathworks Matlab version R2020b.

£

4)

3. Results

In this section, we highlight the results of applying the methods outlined in the
previous section to the mitogen-activated protein kinase (MAPK) network.

3.1. The MAPK Network in Cancer

In this study, we analysed a model of the MAPK network (Figure 1) which is a complex
molecular network comprising strongly intertwined signalling pathways [31]. Existing
studies extensively report the signalling cascades to be involved in cancer deregulations.
However, the precise underlying mechanisms remain elusive. Attempts to better under-
stand the interplay between initial conditions and response include [32] with simulations
performed using the microC framework.

In this work, we draw upon network analysis methods typically found in complex
networks literature to elucidate such mechanisms by means of mapping the observed
signalling relationships to cellular physiology. More specifically, we focus on a MAPK
network built around the ERK, JNK and p38 cascades, including 232 transcription factors
and other proteins and 167 interactions [16]. Grieco et al. [16] built a dynamical model for
the network, aiming to study the response of the MAPK network to stimuli, such as growth
factors and stress, which lead to the activation of MAPKs and downstream targets, and
eventually affect cell fate.

This network was extended to include pathways activated under hypoxia, namely
HIF and VEGFA signalling, as previously published by Voukantsis et al. [32]. We used
this published version of the network, simply removing the input and output nodes which
represents perturbation and cellular states (e.g., proliferation, apoptosis, growth arrest)
rather than genes and their interactions. This network is a Boolean network, where all
nodes can have one of two states, inactive or active. The nodes represent genes, and in some
cases, the proteins encoded by them and their downstream targets, including transcription
factors. The interactions between nodes are governed by Boolean rules that represent the
relationships of activation and inhibition between genes/proteins.

The network was built based on the available experimental data, where every inter-
action between nodes is based on one or more published works, as explained by Grieco
et al. Despite the fact that this MAPK network was initially applied to bladder cancer, its
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47: HIF1
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main features are generalizable, due to the fact that the reaction map upon which it was
built was assembled using data from different cell types in both human and mice [16].
Moreover, we chose this network because the MAPK cascade involvement in cancer is
very well established across different tissues including bladder, breast, and particularly
triple negative breast cancers, lung and several others. This network plays a big role in
cancer deregulation and balance between cell proliferation and cell death, and it is involved
in a series of major cellular processes, all of which make it a perfect target to study the
hallmarks of cancer from a network analysis perspective.

Overall, the MAPK network we analyse is the result of numerous experiments where
the cellular responses to various signalling stimuli were assessed. It describes the signalling
cascades observed, including their directionality. Figure 1 visualises this network consisting
of 49 nodes and 97 edges.

39

Figure 1. The Mitogen-Activated Protein Kinase (MAPK) network in cancer, arguably one of the
best-established biological networks in cancer, supported by numerous experimental results.

3.2. Topological Organisation of the MAPK Network

Most biological networks are highly non-random. To investigate whether the MAPK
network also has distinctive features, we first analysed its topological organisation.

3.2.1. Degree Distribution

First, we consider the number of connections of each node to other nodes in the
network, and the probability distribution of this number across the network, also known as
its degree distribution.

The degree distribution shown in Figure 2 shows that the network structure is non-
regular and, like most biological networks, is not in accordance with a so-called Erdos—
Renyi (ER) network topology [33]. In particular, the network comprises nodes that are
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connected much more than expected from ER network topologies, i.e., hubs [34]. In
agreement with the literature, these hubs (e.g., p38, ERK or JNK) have been shown to play
central roles in cancer development [35-37].
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Figure 2. Degree distribution of the MAPK network. In accordance with well-established literature,
highly connected genes (e.g., p38 and ERK) are known to play critical roles in the development of
cancer [38,39].

3.2.2. Community Detection

Next, we consider the fundamental complex network feature of “communities”. These
indicate groups of nodes that are characterised by the presence of numerous connections
between them, as compared to fewer links to nodes in other communities [40]. To study
whether the MAPK network comprises communities of cross-regulatory genes, we em-
ployed the community detection algorithm of Clauset et al. [20].

Indeed, we find that the MAPK network as modelled here comprises a structure that
distinguishes itself from random reference networks by the presence of such communities.
To this end, Figure 3 visualises the community structure of the MAPK network. In particular,
we can observe six such separable communities of nodes. This indicates that the signalling
pathways dynamics play out via sets of genes that form communities.

This is in accordance with the organisation of other signalling and gene regulatory
networks [41], presenting a general principle for the structure of many biological networks.
The genes of the individual communities are listed in Table 1.

Table 1. Identified communities of the MAPK network in cancer.

Community Genes
C1 PPP2CA, MAP2K1, PI3K, RASA1, RAF, GABI, FOS, RSK
MAP3K13, SOS1, ELK1, ERK
c2 GADD45, SMAD2, ATF2, AP1, JUN, TAK1, JNK, MTK1
FOXO3, TGFBR1
C3 P14, RPS6KB1, MAX, MYC, MDM2, PTEN, AKT, P21
PDK1, P54
C4 SPRYD1, FRS2, GRB2, PRKCA, PLCG1, FGFR3, EGFR
C5 CREB, P38, MSK, DUSP1, TAOK1, BCL2, ATM

Cé6 EGEFE, VEGF, HIF1
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Figure 3. Community structure of the MAPK network; the six communities that were detected are
highlighted in different colours.

3.2.3. Complex Network Measures

In addition to the community structure, we also computed quantifiable, fundamental
complex network features. Table 2 shows several well-established network measures,
such as characteristic path, modularity, clustering coefficient, and small-worldness (recall
Section 2). These measurements further demonstrate the highly non-random topology of
the MAPK network. In particular, the characteristic path length denotes the average dis-
tance between any two pair of nodes in the network. We find that this value is significantly
higher in the MAPK network as compared to matched ER networks. This indicates that the
signalling in the MAPK network is surprisingly disconnected. Moreover, the modularity is
higher than expected from a comparable, random network. This suggests that the MAPK
network is made up of “cliques” of strongly interacting nodes, in accordance with the pres-
ence of communities described above. No statistically different organisation with regard
to the clustering coefficient was observed, which measures the prevalence of triangular
connectivity structure. This is related but different from the previously assessed modularity.
Moreover, no non-random small-world organisation was observed, further confirming that
communication in the MAPK network is not biased towards efficient communication.
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Table 2. Complex network measures of the MAPK network. To study the topological organisation,
well-established measures were computed. The analysis confirms a highly non-regular organisation
with regard to the characteristic path length and the modularity, as compared to regular ER networks
and randomised networks of an identical degree distribution. No significant difference is observed
with regard to the clustering-coefficient or the small-worldness.

Measure Value ER Network Value Randomized Network Value
char path 3.928 2.969 (std: 0.073) 2.941 (std: 0.060)
modularity 0472 0.431 (std: 0.023) 0.425 (std: 0.020)
clustering coefficient 0.001 0.001 (std: 0.03) 0.001 (std: 0.0002)
small-worldness 0.993 0.986 (std: 0.298) 1.173 (std: 0.305)

We also analysed the rich-club organisation, which quantifies the tendency for high-
degree nodes to connect with one another. Table 3 shows the rich-club coefficient values for
degrees 2, ..., 8 found in the MAPK network (recall the discussion in Section 2). The rich-
club coefficients are always lower than 1, with low values for k =5and 0 fork =6, ..., 8.
This demonstrates the absence of a rich-club organisation in the MAPK connectome, and
indicates that there are fewer links between the highest-degree nodes (hubs) than expected
based on random reference networks [34]. The associated Z-scores and p-values indicate
that these rich-club coefficient values for high degrees are statistically significant.

Table 3. Rich-club coefficient value for each degree found in the network, normalized using 1000 ran-
domly generated reference networks with the same degree distribution as the original network as
reference. The rich-club coefficients at high degrees are lower than expected for reference networks,
indicating that the MAPK network’s high-degree nodes avoid connections among each other.

Degree Normalized Value Z-Score p-Value
2 0.981 —-1.325 0.092
3 0.956 —0.936 0.175
4 0.602 —2.342 0.009
5 0.189 —2.754 0.003
6,7,8 0.0 —2.401 0.008

3.3. Relationship with Hallmarks of Cancer

We investigated whether the six communities identified via topological analysis (recall
Table 1) are related to some of the hallmarks (see also Table 4) by applying BiNGO analysis
to each one in order to infer statistically over-represented GO IDs. The resulting gene ontol-
ogy biological processes identified indicate that individual communities of the network
implicate functional annotations that are linked to specific hallmarks of cancer (see Table 5).

Moreover, we quantified the prominence of the hallmarks within a given community,
indicating strong partitioning across all communities. To quantify this prominence, we
created a “measure of prominence” (MOP). To compute the MOP, we counted for each
community the number of genes that were associated with a hallmark of cancer. To this
end, the ten most significantly ranked genes associated with hallmarks were identified
from the community of genes generated by the BINGO analysis (output files are available
as Supplementary Material). This was done by associating the GO terms of the genes
with individual hallmarks (Table S1). We found that the MOPs vary strongly across the
communities, and the communities associate with individual hallmarks in a statistically
significant way. In other words, individual communities express hallmarks in a highly
non-random fashion.
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Table 4. The eight hallmarks of cancer.

Hallmark Shorthand
Self-sufficiency in growth signals H1
Insensitivity to anti-growth signals H2
Evading apoptosis H3
Limitless replicative potential H4
Sustained angiogenesis H5
Tissue invasion and metastasis Hé6
Reprogramming energy metabolism H7
Evading immune response H8

Table 5. Identified communities of the MAPK network in cancer entail network modules in accor-
dance with specific hallmarks of cancer. Individual network communities are associated with subsets
of hallmarks. The (relative) prominence of the hallmarks in individual communities is quantified
using the MOP value. % indicates that the probability of observing the frequency of associations
with a given hallmark is statistically significant (p < 0.05 for one-sided binomial test). Overall, the
network topology reflects a compartmentalised and modular organisation with regard to the enabling
mechanisms of cancer.

Community Example GO Descriptions Hallmarks (MOP)
C1 reg. of apoptosis, H3 (1.5), H6 (4.5x), H7 (1.13)
phosphorus metabolic process,
chemotaxis
C2 regulation of apoptosis, H3 (1.5), H7 (2.63%)
pos. reg. of metabolic process
C3 response to extracellular stimulus, H2 (6.0), H4 (6.0%)

reg. of cell cycle
reg. of cell cycle arrest

C4 embryonic organ development, H1 (4.8x), H7 (0.75)
tissue development,
phosphate metabolic process

C5 reg. of apoptosis H3 (3.0x), H7 (1.5%)
reg. of programmed cell death,
phosphate metabolic process

Co6 reg. of cell proliferation H1(1.2), H5 (5.15%)
pos. reg. of angiogenesis
primitive heopoiesis

4. Discussion and Concluding Remarks

In this work, we made steps towards characterising the topology of the MAPK network,
with a central role in cancer, and mapping its organisation to cellular physiology. To this
end, we demonstrated that the MAPK network connectome exhibits topological features
that are in accordance with existing data. We analysed the network features and related
these to physiological behaviours. We found that the structure of the MAPK network
renders it highly robust to modifications by external stimuli to small numbers of nodes.
In particular, the characteristic path length (recall Table 2) is significantly higher than in
comparable reference networks. This entails that signals between two nodes tend to require
the crossing of many nodes. This indicates challenges from a clinical perspective, where
the controllability of network dynamics is a desired feature. In other words, the MAPK
network topology is better suited for interventions where multiple nodes are controlled.

Moreover, a rich-club organisation is lacking (recall Table 3). Rich-club organisation
has been demonstrated in numerous biological networks, including neural networks [34]
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and brain networks [42], where its presence increases the robustness of the network function
to breakdowns of individual nodes. Again, the lack of such a rich-club organisation has
clinically relevant implications. The nodes with the highest number of links tend to avoid
each other, and so it is unlikely that controlling single nodes can have a large impact on
the entire network dynamics. Hence, our analysis suggests that there exist “sweet-spots”
comprising multiple nodes for disrupting the regulatory dynamics of cancer progression.
It remains to be investigated how such a clinical interference could be realised, taking into
account the impact of drugs on gene expression, in combination with knowledge of the
underlying connectome.

We also provided a mapping of genetic communities or cliques to hallmarks of cancer.
This is of clinical relevance because the removal of a single hallmark could be sufficient
to significantly alter the fatality of cancer, as indicated by the difference of one hallmark
between benign and malignant cancers [43]. Although the relationship between the hall-
marks of cancer and cellular function are still debated [44], they constitute an established
conceptual framework for understanding major cellular dynamics in cancer. However, it
is currently unclear how these hallmarks are grounded in biological networks. This is a
crucial question, because gaining insights into how the hallmarks of cancers are enabled by
cell-intrinsic dynamics would revolutionise oncology: a causal understanding for the ori-
gins and progression of cancer would help identify suitable treatment options, potentially
circumventing side-effects and increasing the likelihood of a cure.

Indeed, previous works study potential treatment options that exploit the impact
of drugs on cellular pathways with relevance to hallmarks of cancer [45]. Our analysis
confirms that the MAPK network is organised in accordance with the hallmarks of cancer.
This agrees with the origin of this network, which was modelled from a collection of several
cancer studies. In particular, our results show that the identified communities are promi-
nently associated with subsets of hallmarks of cancer. This suggests that the conditions
necessary for the progression of cancer are distributed in a modular and complementary
fashion. This result is in agreement with the study of [41], where functional modules in
breast cancer also display a compartmentalisation of specific hallmarks of cancer.

Of note, in our analysis, none of the communities was as strongly associated with
the hallmark of “evading immune response” (H8). This is expected, as this network was
modelled mainly using cell line experiments, which do not include this element.

Although this study is limited to a specific MAPK signalling model, it provides a
demonstration of analysis of structural characterization of biological networks, and what
such an approach can offer. Our analysis highlights that MAPK signalling is organised in a
highly non-random and non-symmetrical way. The topological structure of this network
exhibits a long characteristic path length, and the absence of rich-club organisation. Both
features render the network dynamics robust to external perturbations where only a single
node is affected. Furthermore, our results provide a mapping of genetic communities or
cliques to hallmarks of cancer. The complex network-based analysis indicates that processes
critical for the progression of cancer are leveraging a modular network structure, rendering
it resistant to localised intervention. Hence, an orchestrated attack on multiple genes may
be necessary to interrupt a given hallmark during cancer progression.

Cancer computational models, such as the one we present here, have long proven
extremely useful for fast generation and testing of biological hypotheses, even in cases
where the biological knowledge is incomplete (as it is often the case with genetic regulation)
by using qualitative methods. They can point to probable avenues of treatment, and help
provide mechanistic explanations to processes that were obscured to current experimental
techniques. When combined with experimental validation, they remain an essential tool in
oncology [46].

In future, we anticipate more uptake of computational approaches as used here,
in combination with experimental results, to formulate quantitative models with high
explanatory power. For instance, the study of Dessauges et al. [47] aligns well with our
work in that it highlights the potential of the coordinated targeting of the MAPK network at
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multiple locations to better impact oncogenic signalling. The employment of computational
and complex network modelling can be used to incorporate such experimental evidence
from different sources into a single, integrated framework for hypotheses generation and
validation. Along those lines, future clinical applications are likely to benefit from taking
into account the topological and functional organisation of cellular signalling cascades,
including the MAPK network, in order to identify "sweet spots" for treatments. In particular,
hub nodes and connectors between communities are promising candidates.

This leads to a key problem: identifying control nodes, or a set of drivers [48], which
exert stronger influence, compared to other nodes in regulatory processes. Recent results in
the structural controllability of complex networks [49] and their actionable application to
network control (e.g., see [50]) may be pertinent to identifying sweet spots, which can then
be used as the starting points for steering the dynamics of cellular signalling cascades in a
computationally tractable manner.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/sym14051009 /51, Table S1: Links between Gene Ontology (GO) terms and Cancer Hallmarks.
Individual GO terms were manually associated with the hallmarks of cancer, constituting a resource
for relating the identified communities in the MAPK network with individual hallmarks of cancer.,
Table S2: Betweeness Centrality and Clustering Coefficient metrics for each gene in the MAPK
network., Table S3: The MAPK network adjacency matrix as a table of edges. Output files of BINGO
analysis are also available as Supplementary Material.
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