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Abstract: This article first studies the stability conditions of a Chua system depending on six parame-
ters. After, using the averaging method, as well as the methods of the Grébner basis and real solution
classification, we provide sufficient conditions for the existence of three limit cycles bifurcating from
a zero-Hopf equilibrium of the Chua system. As we know, this last phenomena is first found. Some
examples are presented to verify the established results.

Keywords: averaging method; limit cycle; symbolic computation; zero-Hopf bifurcation

1. Introduction and Main Results

The Chua system is a simple electronic circuit that exhibits classic chaotic behavior.
It was presented in 1986 by Chua, Komuro and Matsumoto [1] and exhibits a rich range
of dynamical behavior. Since then, the research on dynamical behaviors of Chua’s system
and its generalizations has attracted the extensive interest of scholars; see [2—4] for instance.
In particular, the authors in [5] found a coexistence limit cycle and symmetric hidden
attractors in the Chua system. It was shown in [6] that a modified Chua system can display
complex dynamics behaviors of symmetric and asymmetric coexisting attractors. In this
paper, we study the following Chua system described by the differential equations

X =a(z — bx — apx® — aqx°),

y=-z )

Z=—B1x+y+ Boz,

where a, b, a1, ap, B1 and B, are real parameters.

A few dynamics results for the Chua system are summarized as follows. The existence
of local and global analytic first integrals in the Chua system was investigated in [7]. In [8],
the authors obtained an analytical expression of the slow manifold equation of the Chua
system by using techniques of differential geometry. The dynamics at infinity of system (1)
was studied in [9] for the particular case where 1 and 3, are both one. Some aspects about
the Hopf bifurcation can be found in [10,11].

The goal of this paper is to study how many limit cycles can bifurcate from a zero-
Hopf equilibrium of the Chua system (1) by using the second averaging method. We
recall that a zero-Hopf equilibrium of a 3D differential system is an isolated equilibrium
point pg such that the Jacobian matrix of the system at pp has a zero and a pair of purely
imaginary eigenvalues. There are many studies of zero-Hopf bifurcations in 3D differential
systems; see [12-17] and the references therein. We remark that some results on the zero-
Hopf bifurcation of system (1) were already obtained by Euzébio and Llibre in [18]. Our
objective here is to further study analytically such a bifurcation using the averaging method
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together with the local stability of the system. Unlike the usual analysis of zero-Hopf
bifurcation, by means of symbolic computation, we would like to compute a partition of
the parametric space of the involved parameters such that, inside every open cell of the
partition, the system can have the maximum number of limit cycles that bifurcate from a
zero-Hopf equilibrium.

On the number of equilibria of the Chua system, we recall from [18] that system (1)
can have three equilibria, including the origin and the two equilibria

_oczzt\/oc%—éhxlb IXZ,Bl :t‘Bly/ﬂé%—Zthb 0 (2)

20(1 ! 2061 2&1

p+ =

if a3 — 4a1b > 0 and &y # 0, and has only two equilibria, including the origin and the
equilibrium
_(_x2 _mp
P= ( 20(1, 20(1 ,O>

when u(% — 41 = 0 and ajap # 0. Otherwise, the origin is the unique equilibrium of
the system.

Motivated by the above results, our first goal of this paper is to study conditions on the
parameters under which the Chua system (1) has a prescribed number of stable equilibrium
points. Our result on this question is the following, and its proof can be found in Section 3.

Proposition 1. The Chua system (1) cannot have three stable equilibrium points; it has two stable
equilibrium points if the following condition

Ci=[T1<0T,<0,0<T; Ty <0]ACo 3)
holds; and it has one stable equilibrium point if one of the following three conditions

C = [Tl <0, T3 SO]/\CQ,
C3=[T1 <0,0< T30 < Ty ACy, 4)
C4:[0<T1, T2§0,0§T3,T4<0]ACO

holds. Here, Cy = [B2 = 1,ab—1 > 0,a1 > 0], and

Ty = a®b* — a®bBy —ab +aPy +1,
Ty = 4a*b?a? + 2a%ba3 By — 5a%baia3 — a’a a3 py + a*a + 2aba?
+ aa3py — anya3 + a2,
T3 = 16a°b%a5 + 8a°b%a3 By — 24a°b* a3 — 6a°badadpy + 9a’bayas + a’aia3pBy
— a%a$ 4 16a%b%a3 + 8a®ba3 By — 12a%bal a3 — 2a%a3a3B1 + 2a°a1 a5 + 8abas
+ 20031 — 2aa3a3 + 243,
Ty = 16a*b*a? +16a*b°a3 By — 8a*b>aiad + 4a*b?a2 B2 — 8a*b?>wa3 By + a*b?a3
— a*bajad i + a*bai By + 16a°03a2 + 1620702 By — 8a°b>ay a3 + 4abal 3
— 8a%baya5 By + a’bas — aPuqa3 B3 + aladBy + 12a%b%a3 + 8abat By — 7a’baias

+ a?a2B? — 2a%a 03B + a*a3 + daba? 4 2a02 By — anya3 + 3.

®)

Remark 1. We remark that the condition Cy is used to facilitate the computation of the resulting
semi-algebraic system (see Section 3) since the algebraic analysis usually involves heavy computation;
see [19,20].
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Example 1. Let
(a,b,01,02,B1,B2) = (1,2,1,4,4,1) € Cs.
Then the Chua system (1) becomes

J'c:z—Zx—4x2—x3,

y:_zl (6)
z=—4x+y+z

Its three equilibria are: p = (0,0,0), p+ = (=2 £ v/2,4(—2 4 +/2),0). System (6) has only
one stable equilibrium point p; see Figure 1 (left).

Example 2. Let

1.3
(al b/ ‘Xl/ 2, ﬁll ,82) - <4/ EI l/ E/ 1/ 1) S Cl
Then the Chua system (1) becomes

x:4z—2x—6x2—4x3,
]]:_Z/ (7)
z=—-x+y+z

It has three equilibria: p = (0,0,0), p = (—1,—1,0) and p_ = (=1, —1,0). Two of them
(p and p_) are stable; see Figure 1 (right).

-10.05

0.0
0.01 0.00 -0.01

X

0.0

Figure 1. Numerical simulations of local asymptotically stability of the Chua system. (letf) Stability
of system (6). (right) Stability of system (7).

It is shown by Euzébio and Llibre in [18] that there are three 4-parameter families of
Chua systems exhibiting a zero-Hopf equilibrium (see Proposition 1 in [18]). In particular,
the origin is a zero-Hopf equilibrium when b = B, = 0 and a1 + 1 = w? > 0. In this case,
the linear part of the Chua system at the origin has the eigenvalues 0 and +iw with w # 0.
Euzébio and Llibre proved that for the first order averaging, 1 limit cycle can bifurcate
from the origin and up to the second order averaging, 1, 2 or 3 limit cycles can bifurcate
simultaneously from the other two families. The goal of this paper is to obtain further
results on the bifurcation limit cycles from the origin of the Chua system (1). The main
techniques are based on the second order averaging method and some algebraic methods,
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such as the Grobner basis [21] and real root classifications [22]. The techniques used here for
studying the zero-Hopf bifurcation can be applied to other high dimensional polynomial
differential systems.

We consider the vector (a,b, a1, 2, B1, B2) given by

2 2
a=yy+enjg+enry, b=-¢ePig+ePoo,
2 2
x]=y1tewy1+ea1, ar=7Yrt+exrn+ ey, 8)
w?—1
B1

B +eB11+eBa1, Po=efia+Pan,

where ¢ # 0 is a sufficiently small parameter, the constants 7;, a;; and §;; are all real
parameters. The main result on the number of limit cycles of the Chua system is stated
as follows.

Theorem 2. The following statements are for € # 0 that is sufficiently small and the vector given

by (8).

(i) System (1) has, up to the first order averaging, at most 1 limit cycle bifurcates from the origin,
and this number can be reached if one of the following two conditions holds:

C5=[R1<0,R2<0}/\C_, C6=[0<R1,0<R2]/\C_, 9)

where

Ry = (w* —1)B1070 + w?B12,
Ry = (w* —1)B1,070 — w?B12,
C=[w¢{-1,01},7 #0,72 #0].

(ii) System (1) has, up to the second order averaging, at most 3 limit cycles that bifurcate from the
origin, and this number can be reached if the following condition holds:

C7=[R1<0, R, <0, R3§O,0<R4]/\C*, (10)

where C* = [w = Boog = a1 = 2, 79 > 0], and the explicit expressions of R; fori = 1,...,4
are as follows:

Ry =222 370,
Ry =283 ,71 + 12 B2pv071 + 18§11 — 6 B2270 — 975,
Rs =16 53,77 — 36 327071 — 198 Bo2 7571 + 1629577 +24 B3 57071 +264 227377
+817971 — 88 227871 — 14479m + 3275,
Ry =128 83 )77 — 288 B3 ,7077 + 216 B227375 — 5479771 + 192 B3 27075 — 288 B84
4 Baom B22v071 B227071 YoM B227071 B227071
= 2977377 + 96 P22 75m + 2881571 — 6475
Theorem 2 shows that the Chua system (1) can have exactly 3 limit cycles bifurcating

from the origin if the condition in (10) holds. In the following, we provide a concrete
example of the Chua system (1) to verify this established result.

Corollary 3. Consider the special family of the Chua system
% =2z — 4e?x — 4ex? + 4x3,
y=-z (11)

s= Sxqy—é
= 2 y ,
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where £ # 0 is a sufficiently small parameter. Then system (11), up to the second order averaging,
has exactly 3 limit cycles (x;(t,€),y;(t, €),zi(t, €)) bifurcating from the origin, namely,

xi(t ) = e(;Wi +R; sin(Zt)) +0(&),

yi(t/ €) = E(iwi — %Rl’ sin(2t)> + O(EB),
zi(t,e) = eR;cos(2t) + O(e%), i=1,2,3,

where (R;, W;) are solutions of a semi-algebraic system; see Section 5. Moreover, two of the three
limit cycles are semistable, and the other one is unstable.

The rest of this paper is organized as follows. In Section 2, we recall the second order
averaging method that we shall use for proving the main results. Section 3 is devoted to
prove Proposition 1. The proofs of Theorem 2 and Corollary 3 are given in Sections 4 and 5,
respectively. The paper is concluded with a few remarks.

2. Preliminary Results
The averaging method for studying periodic orbits of nonlinear differential systems
up to the second order in € was developed in [23]. Recently, this theory was extended
to an arbitrary order in ¢ for arbitrary dimensional differential systems, see [24]. More
discussions on the averaging method, including some applications, can be found in [25,26].
We deal with differential systems in the form

x = eF; (t,x) + 2F5(t,x) + €R(t,x, ), (12)

where F|,F, : RxD — R", R : Rx D x (—sf, sf) — R" are continuous functions, T-
periodic in the variable ¢, and D is a bounded open subset of R”.
Define the averaged functions fi, f, : D — R" as

fi(z) = %/OT Fi(s,z)ds,

0 . (13)
flz) = = /O [D,Fi(s,2) - /0 Fi(t, 2)dt + Fa (s, z))ds.

Theorem 4. For the differential system (12), we assume the following conditions hold.

(i) F(t-) e Cl(D)for allt € R, Fi, F,, R, DxF; are locally Lipschitz in the variable x, and R
is differentiable with respect to e.

(i) Assume that f; = 0fori=1,2,...,j—land f; # O with j € {1,2} (here fo = 0). Suppose
that for some z* € D with f;(z*) = 0, there exists a bounded open set V C D of z* such that
fi(z) #0forallz € V\ {z*}, and that dg(f;(z),V,0) # 0, where dg(fi(z),V,0) # 0is
the Brouwer degree of f; at 0 in the set V.

Then, for |e| > 0 that is sufficiently small, there exists a T-periodic solution ¢(-, €) of system

(12) such that ¢(0,€) — z* when ¢ — 0.

The proof of Theorem 4 can be found in [26]. Remark that the Brouwer degree of f] at
0 is given by
ds(fi(2),v,0) = ¥ sign(J;(2)),
ZGZf]_
where Zy, = {z € V : fj(z) = 0}. In this case, J,(z") # 0 implies dp(fj(z),V,0) # 0. For
more properties of the Brouwer degree, we refer to [27].

Remark that one can control the stability of the limit cycles associated to the simple
zero z* by using the eigenvalues of the Jacobian of f; evaluated at z*. It follows from
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Lemma 1 of [24] that the expression of the limit cycle associated to the zero z* of f,(z)
when f;(z) = 0 can be described by

t
x(t 7% ¢) = 2* +£/ Fi(s,z*)ds + O(e2). (14)
0

3. Stability Conditions of the Chua System

The goal of this section is to prove Proposition 1. Let (X, 7, Z) be the equilibrium point
of the Chua system (1). Namely, we have the algebraic system

Y={z-b% - - =0, £2=0, —PBiX+7+prz=0}. (15)

The Jacobian matrix of the Chua system evaluated at (%, 7,
a(—3w1 %> — 2% —b) 0 a

0 O _l ’
—P1 1 B

and the characteristic polynomial of this matrix can be written as

Z) is given by

P(A) = coA® 4 1A% + oA +¢3,
where

co=1, ¢ =3aa1%*+ 2a0,% + ab — B2,

) = —Saalﬂzfz —2anyfox —abBy +apfy+1, c3= 3any X2 + 2a0,% + ab.

By Routh—-Hurwitz’s stability criterion (e.g., [28]), (%, 7, Z) is a stable equilibrium point
if the following algebraic system is satisfied

Di = ¢1 = 3anq X2 + 2an% + ab — B2 >0,

1 c
D, = det( cl c3 ) = —91120%,829?4 — 12a20c11x2ﬁ23?3 — 6a2ba1ﬁzf2 — 4a2a§ﬁ2fz
0 2

— 4a%bao Bo® + 302wy B1 7> + 3any B37% — a*b? By + 2a%an 1% + a0y 3%

(16)
+ a?bBy + abB5 — ap1py — B2 > 0,

cit ¢z 0
Dy=det| ¢ & 0 | = (3a0¢13?2 + 2a0,% + ab) Dy > 0.
0 1 C3
Combining (15) and (16), we see that the Chua system has a prescribed number (say k)
of stable equilibrium points if the following semi-algebraic system

7
Dy >0, D,>0, Dg/D2>O, (1 )

{ Z-bt P - =0, 2=0, —B1¥+7+pz=0,
has k distinct real solutions with respective to the variables ¥, i, z. The above semi-algebraic
system may be solved by the method of discriminant varieties of Lazard and Rouillier [29]
(implemented as a Maple package by Moroz and Rouillier), or the method of Yang and
Xia [22] for real solution classification (implemented as a Maple package DISCOVERER
by Xia [30]; see also the recent improvements in [31] as well as the Maple package Regu-
larChains[SemiAlgebraicSetTools]). However, in the presence of several parameters, the
Yang—Xia method may be more efficient than that of Lazard-Rouillier, see [19].

Note that system (17) contains six free parameters a, b, a1, a2, $1, B2, and the polyno-
mial expressions involved in the analysis are huge, which makes the computation very
difficult. In order to obtain simple sufficient conditions for system (17) to have a pre-
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scribed number of stable equilibrium points, the computation is done under the constraint
Co = [B2 = 1,ab—1 > 0,a; > 0]. By using DISCOVERER or RegularChains, we obtain
that system (17) has exactly two distinct real solutions with respect to the variables X, i/, Z
if the condition C; in (4) holds, and it has only one real solution if one of the conditions
in (5) holds; system (17) cannot have three distinct real solutions. This ends the proof of
Proposition 1.

4. Bifurcation of Limit Cycles of the Chua System

This section is devoted to the proof of Theorem 2. Consider the vector defined by (8),
then the Chua system becomes

X = (’YO +ex10+ 820(2,0) (Z — (€ﬁ1,0 + 82,32/0)36

— (72 +eagp+ £2a2,2)x2 — (71 +eapq + €2a2/1)x3),
. (18)
y=-z
) 2 w?—1
z=y+ (1o +ePa2)z — (

Yo + erq0 + €2

+eB1g + 52/32,1> x.

We need to write the linear part of system (18) at the origin in its real Jordan nor-
mal form

0 —w O
w 0 0|, (19)
0O 0 O

when ¢ = 0. For doing that, we perform the linear change of variables (x,y,z) — (1, v, w)
given by

(! Yo

X=—w+—v,
w w
2T (20)
y=uw w? W’
zZ=1U.

In these new variables (1, v, w), system (18) becomes a new system which can be
written as (1, 0, w). By computing the third order Taylor expansion of expressions in this
new system, with respect to ¢, about the point ¢ = 0, we obtain

i =—wv+eF 1(u,0,w)+ €2F2,1 (u,v,w),
0 = wu + Fop(u,0,w) + eFy o (u,0,w) + e Fap(u,v,w), (21)

W = Fos(u,v,w) + eFi3(u,0,w) + Fa3(u,0,w),

where



Symmetry 2022, 14, 1036 8 of 16

1
F,= 7 (ﬁ1,2w27ou + (wParp — wPr17h — war )+ (W aio — Br17g — “1,0)w),
Fop = w?Bopvgu + (—w30<%,o + wlar070 — w Pa1 7y + w 0‘%,0 — WK 0Y0)0

2.2 2 3 2
+ (—w N1+ wa20v0 — B217y + K10 — X2070)W,

1
Foz = = (B0 - @) (wo+w) (rom(wo + w) + w2)),
1— w?
Fp= N ( — Y8B1ow’v + (—Yay181000° — Yoa110%)0% + (—dv1a10 — Yoar1)w?

+ (=8 r201,00° — Va1 pw0?)w? + (—d 1201 000t — Va1 pw)0? + (=2 Y3 v2m1 o
-2 ’ygtxl,zw3)wv + (-3 7871a1,0w2 -3 730&1,1w2)w02 + (-3 ’ygfylzxmw

4 2 6 2 4
— 3 7g&1,1w) WV + uaq gw® — yywph ow ),

1 — w?
Bp=— 7 ((—[31,0“1,060570 — 15B20w” )0 + (=3 7301,101,00w — 373 Y12,00
— 375021w)w* v + (=3 310,00 — 373 7102,007 — 3 Y2 1w W + (—2yga1 oy pw?

2 3 3 3 3 3.3 3 .4 3y.3
— 295 72002,0w” — 2 Ygt22w” )WV + (—Yp&1,181,0W° — Yo Y1X2,0W” — Yoo, 1W" )V

2 2 2 2 3 2\, 2 6 4 2 4
+ (=701 201, 0W" — YgY2k2,0W" — Vo2 owW )W 4 Uz pw® + (—P1o&1,0w Y0 — YoP2,0w” )W

2 4 2 4 .3 4.2 3 3 4 3
+ (—yga1 2000 0w™ — YgY202,0W" — Yolo2w™ )07 + (—YoR11%1,0 — Vo Y1%2,0 — VoX2,1)W )

1
Fos = —— (W (wo + ) (rom (o +w) + wP2)),
1
Fi3= wTyo ( — 7(2)‘81,0(050 + (-2 'y%'yzrxl/ow?’ -2 'ygoq/zw:%)wv + (-3 ’yS’ylocLOoﬂ
—3ga110?)wo? + (=33 v100,00 — 3Yda110) W0 + (=3 y1810 — Yoa11)w
3

3
2 2 3 24,2 3 3 4 3
+ (—7072061,0(0 — Yo&k1,2W )w + (—7071061,0(0 — Yo&k1,1W )U

2 4 3 4y 2 6 2 4
+ (=707201,00" — Yor1,2w" ) V" + a1 0w’ U — Y5P1,0w w)

1
B3 = 7 ((—[31,0061,060570 — 1§B20w )0 + (=3 7301,101,00 — 3731182,
= 37502 w)w? v — (375m1,101,0w” + 3 V31182, 0w + 35z, 1w ) WO

2 3 2 3 3 3 2 4 2 4

+ (=2 75a1,001,0w” — 2757 202,0W” — 2 Ypk2 2w )W + (—Ypa1,281,0W" — V) Y2&2,0W
3 4 2 6 4 2 4 3 3

— Yok2ow")v” + ap w4 (—B1,001,0w0 Y0 — YoP2,0w” )W + (—Yp&1,1%1,0 — V5 Y142,0
4 3 2 2 2 2 .3 2\ 2 3 3

— Yott2,1)Ww” + (—Ygr1 281, 0w — YgY2k2,0W” — Vo2 oW )W 4 (—YpK1,100 0w

- 7871042,0603 - ’Yélxz,lwg)UB')-
By the rescaling of variables (1, v, w) = (eU,eV,eW), system (21) becomes

U= —wV +elLy (U, V,W)+eLy (U, V,W),
V =wU +eLo(U,V,W) 4Ly (U, V,W) 4+ O(e), (22)
W = eLi3(U,V,W) +Ly3(U, V,W) + O(e),

where
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1
L1y = 70 <ﬁ1,2w2’70u + (WParp — w Pia7§ — warg)V + (wParg — 117G — “1,O)W)/
1
Ly = wTyz (,32,26‘727511 + (_w30‘%o + wglxz,O'YO —w ,32,1'7(3) +w “%,o —w WZ,O’YO)V
0
+ (—waf ) + waz070 — P2a vy + 8% — lxz,o’Yo)W),
w? —1 4 ) 3 3, 22 2 2 3 3, W2
Lip = o0 (Dél,ow U = 75B10w”™V — Y9120V = 75B1,00" W — 295720 VIW — 7572 W ),
2
w—1
Lyp = 70 ((—Y%’Yzﬂél,ow4 — 1120t V2 + (=g 720100 — Vyrrpw?) W2 — ygm1w0’ V2

— 'yé'yl W3 + (-2 'y(z)')qlelowf’ -2 'ygoq,zaﬁ)WV -3 'yg'yleVzW -3 'yé'yleWZ

+ a2,0w®U + (—Broa10wtv0 — YEB20w* )W + (—B1oa1,0w0°70 — 7%,52,0(05)‘/),

1
Lis= o (l’él,ow4u — 15B1Low’V = 1372w V2 — 15B10w* W — 293 12w VW — 7872W2>,

1
Wby

((—2 Vor201,00° — 29301 20> )WV = Bgm1w0? VW — By w VIW?

+ (=75 m2m,0w* — V3arpw?) V2 — 1w V3 + (—ygramr 0w — vgrr pw?) W2
— YemW? + a2,0wU + (—B1oa1 0w 0 — Y5Ba0w )W + (—B10m1,0w0° Y0 — ’Y(Z)ﬁz,ow5)V)-
Writing the differential system (22) in cylindrical coordinates (R,0, W) by U = Rcos 6,
V = Rsinf and W = W, we have
R =eMy1(6,R, W)+ My (6,R, W),
0 =cw+eMy(0,R,W)+eMpy(6,R,W), (23)
W = eMy3(6, R, W) + € My3(6,R, W),

where

1
My, = o ((—fyg'yz sin Bw? + 93 sin 072) W2 + (73 sin 6y, cos? ew* — 3 sin By, cos? Hw?
0
— 'ygfyz sin fw* + 7872 sin Qa)z)R2 + (—'y% sin 9ﬁ1l0w4 + cos Goqroa)S — fy% cos 9ﬁ1,1w3
+ 75 5in 881 pw? — cos By g )W + (29372 cos? 8w® — 2937 cos® Bw — 2 y3vr0®
+2 'y(?j'yzw)WR + (—7%/31,0w5 — 2 cos Baq g sin 0w + cos? Gﬁl,wa'yO + 7%/31,0 cos? 0w’
— 75,81,0 cos? w® + 78,31,0003 +2w® cos By 0sin 6 — ’y% cos 0 sin 9ﬁ1,1w4)R) ,

_ 1
~ Rwyp

M, ((—2 Y3 cos 0 sin By, 4 293 cos 8 sin B92w) RW 4 (—73 cos 872w

+ 73 €08 02) W2 + (—v3 cos 0B gw* — sin By gw® + 73 sin 0B1 10> + 73 cos 8B pw?
+ sin B gw® )W + (73 cos® 072wt — 43 cos® 072w? — 93 cos Byaw? + 43 cos B7,w?) R
+ (—'y% cos 6 sin 9ﬁ1,0w5 —2 cos? Hocllow‘L + 'y% cos 0 sin Gﬁl,ow?’ — sinf cos 9ﬁ1,2w5'yo

- 7%,81,1 cos? fw* + txllow4 + 2 w® cos? By o — w6zx1,0 + 'y%ﬁl,lw4)R> ,

Mz =

iy ( -2 'yg sin 0y,wRW — 7872W2 — ’)/8 sin? 672w2R2 — ')/%‘[Sllowzw
0

+ (=73 sin 81 gw? + cos 9&1,0w4)R) ,
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1
My = ——— (('yg sin By w?* — 73 sin 091 ) W2 + (—73 sin 8y,a1 g cos? Bw®
w’y§

- 73 sin 0oy o cos? 0w’ + 78 sin 87,1 9 cos? w* + 73 sin Qag o cos? fw*

+ Y3201 9 sin Bw® + ygay 2 sin 0w’ — 93 sin Oyaaq gw — ygay 2 sinbw?)R?

+ ('yg'yl cos* Bw® — 7871 cos* 0w® — 2 76’71 cos? 0w’ 42 7871 cos? 0w’ + 'yg'ylw5
— 13710 R + (=2 9372001 9 c08? Bw® — 2 gy 5 cos? w® + 2 y3yamy o cos? Buw®
+2 7(4)&1,2 cos? 0w’ + 2 7872a1,0w5 +2 'ygocl/wa -2 78720(1,0w3 -2 'yéal/zaﬁ)WR
+ (=39371 cos? 8w + 39371 cos? w + 3 y3y1w’ — 3 ygyiw) WAR

+ (=393 sin By cos” Bw? + 37 sin B cos? Bw? + 331 sin

-3 73 sin B'ylwz)WRZ + (73 sin 072a1,0w4 + 73041,2 sinfw* — 78 sin G'yzal,owz

— g sin By w?) W2 + (= sin 081 gy gw* 93 + 73 cos 0By 1w — 3 sin BB pw*

+ 73 sin Gﬁz,owé + cos 9“%,0“’7 + cos szzlowS Yo + sin Q‘BLOzxLOw@yg

— cos 0af yw” — cos Bz gw’ 10) W + (73 B2,0 cos” 0w — By o1 0w’ Y

+ 2 cos 0 sin 9042,0w6'yo — 'yg [32,0(05 —2wBcosfsin B 0yo — cos 8 sin Gaiowé

— B1o%1,0 cos? 9w7'y% + B1o%1,0 cos? 6w57% + w® cos B sin 604%/0 + ')/8 cos 0 sin 652,1w6
2 7.2 3 20 7 7.2 3 7
— cos” 0B pw’ v — YoB2,0 cos” Ow’ 4 By a1 ow’ vg + YoB2ow )R),

1
Myp=——— ((’yg sin @ cos® Oy w° — 78 sin f cos® By w> — 7(5) sin @ cos fy1w’
“ Rw7j

+ 935 i 0 cos 813 R3 4 (—73 cos By1w? + 75 cos 81 )W + (=3 cos Oy2a1 g
— 73 cos 00(1,2w4 + 78 cos 9')/20c1,0w2 + 'yé cos Gallzwz)Wz + ('yg cos® 972a1,0w6

+ ’yé cos® 9”‘1,2‘06 — '78 cos® 972a1,0w4 - 73 cos® 9a1l2w4 — 'y(?)’ cos 972a1,0w6

— 'yé cos 0&1,2w6 + 78 cos 9')/20c1,0w4 + 'yé cos 9&1,2w4)R2 +(3 73 cos® Oy w?

— 393 cos® By w? — 35 cos By w? + 39§ cos By w? ) WR? + (—3 3 sin 6 cos 6y w®
+3 7(5) cos 0 sin 971w)RW2 + (=2 73 cos 6 sin G'yzoqlowS -2 ')/3 cos 6 sin 90{1,2(05

+ 293 cos B sin 9')/21x1,0w3 + 294 cos B sin erllzw?’)RW + (—sin sziow‘r’ + cos 9ﬁ1/0m1,0w4'y%

— COS 9‘3110061/0606’)/(2] -+ sin 90(2,0(4)5’)/0 — ’)/8 Ccos 9[32[0&)6 -+ ’)/8 sin 9[32/1605 + sin 90(1/02607

3 4 _ o 7 8 8,2 3 6_ .2 6
+ 7 cos 0B2 ow” — sin Oas gw’ 7o) W + (—w az0v0 + wai g + YpPriw” — af gw
- wszxie cos® 0 + "‘%,0 cos? 0w’ + ap,0wbg + cos Bsin 8B gy w73

— cos fsin 951,Oa1,0w7'y% + 73 cos 8sin BB, 0w> — 2 cos? Buppw’yg — 73 cos B sin BB pw”
+ 2 w® cos? Bup 0vo — 73 B2,1 cos? Bw® — sin 6 cos 6ﬁ2r2w77%)R) ,

2

Mys = (fyé'yl W3+ 'yé sin® 971w3R3 + (7372a1,0w2 + 'ygal,zwz)w

- wbo
+ (7§ sin? 07201 g + 7 sin? Oag pw*)R? + (B0 0w v0 + 1§ B20w )W
+ 39§ sin By wRW? + 39§ sin? 01 w? R*W + (293 sin 87241 g + 2 93 sin B ow®) WR

+ (Sil‘l 9‘31,00(1,0(4]570 — COS 90(2,0606 + ’7(2) sin Qﬁzlows)R) .
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One can easily verify that in some neighborhood of (R, W) = (0,0) with R > 0, we
have 6 # 0 since w # 0. Taking 6 as the new independent variable, in the neighborhood of
(R,W) = (0,0) with R > 0, system (22) becomes

dR My,

M1 — MM
— = 4202l 5 L2 L o),
M M>3 — MM
iw _ Mz | awMas 12M15 | o),
do w w?

where M; ; are expressions given in (23). It is immediate to check that system (24) satisfies

all the assumptions of Theorem 4, where we identify t = 0, T = 27, x = (R, W)T. So we
apply it to system (24).
Computing the integral in (13), we obtain the first order averaged functions:

R - -
fraRW) = =5 a(R W), fia(RW) = =% o (R, W), 25)
where

fir(RW) = 2w 7572 — 29§712)W + w*Bro70 — w*B12 — w?B1o70,
Ffia(RW) = @912 R? +2w?B1oW + 27072 W2

It obvious that system (22) can have at most one real solution with R > 0. Hence,
system (18) can have at most one limit cycle bifurcate from the origin. Moreover, the
determinant of the Jacobian of (f11(R, W), f12(R,W)) is

% aafﬁ Yo o=
Dy (R, W) = det BTAI} # :—W'Dl(&w),

It follows from the averaging theorem that system (18) can have one limit cycle
bifurcate from the origin if the following semi-algebraic system

{ fii(RW) = fip(R,W) =0, 26)
R>0, Dy(RW)#0, w#0

has exactly one real solution with respective to the variables R, W.

Using DISCOVERER (or the package RegularChains[SemiAlgebraicSetTools] in Maple),
we obtain that system (24) has only one real solution if and only if the condition Cs or the
condition Cg holds (see (9)).

To consider the second order bifurcation of system (24), we must verify that the
fist order averaged function (f11(R, W), f12(R, W)) is identically zero. For this, we take
B1o = 0,72 =0, B12 = 0. Now update the normal form of averaging (24) by using the
conditions and compute the second order averaged functions, we have

f1(RW) =~ 8%1?2,1 (R,W),

Y0 £ 27)
f22(R,W) = *Taﬁfz,z(R, W),

where

For1(R,W) = 490B20w® — 4wbBra — 4 70Br0w* + (1293 110% — 1293 71) W2
+ (875100 — 87Fa10w*)W + (3311wt — 37311007,
for(R,W) = whar 2700 + 3w ¥311Wp + 2w BooW + 2 w?ay p 1o W? + 295711 W?,

with p = R2.
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To analyze the zeros of {f,1(R,W) = 0, f22(R, W) = 0}, we compute the Grobner
basis of the polynomial set { f,1(R, W), f22(R, W)} with respect to the lexicographic term
ordering determined by R > W. One finds that a Grobner basis is given by G = [31, 2],
where

g1 = 159373 (w? —1)W3 + 15 WZM,Z%S;% (w? = 1)W? 4wy (4 wzaiz'm +3 wzﬁmfm'yl
— 6w oy — 4 0‘%,270 —3B2,07071)W + 2 wba12(w?Baovo — w?B22 — Y0B20),
82 = 4w (W’ Br070 — @ Bap — 10B20) + 3w M (W = )p + 127571 (0 = W2
+ 8wy 75 (w* — )W,
with p = R2. So system (25) can have at most three real solutions with p > 0. As a result,
system (18) can have at most three limit cycles bifurcate from the origin. In the following,

we show that this number can be reached.
The determinant of the Jacobian of (f1(R, W), f22(R, W)) is

A1 A o -
Da(RW) =det| F8, 3l | = -7 - Da(R, W),
oR oW

where

D2 (R, W) = 870B39w' — 8w B 2B20 — 870200’ + (27 w577 — 27 whgi)e?

+ (32 wbay 2B2078 — 16 Wby 2B22v0 — 32 wlay 2B 0V2)W + (—16 wgzxiz'yg
+30w*B2,015m — 120 B227871 + 16 w'a 173 — 30w B207571)p
+ (96 whaq pY5y1 — 96 w?ar 2vgy1) WP + (32 wézx%’z’yg + 48 w®Br 07371
—24 w6/32,2'y(2)71 —32 w4a%2'yg — 48 w4/32,07871)W2 + (—54 w478'y%
+54 5 Wop + (7209377 = 7290591 W + (=36 wlarpvgm
+36wha1279m1)Wp,

with p = R2.

By Theorem 4, we know that system (18) can have three limit cycles bifurcate from the
origin if the following semi-algebraic system

{ £1(R,W) = fo2(R,W) =0, (28)
p>0, Dy(RRW)#0, w#0

has exactly three real solutions with respect to the variables R, W. In order to obtain simple
conditions for system (28) to have three real solutions, we restrict the parameter condition:
C* = [w = B2o = w12 = 2,79 > 0]. Using the Maple package RegularChains, we obtain
that system (28) under condition C* has exactly three real solutions if and only if the
condition Cy in (10) holds.

This completes the proof of Theorem 2.

5. Zero-Hopf Bifurcation in a Special Chua System

Since the proof of Corollary 3 is very similar to that of Theorem 2, we omit some steps
in order to avoid some long expressions.

The corresponding system (23) associated to system (11) now becomes
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R=¢ (%(cos(ze) —1)RW + %(3 sinf — sin(360) ) R*W + g(l — cos(20))RW?
+ % sin SW3 — ?Isin OW? + 2(8111(39) —3sin0)R? + %(Cos(49) + 3 —4cos(26))R?
- ; sin W + (cos(260) — 2)R),

f=2+¢ (2(2 sin(26) — 3sin(46))R? + Z(cos(39) —cosO)R + %(cos 6 — cos(36))RW (29)

2 cos OW3 _ 3cosW?2  3cos QW)

8R 4R 2R
1 2
W

+ zsin(ZQ)Wz - gsin(ZG)W —sin(26) +
W= 82( — 2sinORW + 2(1 — cos(20))R?W + % sin ORW? + jIw3 -
+ (cos(268) — 1)R? + %(— sin(36) 4 3sin )R> — W — 2sin9R).

Hence, we have

dR 2 3 9 . . 2 9 2
T8¢ [Z(COS(ZQ) 1)RW + E(3sm9 sin(36))R“W + R(l cos(26))RW

+ % sin W3 — % sin W2 + %(sin(?;f)) —3sinf)R? — Zsin oW + 13—6(—4 cos(26)

+ 3+ cos(48))R® + %(COS(ZG) — Z)R} +0(e), (30)

AW 53 ) . 3. RN SR )
0 ¢ [1(1—cos(29))R W—s1n9RW+1sm€RW +§W —1W

1 1 1
E(COS(ZQ) —1)R% - EW + E(f sin(36) + 3sin 0)R® — sin GR] +0(e%),

+

In order to find the limit cycles of system (11), we must study the real roots of the
second order averaged functions

R
Fo1(RW) = (9R2 +9X2 —12X; — 16),

0 (1)
fo2(RW) = 3 (6R2X5 + X3 — 4R? — 2X3 — 4Xs).
Moreover, the determinant of the Jacobian of (f,1(R, W), f22(R,W)) is
Dy(R,W) = — (162R" — 81R2X3 + 27X} + 108R2X5 — 723
128 (32)

— 300R? — 36X] +112X3 + 64).

Using the built in Maple command RealRootIsolate (with the option ‘abserr’= 1/10'%)
to the semi-algebraic system

6R2X3 + X3 —4R?> —2X3 —4X;3 =0, (33)

9R? 4+ 9X3 — 12X5 — 16 = 0,
R>0, Dy(R,W)#0,
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we obtain a list of three real solutions:

7,030,646,729 3,515,323, 365}

17,179,869, 184" 8,589,934,592 1"
~3,372,299,654,303  1,686,149,827,151 } }
4,398,046,511,104" 2,199,023,255,55211"

4,900, 014,037 19,600,056, 149

4,294,967,296" 17,179, 869, 184} ’

893,991, 659,197 28,607,733,094, 305} }
549,755,813,888" 17,592,186, 044,41611"
6,070,354,243 24,281,416,973
4,294,967,296" 17,179,869, 184} ’
39,191,089,085 78,382,178, 171} }
34,359,738,368 68,719,476,73611"

[Rl ~ 0.4092375008 € {

W, ~ —0.7667721671 € [

[Rz ~ 1.140873422 € [

W, ~ 1.626161355 € [

[R3 ~ 1.413364486 € [

W5 ~ 1.140610812 € |

This verifies that system (11) has exactly three limit cycles bifurcating from the origin.
Now we shall present the expressions of these three limit cycles. The limit cycles A; for
i =1,2,3 of system (30) associated to system (11) and corresponding to the zeros (R;, W;)
given by (33) can be written as {(R;(6,¢), W;(6,¢€)),6 € [0,27]}, where from (14) we have

_ (Ri(0,0)\ _ (R 2

A= <Wi(9,€)> = <Wi +0(), i=123. (34)
9f1  9fa

Moreover, the eigenvalues of the Jacobian matrix 83‘1;2 a",@’z at the points (R, Wy),
OR W

(Rz, W,), (R3, W3) are respectively about
(—0.553374408,0.971254073), (2.538019727, —0.418964814), (2.677177547,0.485887875).

We have the corresponding limit cycles A and A; are semistable, and Aj is unstable.
Further, in system (29), the limit cycles A; (i = 1,2, 3) write as

Ri(t,S) Ri
(9(t,s)) = (Zt) +0(?), i=1,23. (35)
Wi(t,e) W;

Finally, going back through the changes of variables, (U, V, W) — (Rcos 6, Rsin6, W),
(u,0,w) — (eU,eV,eW), and (x,y,z) — (%w—% Dy, w— L-2 u) with w = 79 = 2,

w’
we have for the differential system (11) the three limit cycles:

xi(t,€) = £<;Wi +R; sin(2t)> +0(e%),

y,‘(t, €) = €<iW1‘ — %Ri sin(2t)) + 0(83),

zi(t,€) = eR; cos(2t) + O(&%),

(36)

fori =1,2,3. This completes the proof of Corollary 3.

6. Conclusions

In this paper, using symbolic computation, we analyzed the conditions on the pa-
rameters under which the Chua differential system has a prescribed number of (stable)
equilibrium points. Sufficient conditions for the existence of three limit cycles bifurcating
from the origin of the Chua system are derived by making use of the averaging method, as
well as the methods of the Grobner basis and real solution classification. The special family
of the Chua system (11) was provided as a concrete example to verify our established result.
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The algebraic analysis used in this paper is relatively general and can be applied to other
n-dimensional differential systems.
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