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Abstract

:

Coastal engineering construction suitability evaluation methods are too empirical and difficult to quantify. Considering these weaknesses, in order to determine the weight of each factor reasonably, and to analyze the suitability of coastal zone construction comprehensively, the theory of establishing a coastal zone construction suitability evaluation model based on a Rough Set (RS) and an Analytic Hierarchy Process (AHP) is proposed. In total, 20 typical coastal areas of Putian are selected, and the main impact factors are determined according to a port dock, pollution-prone industry, and an electric power plant. The contribution rate and weight of each factor for the construction of a coastal zone are analyzed by the combination evaluation model, and the final evaluation result is consistent with the actual investigation situation. Finally, 52 evaluation units of the Putian coastal zone are evaluated by Neural Networks (NNs). The weight of the impact factors is made more objective by using the training sample set of the combination evaluation model as the sample set of the neural network. The learning speed and accuracy of the network are improved, and the and the evaluation result is consistent with the actual investigation situation. In a word, it is effective to perform the suitability evaluation of the coastal zone construction using the RS-AHP-NN proposed model, and it can be applied in practical engineering.
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1. Introduction


The coastal zone is a transition zone between the ocean and a specific collection of land and marine spaces; it is a mutual transition zone between the lithosphere, hydrosphere, atmosphere and biosphere, with the most frequent exchanges. It has a wealth of resources and services that are vital to human social and economic development [1]. In the world, coastal cities tend to be the most developed areas in the country. But at the same time, the coastal zone has disasters and fragile ecological characteristics. Given this, how can we realize a scientific and objective coastal construction suitability evaluation, which is the basic problem of the port area and the surrounding coastal zone in the planning and construction layout [2]? Especially at present, China’s “The Belt and Road Initiative” plan has been proposed to become a major strategic initiative of national revival development and one of the major opportunities of global development; coastal zone development and engineering construction are important parts of the planning. As such, the science of the coastal zone construction suitability evaluation method and system research are more urgent and important.



In recent years, a variety of methods and models have been applied to the evaluation of engineering construction. For example, Tie et al. used AHP to give weight to different assessment indicators, and established the assessment model of disaster emergency response capabilities in urban settings [3].Yang analyzed the probability distribution rule of the strain ratio using the random signal analysis theory and statistical technology, and Gong summarized the impact on environment quality in the process of relocation according to the statistical analysis of the environmental monitoring data [4,5]. As the conventional prediction methods for the production of water flooding reservoirs have some drawbacks, a production forecasting model based on an artificial neural network was proposed [6]. Chen proposed a construction quality evaluation model based on the genetic algorithm, and Qi combined the genetic algorithm and analytic hierarchy process in view of the lack of objectiveness and the low credibility of the results of current construction quality evaluation [7,8]. Chen by applying hierarchical analysis and fuzzy mathematical theory, thus providing a comprehensive evaluation of the mine environment [9]; Liang et al. fully considered the fuzziness and uncertainty of data, and the fusion evaluation of cracks was proposed based on an improved cloud-evidence theory [10]. Wu analyzed the main factors affecting the expansion of urban land in Zhumadian City, and established an evaluation index system for the urban expansion of the city; Xie used an extended multi-factor assessment method to construct an assessment model that accurately reflects the service quality of urban public transportation [11,12]. However, on the one hand, coastal engineering construction is a subject of engineering geological conditions, terrain conditions and some unstable factors to control the extremely complex geological processes, such as special rock and soil. This paper carried out geological survey work involving active faults, groundwater, and 12 other kinds of factors, including a lot of uncertainty and hidden factors. The methods mentioned above do not consider the factors affecting the construction of the coastal zone in a comprehensive way, and can only be semi-quantitative, or only consider the qualitative and quantitative, and cannot handle the relationship between them very well. On the other hand, in the study of natural science and engineering construction, there is a lot of uncertain information, and the evaluation of coastal engineering construction involves many variables (quantitative, semi-quantitative, and qualitative) and a large amount of data. These variables and the evaluation’s conclusion often have a highly nonlinear relationship. At present, there are some weaknesses in the approach mentioned above.



In view of this situation, this paper concerns more than 1 year of the study area of 364 square kilometers with regard to complex and uncertain factors, and determined the geological survey. The paper puts forward the analytic hierarchy process and rough set combined weight judgment matrix theory with a comprehensive evaluation method for the neural network. By this method, a model was developed for the integrated evaluation of a great deal of complex and uncertain information, and the problem of weighting the impact factors is solved. Then, the NN method is used to give full play to its great advantages of massively parallel processing, self-learning, and real-time processing to provide a new method for the engineering construction of complex coastal suitability evaluation.



In the coastal zone representative unit in the study area, this paper carried out 20 typical field investigations of coastal zone units to provide basic data for the theory. At the same time, through the 20 units of the typical coastal zone field and the comprehensive evaluation results, we obtained 52 units of full-area coastal engineering construction evaluation results.




2. Venue and Method


2.1. Overview of the Study Area


The study area is located in Putian City, Fujian Province, in the southeast coastal region, including Meizhou Bay and Xinghua Bay; the port shoreline is rich in resources. The location is shown in Figure 1. The area is high in the northwest and low in the southeast, facing the sea, with hills as the background, with mountains in the northwest, hills in the middle, and a vast plain in the southeast. It is surrounded by land on three sides, and is a semi-enclosed inland narrow bay with superior natural conditions.



The basement rocks in this area are metamorphic rocks of the former Devonian Ezhai formation and Cretaceous volcanic rocks in the cap-rock group. They mainly include quartz schist, granulite, tuff, acid pyroclastic rock, and so on. The rock overlying the quaternary overburden layer is relatively thin, with a low mountain’s gentle slope and a slope at the eluvial slope distribution, with a thickness of 1.0~12.5 m, and mountain vegetation development; the mountain ditch slope is of Proluvium distribution, with a thickness of 0.5~8.5 m; the coastal area for the sea layer has a thickness of 5.0~20.5 m.



There are three major faults in the study area, which are the northeast of the Changle-Nan’ao Fault Zone, the Binhai Fault Zone, and the northwest of the Shaxian–Nabri Island Fault zone. Although the activity is not strong, the construction should pay attention to the slow-motion fault “creep”, especially in order to deal with possible tsunami disasters such as earthquake fortification.



The groundwater types in the study area are mainly loose-rock-type pore water, weathering network pore fissure water, and bedrock fissure water. The aquifer of the gravel and rock fracture aquifer is more abundant, and has salt water, which is corrosive.



This coastal zone belongs to the strong tidal area of our country, and the tidal nature is the normal semi-day tide type. Due to the topography, the tidal day inequality is more obvious than high tide. The maximum difference between low and high tide can reach up to 1.0 m, and the maximum difference is 0.5 m. The high and low tides in and around Mekong Bay are almost uniform, and the ebb and flow of the tide leads to fluctuating changes in groundwater levels, which occur regularly in both submerged and confined waters.




2.2. RS-AHP-NNs Comprehensive Evaluation Method


2.2.1. Rough Sets Theory


Rough set theory is a mathematical theory of data analysis proposed by the Polish mathematician, Pawlak, in 1982 as a new objective data analysis method; there is nothing comparable in the main influencing factors of parsimony for the determination of the contribution rate of each factor to the system and the weight of calculation factors [13,14,15]. In solving complex geological problems, there is no need to know a priori knowledge in advance; only the objective data of the decision itself are needed. Its application in coastal geological engineering is mainly reflected in the two aspects of knowledge reduction and attribute importance analysis.



A judgment matrix can be obtained by comparing each item in an analogical analytic hierarchy process:


   b  i j   =   d  (   a i  , C , D  )    d  (   a j  , C , D  )    =    |  P O  S C   ( D )   |  −  |  P O  S  C −  {   a i   }     ( D )   |     |  P O  S C   ( D )   |  −  |  P O  S  C −  {   a j   }     ( D )   |     



(1)







That is,


  B =    (   b  i j    )    n × n   ,  b  i j   ≥ 0  



(2)







The formula is as follows: C is the evaluation of experts’ decision factors (the attribute of a standard layer or the scheme of a program layer),    a i    is the evaluation of experts’ decision factor  i , and the importance    a i    of decision attribute D can be calculated by rough set theory.



The objective judgment matrix constructed by the importance of attributes avoids the influence of subjective factors, and reflects the inherent objective relations between things. This paper calls this an “objective judgment matrix”.




2.2.2. Analytic Hierarchy Process


The AHP was put forward by the famous American scientist T.L. Satty in the 1970s. Its basic idea is the hierarchical decision-making process according to certain rules, quantifications, and multiple objectives and guidelines; otherwise, no structural characteristics of a complex decision problem provide an easy decision method. The AHP is especially suitable when it is difficult to accurately measure, directly, the result of the decision situation [16,17]. However, expert experience is used to determine the weights, which is called the “subjective judgment matrix”:


  A =    (   a  i j    )    n × n   ,  a  i j   > 0 ,  a  j i   = 1 /  a  j i    (   a  i j   ×  a  j i   = 1  )   



(3)







The formula is as follows:    a  i j     is the relative importance of the factors relevant to this level.




2.2.3. Combination Weighting Judgment Matrix Theory


If   S =  (  U , D , V , f  )    is an information system, assuming that A is the analysis of the subjective judgment matrix method derived by level, B is the objective judgment matrix by rough sets theory, and C is a combination of two matrices. The idea is as follows: the weighted combination matrix C is the weighted sum of matrices A and B, making C as close as possible to matrices A and B.


  A =    (   a  i j    )    n × n   ,  a  i j   > 0 ; B =    (   b  i j    )    n × n   ,  b  i j   ≥ 0  



(4)







The optimization model was built:


  m i n  {   [  u  (     (  C − A  )   2  / 2  )  +  (  1 − u  )   (     (  C − B  )   2  / 2  )   ]   }   



(5)






  0 ≤ u ≤ 1 , C =    (   c  i j    )    n × n   ,  c  i j   ≥ 0  











Theorem 1 [17] holds that the optimization model type (5) has a unique solution in the feasible region  Ω , and the solution is


  C = u A +  (  1 − u  )  B = u    (   a  i j    )    n × n   +  (  1 − u  )     (   b  i j    )    n × n    



(6)







As proof, make Lagrange function:


  L  (  C , λ  )  =  [  u  (     (  C − A  )   2  / 2  )  +  (  1 − u  )   (     (  C − B  )   2  / 2  )   ]  + λ  (  C − 1  )   



(7)







Draw


  L  (   W C    i  , λ  )  =  [  u  (     (   W  C i   −  W  A i    )   2  / 2  )  +  (  1 − u  )   (     (   W  C i   −  W  B i    )   2  / 2  )   ]  + λ  (   W  C i   − 1  )   



(8)







Here,    W  A i    ,    W  B i    , and    W  C i     are matrixes  A ,  B ,    and    C   as a normalized weight vector, and there are


    ∑   i = 1  n   W  A i   =   ∑   i = 1  n   W  B i   =   ∑   i = 1  n   W  C i   = 1  (  i = 1 , 2 , 3 , ⋯ , m  )   



(9)







Order   ∂ L / ∂ C = 0 ,   ∑   i = 1  n   W  C i   − 1 = 0  , and the equations are


   {       {  u  (   W  C i   −  W  A i    )    +  (  1 − u  )   (   W  C i   −  W  B i    )  = 0         ∑   i = 1  n   W  C i   − 1 = 0        



(10)







Solution equations are then obtained


    W  C i   = u  W  A i   +  (  1 − u  )   W  B i      



(11)






  C = u A +  (  1 − u  )  B = u    (   a  i j    )    n × n   +  (  1 − u  )     (   b  i j    )    n × n    



(12)







Thus, Theorem 1 [17] is proven.



The problem of decision making by the calculation of the weight combination judgment matrix can take full advantage of the hierarchical analysis of subjective and objective factors in rough set theory. This facilitates the application to the analysis of complex geological data containing multiple related or unrelated variables. Eventually, the weights of each factor can be determined based on the quantitative criteria of the identified influencing factors. In the process of impact factor analysis, it not only reflects the subjective role, but also dissolves the objective and subjective weights together to give more realistic weight values, reduce errors, and make the results more reasonable, thus improving the accuracy of the decision making.




2.2.4. Neural Network Model


There are many kinds of neural network models. At present, the BP (Back Propagation) model is the most widely used [18]. The BP model is a model of guided training with the structure shown in Figure 2. By adjusting the connection weights between layers and layers, i.e., the network “memory” of each training group (example), each training group consists of the input and output pairs      {  X , T  }   , and the basic method of optimization is the gradient descent method. Through a large number of training group learning, it can adaptively obtain highly nonlinear mapping relationship between input and output, and it has a strong adaptive recognition ability for deterministic causality. The theory has proved that a three-layer BP network with an  m  node transport layer [19], the   2 m + 1   node’s hidden layer, and an n output node can be accurately expressed as a continuous function     φ :  I m  →  R n  , Y = φ  ( X )   (  I ∈  (  0 , 1  )   )   . As a result of the BP network from this instance or test data, the process of knowledge is consistent with the core of the project evaluation methods (investigation, statistics, and analysis). Therefore, its use for engineering construction suitability analysis is appropriate [20].



At present, the application and evaluation of BP is relatively mature [21,22,23]. In this paper, the three-layer model is used as a sample learning model for typical coastal zone construction suitability, as shown above.



It is assumed that the numbers of nodes in the input layer, the intermediate layer (hidden layer), and the output layer are   m ,   l ,   and   n  , respectively. The input sample is   X =  (   x 0  ,  x 1  , ⋯ ,  x  m − 1    )   , the output of the intermediate layer is   Y =  (   y 0  ,  y 1  , ⋯ ,  y  l − 1    )   , and the output layer is   O =  (   o 0  ,  o 1  , ⋯ ,  o  n − 1    )   ; the expected output is   T =  (   t 0  ,  t 1  , ⋯ ,  t  n − 1    )   ;    W  i j     is the connection weight between node  i  of the input layer and the intermediate layer node  j ;    W  j t     is the connection weight between the intermediate layer node  j  and the output layer node  k ,    θ j    is the offset of the intermediate layer node   j   , and    v k    is the offset of the output layer node  k .






3. Results


3.1. Suitability Evaluation Index System of Coastal Zone Construction


The coastal zone engineering in the study area is mainly based on the port, the port industry, and a suitability evaluation of coastal zone construction, namely, a suitability evaluation of port, wharf and pollution-prone industry and power plant construction [24,25]. From a comprehensive study of geological conditions for engineering and previous work experience, the coastal zone was divided into 52 evaluation units as shown in Figure 3, and we selected 20 typical units for the field investigation. On the basis of the principle of the simple and easy determination of influencing factors, 10 and 12 influencing factors were selected as evaluation indexes for port, wharf and pollution prone industry and power plants, respectively (refer to Appendix A, Table A1). Impact factor parameter values are shown in Table 1 and Table 2 (which list only 10 typical units): the qualitative indicators are based on expert ratings (due to textual limitations, the scoring criteria are not listed in detail). According to previous studies, the suitability of engineering construction is divided into four grades, namely good (I), better (II), poor (III) and bad (IV); for the classification criteria of each factor, refer to Appendix A, Table A2 and Table A3.




3.2. Determination of the Weight Coefficient of AHP


Through the analysis of geological factors for coastal engineering construction, the hierarchy structure model of the suitability evaluation of the port terminal, pollution-prone industry, and the power plant construction is constructed. The analytic hierarchy structure is divided into three layers—the object layer, the attribute layer, and the factor layer—calculated by the evaluation index weights, as shown in Figure 4 and Figure 5.



3.2.1. Raw Data Intensive Reduction


First, the consistency of the sample data was checked, and the results show that the 20 samples are compatible. Then, the attribute reduction was carried out according to the expression of the theory reduction process; the index factors could not be reduced, and all of them were kernels.




3.2.2. Calculate the Weight Coefficient of Each Index Factor


The collection of the typical areas of the evaluation system is regarded as the domain of information system U. According to the formula, the conditional attribute set C of the terminal and condition set B of the polluting enterprise and the power plant are respectively classified according to the conditional attributes and the decision attribute D, respectively:


  U =  {  1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20  }   



(13)







For the positive field,


  p o  s C   ( D )  =  {  1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20  }   



(14)






  p o  s B   ( D )  =  {  1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20  }   



(15)







Among these,


  B =  {   a 1  ,  a 2  ,  a 3  ,  a 4  ,  a 5  ,  a 6  ,  a 7  ,  a 8  ,  a 9  ,  a  10   ,  a  11   ,  a  12    }   



(16)






  C =  {   b 1  ,  b 2  ,  b 3  ,  b 4  ,  b 5  ,  b 6  ,  b 7  ,  b 8  ,  b 9  ,  b  10    }   



(17)






  D =  {   d 1  ,  d 2  ,  d 3  ,  d 4   }   



(18)







The following is a classification of the domains after the removal of a conditional attribute:


   p o  s  C −  b 1     ( D )  =  {  1 , 2 , 3 , 5 , 8 , 9 , 11 , 12 , 13 , 16 , 20  }     p o  s  C −  b 2     ( D )  =  {  1 , 2 , 3 , 5 , 7 , 9 , 11 , 12 , 13 , 14 , 16 , 19 , 20  }     p o  s  C −  b 3     ( D )  =  {  1 , 2 , 3 , 5 , 8 , 9 , 11 , 12 , 13 , 16 , 20  }     …   …   …    p o  s  C −  b  10      ( D )  =  {  1 , 2 , 3 , 4 , 5 , 6 , 8 , 9 , 11 , 12 , 13 , 17 , 16 , 18 , 20  }    










   r C   ( D )  =    |  p o  s C   ( D )   |     | U |    = 1  










   r B   ( D )  =    |  p o  s B   ( D )   |     | U |    = 1  










   p o  s  B −  a 1     ( D )  =  {  1 , 2 , 3 , 5 , 6 , 8 , 9 , 10 , 12 , 13 , 16 , 20  }     p o  s  B − a 2    ( D )  =  {  1 , 2 , 4 , 5 , 7 , 9 , 11 , 12 , 13 , 15 , 16 , 17 , 19 , 20  }     p o  s  B − a 3    ( D )  =  {  2 , 3 , 5 , 7 , 8 , 9 , 11 , 12 , 13 , 16 , 19 , 20  }     …   …   …      p o  s  B −  a  10      ( D )  =  {  6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 17 , 16 , 18 , 19 , 20  }    



(19)








3.2.3. Determination of the Weighting Factor


As calculated by the original data of the index factor,


    σ  C D    (   C 1   )  =  r C   ( D )  −  r  C −  C 1     ( D )  = 1 −   11   20   =  9  20      …   …     σ  C D    (   C  10    )  =  r C   ( D )  −  r  C −  C  10      ( D )  = 1 −   15   20   =  5  20     










    σ  C D    (   B 1   )  =  r B   ( D )  −  r  B −  B 1     ( D )  = 1 −   12   20   =  8  20      …   …     σ  C D    (   B  12    )  =  r B   ( D )  −  r  B −  B  12      ( D )  = 1 −   14   20   =  6  20     



(20)







The weight coefficient of the  i  influence factor is


   a i  =    r  C −  C i     ( D )      ∑   j = 1  n   r  C −  C i     ( D )    ,  b i  =    r  B −  B i     ( D )      ∑   j = 1  n   r  B −  B i     ( D )    ,  (  i = 1 , 2 , 3 , … , n  )   



(21)







The weight factors X1, X2, ……X10 for port terminal evaluation are 0.041, 0.337, 0.048, 0.049, 0.017, 0.039, 0.032, 0.121, 0.018, and 0.298. The evaluation factor weight coefficients Y1, Y2, ……Y12 for pollution enterprises and power plants are 0.041, 0.121, 0.068, 0.049, 0.067, 0.059, 0.102, 0.091, 0.081, 0.055, 0.062, and 0.204.





3.3. Construct the Combination Weighting Judgment Evaluation Matrix


According to Theorem 1 [17], the combination judgment matrix is constructed, and the combination weighting value is calculated. We made a decision to meet the tendency of expert experience, i.e., to meet the   x = 1  . When the decision is to meet the tendency of objective data,   y = 0.5  . For decision making expert experience, we meet 0.5 ≤    u    ≤ 1, and when using objective decision making data, we meet   0 ≤ u ≤ 0.5  . Here,  u  is 0.38, and makes the subjective and objective matrix coefficients ratio the golden number; then,   C = 0.38 A + 0.62 B  . By constructing the combination judgment matrix C, the weight coefficients of each index combination can be calculated, as shown in Table 3. X2, X10, Y4, and Y12 have a large combination weight coefficient, which indicates that the shore waters before width, site category, shoreline stability, fracture structure have a greater influence on the evaluation system. Special care should be taken for these factors in conducting the evaluation.



We can then use Equation (22) and Table 3 for the engineering construction suitability evaluation, according to the comprehensive evaluation of the adaptability zoning classification—good adaptability (level I, F ≥ 0.6), preferably adaptability (level II, 0.4 ≤ F < 0.6), poor adaptability (level III, 0.2 ≤ F < 0.4), and poor adaptability (level IV, F < 0.2)—and the actual construction suitability evaluation; comparison results are shown in Table 4 and Table 5, with visible evaluation results.


  F =   ∑   i = 1  n   W i   S i   



(22)







Among them,    S i    is the normalized value of the evaluation index, and    W i    is the combination weight coefficient.




3.4. Results of the Suitability Evaluation of Coastal Zone Engineering Construction Based on a Combined Weighted Judgment Matrix


Through the analysis of a typical coastal zone and a large-scale engineering survey, an engineering geological model, and information of engineering construction examples reflecting the current situation of engineering construction and affecting the dynamic environment, and considering the requirements of major coastal engineering ports, pollution-prone enterprises and power plants’ on-site conditions, 10 and 12 indicators were finally selected to be combined with the combined judgment matrix evaluation method for the comprehensive evaluation of coastal construction, as shown in Table 4 and Table 5. In this paper, the three-layer NNs model was constructed based on the impact factor indexes of Table 1 and Table 2 and the comprehensive evaluation of engineering construction suitability. The model is composed of 10 nodes and 12 nodes, and the outputs are four nodes. In total, 20 typical examples were used as learning samples of NNs. After learning convergence, 52 evaluation units of the coastal zone were predicted by using convergent network structure and parameters. The prediction results are shown in Table 6 and Table 7.





4. Discussion


4.1. Validation and Limitations of the RS-AHP-NNs Model


In order to verify the accuracy of the RS-AHP-NNs evaluation model, the raw data were processed using the AHP method alone (listing only 10 typical units). Finally, the predicted results of the AHP model, the predicted results of the RS-AHP-NNs model, and the actual results were compared, so as to verify the superiority and accuracy of the comprehensive evaluation model proposed in the article.



Based on the results calculated in Section 3.2, the AHP weighting factors  i  were obtained. The results of the AHP evaluation of the suitability of engineering construction were obtained using Equation (23), and the comparison results are shown in Table 8.


  F =   ∑   i = 1  n  i    W i   



(23)







Among them,    S i    is the normalized value of the evaluation index, and  i  is the AHP weight coefficient.



From the above table, we can see that the predicted results of the RS-AHP-NNs integrated evaluation model and the actual engineering evaluation results are consistent. In contrast, the accuracy of the prediction results using the AHP analysis model alone is only 50%. The comparison of the three clearly shows that the RS-AHP-NNs comprehensive evaluation model is more consistent with the actual results, and is more accurate than the traditional AHP model. This indicates that the RS-AHP-NNs comprehensive evaluation model proposed in this paper can accurately reflect the actual situation of the suitability of coastal zone construction, and that it has some practical significance.



Although the RS-AHP-NNs comprehensive evaluation model analysis procedure provides an effective and convenient method, it is important to note that the model itself is still subject to some limitations. First, the resolution of impact factors is limited by the accuracy of the data measurement and grid generation. This means that the accuracy of the evaluation grid and measurement data can affect the authenticity and objectivity of the overall evaluation results. Secondly, the multi-level comparison in the RS-AHP-NNs model needs to give a comparison of its consistency. The method loses its usefulness if the consistency index requirement is not met during the hierarchical comparison.




4.2. Analysis Based on the RS-AHP-NN Model


According to the comprehensive evaluation results of the RS-AHP-NN model, as can be seen from Table 6 and Figure 6, there are eights ections with good adaptability (level I), 19 sections in preferable condition (level II), 14 sections in poor condition (level III), and 11 sections in bad condition (level IV). The length and ratio of each shoreline are shown in Table 9. The evaluation results show that good or better locations belong to the bedrock or sandy areas along seashores, the scouring and silting in the shoreline change is not significant, there are no soft-soil or sandy-soil liquefaction phenomena, the coastal topography is flat and wide, and the width of the waterfront is wide, which is beneficial to the construction of the port terminal. The evaluation results show that the poor or poorer areas are mainly distributed in sandy or silty coast, have a shoreline deposition status, have a speed of 1–10 m/a, have groundwater salinity greater than 3 g/L, and have corrosion resistance in the building foundations; the thickness of the soft soil is great, and the buried depth of the roof is less than 5 m. It is easy to cause the seismic subsidence of soft soil, and the width of the intertidal zone is 1~2 km. This is not conducive to the construction of ship berthing and port terminal.



As can be seen from Table 7 and Figure 7, there are five zones with good adaptability (level I, preferable ones with 23 areas (level II), poor ones with four districts (level III) and 20 districts with bad areas (level IV) and ratios, as shown in Table 10. Among them, the area with the evaluation results of good or better belong to the flat and open terrain; moreover, the lithology is mainly intrusive rock and residual soil, the engineering geological condition is good, and the bearing capacity is high. The neural network evaluation structure is poor or bad, and the geological condition is usually a double-layer or multi-layer structure. The lithology is mainly composed of marine sediment, silty soil and sandy soil. The compressibility of the rock soil layer is higher, the bearing capacity is lower, and the groundwater level is shallow. It is easy to cause the uneven settlement of the foundation. The groundwater in the coastal section is salty water, and has strong corrosiveness.





5. Conclusions


(1) Based on the combination of a rough set and an analytical hierarchy process, a new evaluation method of a combined weighted judgment matrix was proposed. The RS-AHP-NN comprehensive evaluation model was used to analyze the contribution of each factor to the construction of the coastal zone, and the results are consistent with the actual survey results. The model was improved by introducing the combined judgment matrix and neural network to make the weights of the influencing factors more objective, which excluded the interference information and obtained the real and objective conclusion.



(2) In this paper, the engineering and geological conditions and previous work experience were studied comprehensively, and the coastal zone was divided into 52 evaluation units. According to the principle of simple and easy to implement impact factors, 10 and 12 impact factors of ports, docks and pollution-prone industries and power plants were selected as evaluation indexes, respectively. Based on the RS-AHP-NN coastal zone construction suitability analysis model, the weighting results of the impact factors were obtained. The weight factors X1, X2, ……X10 for port terminal evaluation were 0.057, 0.259, 0.059, 0.049, 0.062, 0.049, 0.086, 0.106, 0.017, and 0.256. The evaluation factor weight coefficients Y1, Y2, ……Y12 for pollution-prone enterprises and power plants were 0.048, 0.134, 0.064, 0.155, 0.063, 0.058, 0.070, 0.071, 0.034, 0.052, 0.045, and 0.206. Among them, the shore waters before the width, site category, shoreline stability, and fracture structure had a greater impact on the evaluation system.



(3) According to the validation, the RS-AHP-NNs comprehensive evaluation model had higher accuracy compared to the AHP evaluation model. The predicted results of the RS-AHP-NNs model were in full agreement with the actual findings, while the AHP model had only 50 percent accuracy. This shows that the comprehensive evaluation model proposed in this paper can reflect the real situation of the suitability of coastal zone construction, and it is a very effective method.
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Table A1. The referential relationship of the influence factors.






Table A1. The referential relationship of the influence factors.





	Character
	Influence Factor
	Character
	Influence Factor





	X1 (m)
	channel depth
	Y2 (m)
	the theory of settlement



	X2
	shore waters before width
	Y3
	bearing layer



	X3 (m)
	shoreline stability
	Y4 (m/a)
	shoreline stability



	X4 (m)
	land for width
	Y5
	rock and soil types



	X5
	coastal zone type
	Y6
	sand roof depth



	X6 (m)
	undersea terrain
	Y7 (m3/d)
	shallow groundwater enrichment



	X7 (m)
	tidal range
	Y8
	the coastal terrain



	X8 (m)
	intertidal zone width
	Y9 (m)
	culture area of safe distance



	X9
	site engineering geological conditions
	Y10 (m)
	the seismogenic fault distance



	X10
	site category
	Y11
	site category



	Y1
	engineering conditions
	Y12
	fracture structure
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Table A2. Suitability classification standard of the port wharf.






Table A2. Suitability classification standard of the port wharf.





	Suitability Standard
	X1

(m)
	X2 (m)
	X3
	X4 (m)
	X5
	X6 (m)
	X7

(m)
	X8 (m)
	X9
	X10





	good
	≥10
	≥426
	8
	≥2000
	8
	≤5
	≤4.8
	≤200
	8
	8



	better
	[5, 10)
	[324, 426]
	6
	[1000, 2000)
	6
	[5, 10)
	[4.8, 5)
	[200, 500)
	6
	6



	poor
	[3, 5)
	[200, 324)
	4
	[500, 1000)
	4
	[10, 15)
	[5, 5.2)
	500, 1000
	4
	4



	bad
	<3
	<200
	2
	<500
	2
	>15
	>5.2
	>1000
	2
	2
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Table A3. Suitability classification standard of pollution-prone industry and power plants.






Table A3. Suitability classification standard of pollution-prone industry and power plants.





	Suitability Standard
	Y1
	Y2

(m)
	Y3
	Y4

(m/a)
	Y5
	Y6
	Y7

(m3/d)
	Y8
	Y9

(m)
	Y10

(m)
	Y11
	Y12





	good
	8
	≤0.1
	8
	≤5
	8
	8
	≤10
	4
	≥1000
	≥1000
	4
	4



	better
	6
	(0.1, 0.3]
	6
	(5, 10]
	6
	6
	(10, 100]
	3
	[500, 1000)
	[500, 1000)
	3
	3



	poor
	4
	(0.3, 0.5]
	4
	(10, 30]
	4
	4
	(100, 1000]
	2
	[200, 500)
	[300, 500)
	2
	2



	bad
	2
	>0.5
	2
	>30
	2
	2
	>1000
	1
	<200
	<300
	1
	1
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Figure 1. Putian location information map. 






Figure 1. Putian location information map.
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Figure 2. Configuration of the BP network. 






Figure 2. Configuration of the BP network.
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Figure 3. The coast is divided into 52 evaluation units. 
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Figure 4. Suitability evaluation index hierarchy model of port wharf engineering construction. 
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Figure 5. Suitability evaluation index hierarchy model of pollution-prone industrial and power plant engineering construction. 
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Figure 6. Suitability evaluation diagram for the engineering construction of a port wharf. 
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Figure 7. Suitability evaluation map of pollution-prone enterprises and power plant construction. 
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Table 1. Each influence factor index of the port wharf.






Table 1. Each influence factor index of the port wharf.





	Evaluation Units
	X1 (m)
	X2 (m)
	X3
	X4 (m)
	X5
	X6 (m)
	X7 (m)
	X8 (m)
	X9
	X10





	A1
	2.5
	216
	4
	498
	2
	15.7
	4.6
	1100
	4
	4



	A3
	3
	220
	4
	510
	2
	14.5
	4.6
	1000
	4
	4



	A8
	4.5
	310
	4
	820
	4
	11.2
	4.7
	810
	4
	4



	A9
	7
	412
	6
	1700
	6
	4.7
	4.6
	420
	6
	6



	A13
	7.2
	420
	6
	1680
	6
	4.5
	4.6
	413
	6
	6



	A14
	11
	458
	8
	2100
	6
	4.1
	4.5
	198
	8
	8



	A16
	4.3
	321
	4
	837
	4
	10.3
	4.7
	823
	4
	4



	A20
	4.4
	331
	4
	790
	4
	7.6
	4.6
	795
	4
	4



	A22
	3.4
	321
	4
	498
	4
	10.3
	4.6
	578
	4
	6



	A25
	11.3
	473
	8
	2300
	8
	3.8
	4.6
	157
	8
	8
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Table 2. Each influence factor index of pollution-prone industries and power plants.
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	Evaluation Units
	Y1
	Y2

(m)
	Y3
	Y4

(m/a)
	Y5
	Y6
	Y7

(m3/d)
	Y8
	Y9

(m)
	Y10(m)
	Y11
	Y12





	A1
	2
	0.6
	2
	32.2
	2
	2
	600
	1
	180
	267
	1
	3



	A3
	6
	0.2
	6
	8.2
	6
	6
	70
	3
	750
	860
	3
	3



	A8
	6
	0.3
	6
	3.1
	6
	6
	78
	3
	800
	970
	3
	3



	A9
	8
	0.1
	8
	3.3
	8
	8
	13
	4
	1200
	1100
	4
	3



	A13
	2
	0.8
	2
	34.1
	2
	4
	700
	2
	400
	260
	1
	3



	A14
	6
	0.2
	6
	6.3
	6
	4
	86
	3
	660
	800
	3
	3



	A16
	6
	0.1
	6
	7.2
	6
	6
	90
	3
	700
	900
	3
	3



	A20
	6
	0.2
	6
	8.1
	4
	4
	86
	3
	680
	850
	3
	3



	A22
	2
	0.7
	2
	34.5
	2
	4
	750
	1
	450
	280
	1
	3



	A25
	6
	0.2
	6
	5.7
	6
	6
	80
	3
	860
	900
	3
	3
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Table 3. Each factor of the combination empowerment value.






Table 3. Each factor of the combination empowerment value.





	Impact Factor
	Combination Weight Coefficient





	X1
	0.057



	X2
	0.259



	X3
	0.059



	X4
	0.049



	X5
	0.062



	X6
	0.049



	X7
	0.086



	X8
	0.106



	X9
	0.017



	X10
	0.256



	Y1
	0.048



	Y2
	0.134



	Y3
	0.064



	Y4
	0.155



	Y5
	0.063



	Y6
	0.058



	Y7
	0.070



	Y8
	0.071



	Y9
	0.034



	Y10
	0.052



	Y11
	0.045



	Y12
	0.206
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Table 4. Suitability evaluation grades of port wharf engineering construction.
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	Evaluation Unit
	Comprehensive Score F
	Order of Suitability Evaluation
	Actual Grade





	A1
	0.113
	IV
	IV



	A3
	0.121
	IV
	IV



	A8
	0.273
	III
	III



	A9
	0.457
	II
	II



	A13
	0.428
	II
	II



	A14
	0.611
	I
	I



	A16
	0.334
	III
	III



	A20
	0.291
	III
	III



	A22
	0.273
	III
	III



	A25
	0.753
	I
	I



	A27
	0.476
	II
	II



	A28
	0.490
	II
	II



	A31
	0.540
	II
	II



	A32
	0.143
	IV
	IV



	A34
	0.284
	III
	III



	A36
	0.346
	III
	III



	A40
	0.419
	II
	II



	A43
	0.524
	II
	II



	A44
	0.653
	I
	I



	A48
	0.878
	I
	I
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Table 5. Suitability evaluation grades of pollution-prone industrial and power plant engineering construction.
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	Evaluation Unit
	Comprehensive Score F
	Order of Suitability Evaluation
	Actual Grade





	B1
	0.123
	IV
	IV



	B3
	0.433
	II
	II



	B8
	0.587
	II
	II



	B9
	0.649
	I
	I



	B13
	0.046
	IV
	IV



	B14
	0.484
	II
	II



	B16
	0.467
	II
	II



	B20
	0.362
	II
	II



	B22
	0.079
	IV
	IV



	B25
	0.488
	II
	II



	B27
	0.210
	III
	III



	B28
	0.438
	II
	II



	B31
	0.468
	II
	II



	B32
	0.683
	I
	I



	B34
	0.457
	II
	II



	B36
	0.565
	II
	II



	B40
	0.473
	II
	II



	B43
	0.154
	IV
	IV



	B44
	0.431
	II
	II



	B48
	0.631
	I
	I
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Table 6. Suitability neural network evaluation results of port wharf engineering construction.
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	Evaluation Unit
	Suitability Level
	Evaluation Unit
	Suitability Level
	Evaluation Unit
	Suitability Level
	Evaluation Unit
	Suitability Level





	A1
	IV
	A14
	I
	A27
	II
	A40
	II



	A2
	IV
	A15
	II
	A28
	II
	A41
	II



	A3
	IV
	A16
	III
	A29
	IV
	A42
	II



	A4
	IV
	A17
	II
	A30
	III
	A43
	II



	A5
	IV
	A18
	II
	A31
	II
	A44
	I



	A6
	IV
	A19
	II
	A32
	IV
	A45
	II



	A7
	IV
	A20
	III
	A33
	III
	A46
	III



	A8
	III
	A21
	III
	A34
	III
	A47
	I



	A9
	II
	A22
	III
	A35
	III
	A48
	I



	A10
	IV
	A23
	I
	A36
	III
	A49
	II



	A11
	IV
	A24
	I
	A37
	II
	A50
	II



	A12
	II
	A25
	I
	A38
	III
	A51
	III



	A13
	II
	A26
	II
	A39
	II
	A52
	III
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Table 7. Suitability neural network evaluation results of pollution-prone industrial and power plant engineering construction.
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	Evaluation Unit
	Suitability Level
	Evaluation Unit
	Suitability Level
	Evaluation Unit
	Suitability Level
	Evaluation Unit
	Suitability Level





	B1
	IV
	B14
	II
	B27
	III
	B40
	II



	B2
	IV
	B15
	II
	B28
	II
	B41
	IV



	B3
	II
	B16
	II
	B29
	II
	B42
	I



	B4
	IV
	B17
	II
	B30
	II
	B43
	IV



	B5
	II
	B18
	I
	B31
	II
	B44
	II



	B6
	IV
	B19
	II
	B32
	I
	B45
	I



	B7
	II
	B20
	II
	B33
	II
	B46
	II



	B8
	II
	B21
	II
	B34
	II
	B47
	IV



	B9
	I
	B22
	IV
	B35
	IV
	B48
	I



	B10
	IV
	B23
	IV
	B36
	II
	B49
	IV



	B11
	IV
	B24
	II
	B37
	I
	B50
	I



	B12
	IV
	B25
	II
	B38
	IV
	B51
	IV



	B13
	IV
	B26
	II
	B39
	II
	B52
	II
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Table 8. Comparison of the AHP and RS-AHP-NNs evaluation results.
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	Evaluation Unit
	Grade of AHP Evaluation
	Grade of RS-AHP-NNs Evaluation
	Actual Grade





	A1
	IV
	IV
	IV



	A3
	III
	IV
	IV



	A8
	III
	III
	III



	A9
	III
	II
	II



	A13
	III
	II
	II



	A14
	III
	I
	I



	A16
	III
	III
	III



	A20
	III
	III
	III



	A22
	III
	III
	III



	A25
	III
	I
	I
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Table 9. Suitability of the coastline length and its percentage of port wharf.
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	Suitability Level
	Good (I)
	Preferably (II)
	Poor

(III)
	Bad

(IV)





	Length (km)
	24.5
	97.9
	70.4
	67.7



	Percentage
	9.4%
	37.6%
	27%
	26%
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Table 10. Suitability of the coastline length and its percentage of pollution-prone industrial and power plant engineering construction.






Table 10. Suitability of the coastline length and its percentage of pollution-prone industrial and power plant engineering construction.





	Suitability Level
	Good

(I)
	Preferably (II)
	Poor

(III)
	Bad

(IV)





	Area (km2)
	59.7
	130.7
	13.5
	164.7



	Percentage
	16.2%
	35.5%
	3.7%
	44.6%
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