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Abstract

:

We propose a new generator for unit interval which is used to establish univariate and bivariate families of distributions. The univariate family can serve as an alternate to the Kumaraswamy-G univariate family proposed earlier by Cordeiro and de-Castro in 2011. Further, the new generator can also be used to develop more alternate univariate and bivariate G-classes such as beta-G, McDonald-G, Topp-Leone-G, Marshall-Olkin-G and Transmuted-G for support (0, 1). Some structural properties of the univariate family are derived and the estimation of parameters is dealt. The properties of a special model of this new univariate family called a New Kumaraswamy-Weibull (NKwW) distribution are obtained and parameter estimation is considered. A Monte Carlo simulation is reported to assess NKwW model parameters. The bivariate extension of the family is proposed and the estimation of parameters is described. The simulation study is also conducted for bivariate model. Finally, the usefulness of the univariate NKwW model is illustrated empirically by means of three real-life data sets on Air Conditioned Failures, Flood and Breaking Strength of Fibers, and one real-life data on UEFA Champion’s League for bivariate model.
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1. Introduction


Although, the art of proposing new model(s) and families is an old practice but in the past a few decades ago, this activity has received increased attention. This activity has been termed as “parameter addition” and “parameter induction”. The main objective of such proposals is to develop model(s) or to explore real-life phenomenon(s) through data sets available in different fields of life. Consequently, the concentration gets diverted in proposing flexible models which may be through modification, extension or generalized class (abbreviated as G-class) of distributions etc. among other methodologies.



The flexibility of a model can mainly be considered, assessed or investigated through  (i) the flexible density and hazard rate shapes of a model; which have the ability to accommodate different types of data sets and to explore lifetime and reliability phenomenons,  (ii) some nice attractive mathematical properties,  (iii) performance evaluation of estimators through simulation study, and (iv) yielding better goodness-of-fit statistics results (numerically and graphically), among other floating criterions. It has been observed in recent literature that the induction of shape parameter(s) in a model or a family, the number of useful parameters and/or functional form of the model play an important role in achieving flexible models.



In the past, the objectives of proposing flexible models were obtained through families such as Pearson, Pareto, Burr, Johnson, Tukey’s g- and -h, Feller’s Pareto, Arnold’s Pareto etc. among others. These pioneer works motivated the researchers and practitioners to move forward and as a result many new G-classes were proposed in literature; some peculiar ones are beta-G [1], Kumarasawmy-G [2], gamma-G [3], transmuted-G [4], Weibull-G [5], Lomax-G [6], Gumbel-G [7], Burr-G [8] etc. among others. It has been noted that some G-classes were developed through the logit of well-established parent models chosen from the literature with the intensions to add influence or role of proposed G-classes parameters in the special, extended, modified or generalized models. In literature, a very few G-classes have been proposed directly from the function, formula or transformation, for example Marshall-Olkin-G, transmuted-G, exponentiated-generalized-G (extended Topp-Leone model) and alpha-power transformed-G. More detail about G-classes, their developments and range of random variable T for support   { ( 0 , 1 ) , ( 0 , ∞ ) , ( − ∞ , ∞ ) }   is available in [5,9,10,11]. Therefore, for submitting a new proposal about a G-class, there is need to select a new parent model or alternately to propose a new generator, say   ℧  G ( x )   , which is a function that defines a generator in terms of the cumulative distribution function of a baseline (or parent) model denoted by   G ( · )  .




2. Brief Review and Methodology


In the literature, a very few generators have been proposed for a unit interval (0, 1) with the objective to propose a new G-class from them. Also some G-classes of distributions have been reported in literature for support (0, 1) through the only available generator,   G ( x )   and by using the logit of a parent model, viz. beta-G family (Eugene et al. [1]), Kumaraswamy-G (Kw-G) (Cordeiro and de-Castro [2]), McDonald-G (Mc-G) (Alexander et al. [12]) and Topp-Leone-G (TL-G) (Rezaei et al. [13]). For more G-classes, the reader is referred to [14,15,16,17].



The main objective of this article is to introduce a new generator for support (0, 1) and to proposed a new G-class from this newly proposed generator. For this we consider proposing a new Kw-G class since the existing Kw-G class [2] has received increased attention having nice mathematical properties including mainly the closed-form expression of its distribution function. To fulfill our objective, here a new Kw-G family has been proposed from a newly proposed generator   1 − [ 1 − G ( x ) ]  exp { G ( x ) }     (as an alternative to   G ( x )  ). To the best of our knowledge, there exists only two generators {  G ( x )   and   1 −   [ 1 − G  ( x )  ]   G ( x )    } for support (0, 1) including the recently reported one   1 −   [ 1 − G  ( x )  ]   G ( x )     by Tahir et al. [18].



Alzaatreh et al. [5] pioneered a general method for proposing G-classes which they referred to as “transformed-transformer” (T-X) approach; that has received increased attention in recent years for developing generators and G-classes. Let   r ( t )   be the cumulative distribution function (cdf) and   R ( t )   be the probability density function (pdf) of a random variable (rv) T for interval   [ a , b ]   such that   − ∞ < a < b < ∞  . Further, let us suppose that   ℧ [ G ( x ) ]   is a function that defines a generator in terms of   G ( x )   or survival function (sf)    G ¯   ( x )  = 1 − G  ( x )    related to any baseline rv which satisfies the following conditions:  



	(i)

	
  ℧ [ G ( x ) ] ∈ [ a , b ]  ,




	(ii)

	
  ℧ [ G ( x ) ]   is differentiable and monotonically non-decreasing, and




	(iii)

	
   lim  x → − ∞   ℧  [ G  ( x )  ]  = a   and    lim  x → ∞   ℧  [ G  ( x )  ]  = b  .







The cdf for T–X family is given by


   F  T X    ( x )  =  ∫  a   ℧ [ G ( x ) ]    r  ( t )   d t = R  ℧  G ( x )   ,  



(1)




where the function   ℧ [ G ( x ) ]   satisfy the conditions (i)–(iii). The pdf corresponding to Equation (1) is given by


   f  T X    ( x )  = r   ℧  G ( x )     d  d x    ℧  G ( x )  .  



(2)







Kumaraswamy [19] introduced a two-parameter model for a unit interval (0, 1). The cdf and pdf for a rv T are, respectively, given by


  R  ( t )  = 1 −   ( 1 −  t a  )  b  ,  0 < t < 1 ,  



(3)




and


  r  ( t )  = a  b   t  a − 1      ( 1 −  t a  )   b − 1   ,    0 < t < 1  ,  



(4)




where   a > 0   and   b > 0   are both shape parameters.



Cordeiro and de-Castro [2] introduced the cdf and pdf of Kw-G family as


   F  K w G    ( x ; a , b , ξ )  = 1 −   1 − G   ( x ; ξ )  a   b  ,  0 < x < 1 ,  



(5)




and


   f  K w G    ( x ; a , b , ξ )  = a  b  g  ( x ; ξ )   G   ( x ; ξ )   a − 1      1 − G   ( x ; ξ )  a    b − 1   ,   0 < x < 1  ,  



(6)




where   a > 0   and   b > 0   are two additional shape parameters of this family, and  ξ  is the vector for baseline parameters.



The purpose of our article is to introduce a new Kumaraswamy-G class from a new generator   1 − [ 1 − G ( x ) ]  exp { G ( x ) }   other than   G ( x )   and   1 −   [ 1 − G  ( x )  ]   G ( x )     for support (0, 1). This new generator can also serves for developing new G-classes for any support. For example, the support of T is (0, 1) then the new beta-G, new Mc-G and new TL-G classes can also be introduced from this new generator. The detailed properties of the new generator   1 − [ 1 − G ( x ) ]  exp { G ( x ) }   are reported in another communication.



The paper is organized as follows: In Section 3, we define the univariate New Kumaraswamy-G (NKw-G) family of distributions. In Section 4, some mathematical properties of this new univariate Kw-G class are reported. A special model of New Kumaraswamy Weibull (NKwW) distribution of the new Kw-G class is investigated in detail in Section 5. A Monte Carlo simulation is also conducted in Section 6 to assess the performance of maximum likelihood estimators of a special model of the univariate G-class. In Section 7, we define the Bivariate New Kumaraswamy-G family where some properties and simulation study are reported. In Section 8 and Section 9, the usefulness of the new univariate and bivariate families are illustrated through four real-life data sets. We conclude the paper in Section 10 with some final remarks.




3. The NKw-G Family


From Equations (1) and (4), and then inducting the new generator   1 −  G ¯   ( x ; ξ )     exp [ G ( x ; ξ ) ]  , the cdf of the NKw-G family is defined by


     F ( x )    =    a  b   ∫  0   1 −  G ¯   ( x ; ξ )   exp  [ G  ( x ; ξ )  ]      t  a − 1     1 −  t a    b − 1    d t        =    1 −   1 −   1 −  G ¯   ( x ; ξ )   exp  [ G  ( x ; ξ )  ]   a   b  ,        0 < x < 1 .      



(7)




where the parameters   a > 0   and   b > 0   refine the shape and  ξ  is the vector of the baseline parameters.



The pdf corresponding to Equation (7) is


     f ( x )    =    a  b  g  ( x ; ξ )  G  ( x ; ξ )    1 −  G ¯   ( x ; ξ )   exp  [ G  ( x ; ξ )  ]    a − 1           × exp  [ G  ( x ; ξ )  ]    1 −   1 −  G ¯   ( x ; ξ )   exp  [ G  ( x ; ξ )  ]   a    b − 1      0 < x < 1 .      



(8)




Henceforth, a rv having density Equation (8) is denoted by   X ∼  N K w − G  ( a , b , ξ )  . The sf   S ( x )   and hazard rate function (hrf)   h ( x )   of X are, respectively, given by


     S ( x )    =      1 −   1 −  G ¯   ( x ; ξ )   exp  [ G  ( x ; ξ )  ]   a   b            0 < x < 1 .      








and


     h ( x )    =    a  b  g  ( x ; ξ )   G  ( x ; ξ )    1 −  G ¯   ( x ; ξ )  exp  [ G  ( x ; ξ )  ]    a − 1           × exp  [ G  ( x ; ξ )  ]    1 −   1 −  G ¯   ( x ; ξ )   exp  [ G  ( x ; ξ )  ]   a    − 1       0 < x < 1  .     












4. Properties of the NKw-G Family


In this section, we obtain some mathematical properties of the NKw-G family.



4.1. Quantile Function


Random variates are commonly generated through quantile function (qf),   Q  ( u )  =  F  − 1    ( u )  = min  { x ; F  ( x )  ≥ u }   , where    F  − 1    ( . )    is inverse of cdf. Thus, the qf of the NKw-G class is obtained by inverting Equation (7)


  Q  ( u )  =  G  − 1         1 −   ( 1 − u )   1 / b     1 / a   − 1  e   + 1  ,       0 < u < 1  ,  



(9)




where the Lambert-W function is the inverse function of   F ( W ) = W exp { W }  . The Lambert-W function was introduced by Corless et al. [20] which is used to solve a variety of exponential and logarithmic equations in the form of   W exp { W }  . This function is also known as the product log function, and also help to solve many sorts of problems where the variable acts as both a base and as an exponent.




4.2. Linear Representation for the NKw-G Density


In this section, we give a useful expansion for Equation (7). The purpose of expanding density by using appropriate series is to reduce the complexity of density function, and converting it into solvable form to find the statistical properties for baseline model or G-class. There are many ways to get the properties of a model or a G-class. One way could be conventional, and other way by using series and functions. The expansion of the density through linear representation by utilizing series or function is recent and have been reported in many articles (as widely accepted). The main reason for the getting linear representation using series and functions is to obtain reasonable properties of a model or a G-class such as moments, incomplete moments, moment generating function, probability weighted moments, entropy, order statistics etc. among others. Simply, the properties of any special model developed from a G-class can be obtained by just utilizing the exponentiated (or generalized) properties of the special model of that class. For an arbitrary baseline cdf   G ( x )  , a rv is said to have the exponentiated-G (exp-G) distribution with power parameter   λ > 0   if its cdf and pdf are    H λ   ( x )  = G   ( x )  λ    and    h λ   ( x )  = λ  g  ( x )   G   ( x )   λ − 1    , respectively.



If  ν  is any real non-integer and   | z | < 1  , then by using generalized binomial expansion


      ( 1 − z )  ν    =     ∑  c = 0  ∞    ( − 1 )  c    ν c    z c  ,     



(10)




the Equation  (7) becomes


  F  ( x )  = 1 −  ∑  i = 0  ∞    ( − 1 )  i     b i      1 −  G ¯   ( x ; ξ )   exp  [ G  ( x ; ξ )  ]    i  a   .  



(11)




Now expanding Equation (11) and then applying binomial expansion again, we have the following form


     F ( x )    =     1 −  ∑  i = 1  ∞   ∑  j = 1   a i     ( − 1 )   i + j      b i      a i  j     G ¯    ( x ; ξ )  j  exp  [ j G  ( x ; ξ )  ]   .     



(12)




Again using generalized binomial series expansion and exponential power series, and after some simplification, Equation (12) reduced to


     F ( x )    =     1 −  ∑  k = 0  ∞   ∑  s = 0  j   ∑  i = 1  ∞   ∑  j = 1   a i       ( − 1 )   i + j + s    j k    k !     b i       a i  j      j s   G   ( x ; ξ )   k + s    .     








The above result can be expressed in reduced form as


  F  ( x )  =  1 +  ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s   G   ( x ; ξ )   k + s    ,  



(13)




where


   ω  k , s   =  ∑  i = 1  ∞   ∑  j = 1   a i       ( − 1 )   i + j + s + 1    j k    k !      b i       a i  j      j s   .  











Now, differentiating Equation (13), we get the NKw-G density as


  f  ( x )  =  ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s     ( k + s )   g  ( x ; ξ )   G   ( x ; ξ )   k + s − 1   .  



(14)




Equation (14) reveals that the family density function is a linear combination of exp-G densities. Thus, some structural properties of X, for example, moments, mean deviations, Bonferroni and Lorenz curves, and generating function can follow from exp-G distribution.




4.3. Mathematical Properties


Here we reported some mathematical properties of NKw-G family by using Equation (14) and those of the properties of the exp-G distribution.



Let   Y  k , s    be a rv relating to exp-G model having power parameter   ( k + s )  , then the rth ordinary moment of X, say   E (  X r  )  , can be expressed from Equation (14) as


  E  (  X r  )  =  ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s    E  (  Y  k , s  r  )  =  ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s    ( k + s )    τ  r , k , s   ,  



(15)




where    τ  r , k , s   =  ∫  − ∞  ∞   x r   G   ( x ; ξ )   k + s − 1    g  ( x ; ξ )  d x =  ∫  0  1   Q G    ( u ; ξ )  r    u  k + s   d u  , and    Q G   ( u ; ξ )    is the qf of the baseline G.



The rth lower incomplete moment of X, say    m r   ( y )  =  ∫  − ∞  y    x r   f  ( x )   d x  , is


      m r   ( y )     =     ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s     ∫  − ∞  y    x r    h  k , s    ( x )   d x       =     ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s     ∫  0   G ( y ; ξ ) )    Q G    ( u ; ξ )  r    u  k + s   d u .     



(16)




The last two integrals can easily be evaluated numerically for most of the baseline G models.



The moment generating function (mgf)    M  ( t )  = E  (   e   t  X   )    of X follows from Equation (14) is


  M  ( t )  =  ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s     M  k , s    ( t )  =  ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s    ( k + s )    ρ  k , s    ( t )  ,  



(17)




where    M  k , s    ( t )    is the mgf of   Y  k , s    and    ρ  k , s    ( t )  =  ∫  0  1  exp  [ t   Q G   ( u ; ξ )  ]    u  k + s   d u  . Hence, we can obtain the mgfs of many special NKw-G distributions directly from exp-G generating function and Equation (17).



The mode of NKw-G distribution is obtained by taking log of Equation (8) by


     log   f x   ( x ; ξ )     =    log  ( a b )  + log  g ( x ; ξ )  + G  ( x ; ξ )  +  ( a − 1 )  log  [ 1 −  ( 1 − G  ( x ; ξ )  )  exp  [ G  ( x ; ξ )  ]  ]          + log  [ G  ( x ; ξ )  ]  +  ( b − 1 )  log  1 −   [ 1 −  ( 1 − G  ( x ; ξ )  )  exp  [ G  ( x ; ξ )  ]  ]  a   .     



(18)







Taking derivative with respect to x, the mode of NKw-G satisfies


        g ′   ( x ; ξ )    g ( x ; ξ )   +   g  ( x ; ξ )     a exp  [ G  ( x ; ξ )  ]  G  ( x ; ξ )   1 − b   [ 1 −  ( 1 − G  ( x ; ξ )  )  exp  [ G  ( x ; ξ )  ]  ]  a     1 −   [ 1 −  ( 1 − G  ( x ; ξ )  )  exp  [ G  ( x ; ξ )  ]  ]  a    +   1 −  e  G ( x ; ξ )     G ( x ; ξ )   + 1    1 − ( 1 − G ( x ; ξ ) ) exp [ G ( x ; ξ ) ]      =    0 .     












4.4. Estimation of Univariate G-Family Parameters


Here, we discuss the maximum likelihood estimation of NKw-G family parameters based on random samples    X 1  , … ,  X n    taken from any G distribution. The log-likelihood function   ℓ ( . )   for vector   θ =   ( a , b , ξ )  ⊤    is


     ℓ ( θ )    =    n log   ( a  b )  +  ∑  i = 1  n  log  g  (  x i  ; ξ )  +  ∑  i = 1  n  log  G  (  x i  ; ξ )  +  ( a − 1 )   ∑  i = 1  n  log  1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]           +  ∑  i = 1  n  G  (  x i  ; ξ )  +  ( b − 1 )   ∑  i = 1  n  log  1 −   1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]   a   .     











The MLEs   θ ^   of  θ  can be evaluated by maximizing   ℓ ( θ )  . There exists several routines in literature which can be used for numerical maximization of   ℓ ( θ )   particulary in R-language (optim function) and in Ox the (sub-routine MaxBFGS).



The score components obtained after differentiating the log-likelihood with respect to a, b and  ξ  are:


      ∂ ℓ   ∂ a     =     n a  −  ( b − 1 )   ∑  i = 1  n      1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]   a  log  1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]     1 −   1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]   a            +  ∑  i = 1  n  log  1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]   ,        ∂ ℓ   ∂ b     =     n b  +  ∑  i = 1  n  log  1 −   1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]   a   ,        ∂ ℓ   ∂ ξ     =     ∑  i = 1  n    g i ξ   g (  x i  ; ξ )   −  ∑  i = 1  n   G i ξ  +  ∑  i = 1  n    G i ξ   G (  x i  ; ξ )   +  ( a − 1 )   ∑  i = 1  n    G  (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]    G i ξ    1 −  G ¯   ( x ; ξ )   exp  [ G  (  x i  ; ξ )  ]            −  ( b − 1 )   ∑  i = 1  n    a  G  (  x i  ; ξ )  exp  [ G  (  x i  ; ξ )  ]    G i ξ     1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]    a − 1     1 −   1 −  G ¯   (  x i  ; ξ )   exp  [ G  (  x i  ; ξ )  ]   a    ,     








where    g i ξ   =   ∂  ∂ ξ   g  (  x i  ; ξ )    and    G i ξ   =   ∂  ∂ ξ    G  (  x i  ; ξ )    are derivatives of column vectors of the same dimension of  ξ .



The MLEs of the model parameters can be obtained from the above score components after equating to zero, and then solving them simultaneously. If analytical solution is impossible, then analytical results for these parameters can be obtained through iterative algorithms.



For interval estimation of the parameters, we require the   3 × 3   observed information matrix   I  ( Θ )  =  { −  I  q s   }    (for   q , s = a , b , ξ  ). Standard maximization routines provide only an approximation for the observed information matrix. The observed information matrix for the parameter vector   Θ =   ( a , b , ξ )  ⊤    is given by


   I  ( Θ )  = −      ∂ 2  ℓ  ( Θ )    ∂  Θ  ∂   Θ ⊤      = −        I  a a      I  a b      I  a ξ       ⋅    I  b b      I  b ξ       ⋅   ⋅    I  ξ ξ        .  











Under standard regularity conditions, the multivariate normal    N 3   ( 0 , I   (  Θ ^  )   − 1   )    distribution can be used to construct approximate confidence intervals for the model parameters. Here,   I (  Θ ^  )   is the total observed information matrix evaluated at   Θ ^  . Then, the   100 ( 1 − σ ) %   confidence intervals for a, b and  ξ  are given by    a ^  ±  z   σ *  / 2   ×   v a r (  a ^  )    ,    b ^  ±  z   σ *  / 2   ×   v a r (  b ^  )     and    ξ ^  ±  z   σ *  / 2   ×   v a r (  ξ ^  )    , respectively, where the   v a r ( · )  ’s denote the diagonal elements of   I   (  Θ ^  )   − 1     corresponding to the model parameters, and   z   σ *  / 2    is the quantile (  1 −  σ *  / 2  ) of the standard normal distribution.



The standard errors of the estimated parameters are obtained by the inverse of   I ( Θ )  .





5. The Univariate NKwW Distribution


We now define the NKwW distribution by taking the Weibull baseline with cdf   G  ( x )  = 1 −   e   −   ( α  x )  β      and pdf   g  ( x )  =  α β   β   x  β − 1    exp  [ −   ( α  x )  β  ]   . Then, the cdf and pdf of the NKwW distribution are, respectively, given by


      F  N K w W    ( x )     =    1 −   1 −   1 − exp  [ −   ( α  x )  β  ]     e   1 − exp [ −   ( α  x )  β  ]    a   b  ,    x > 0      



(19)




and


      f  N K w W    ( x )     =    a  b   α β   β   x  β − 1    exp  [ −   ( α  x )  β  ]    e   1 − exp [ −   ( α  x )  β  ]     1 − exp  [ −   ( α  x )  β  ]     e   1 − exp [ −   ( α  x )  β  ]     a − 1         ×     1 − exp [ −   ( α  x )  β  ]    1 −   1 − exp  [ −   ( α  x )  β  ]     e   1 − exp [ −   ( α  x )  β  ]    a    b − 1   ,   x > 0  ,     



(20)




where   α > 0   is scale parameter and   β > 0   is shape parameter.



Henceforth, a random variable having density in Equation (20) is denoted by   X ∼  NKwW  ( a , b , α , β )  . The sf and hrf of X are given by


     S ( x )    =      1 −   1 − exp  [ −   ( α  x )  β  ]     e   1 − exp [ −   ( α  x )  β  ]    a   b  ,    x > 0      








and


     h ( x )    =    a  b   α β   β   x  β − 1    exp  [ −   ( α  x )  β  ]    e   1 − exp [ −   ( α  x )  β  ]     1 − exp  [ −   ( α  x )  β  ]     e   1 − exp [ −   ( α  x )  β  ]     a − 1           ×  1 − exp [ −   ( α  x )  β  ]    1 −   1 − exp  [ −   ( α  x )  β  ]     e   1 − exp [ −   ( α  x )  β  ]    a    − 1   ,    x > 0  .     











In Figure 1a,b, we display some plots of the density function and hrf of NKwW model for selected parameter values. From Figure 1a, it can be observed that NKwW density exhibits shapes such as unimodal (right-skewed, left skewed, symmetrical), J and reversed-J. From Figure 1b, one can depict that NKwW hazard rate shapes could be monotonic (increasing and decreasing) and non-monotonic (bathtub and upside-down bathtub).



5.1. Properties of Univariate NKwW Model


First, we will deduce linear representation of NKwW density to obtain useful properties of that model.



Following Equation (14), the NKwW density will become


   f  N K w W    ( x )  =  ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s    ( k + s )    α β   β   x  β − 1    exp  { −   ( α  x )  β  }    1 − exp { −   ( α  x )  β  }   k + s − 1   ,  



(21)




is the density of exp-Weibull   ( k + s , α , β )  , which after using generalized binomial expansion becomes


   f  N K w W    ( x )  =  ∑  p = 0   k + s − 1     t p   π  ( x ; α , β )  ,  



(22)




where    t p  =   ( − 1 )  p     k + s − 1  p    ∑  k = 0  ∞   ∑  s = 0  j   ω  k , s    ( k + s )     and   π ( x ; α , β )   is the Weibull density.



From Equation (22) it is evident that NKwW density is actually a linear combination of Weibull densities. Therefore, several mathematical properties of NKwW model can easily be obtained from the properties of Weibull model.



Let   Z p   follows a density   π ( x , α , β )  , then some properties of X can obtained from the properties of   Z p  .



The expression for the qf of the NKwW distribution cannot be obtained explicitly. However, we can define it in term of Lambert-W function as


     Q ( u ) =      1 α    1 − log  1 −   1 −   ( 1 − u )   1 / b     1 / a    + W      1 −   ( 1 − u )   1 / b     1 / a   − 1  e     1 / β   .     



(23)




For more detail about Lambert-W function, the reader is referred to Benkthehelifa [21].



The nth moment of X, say    μ  r  ′  =  ∫  0  ∞    x r   f  ( x )  d x  , is


    μ  r  ′   =   ∑  p = 0   k + s − 1      t p    α β   β   ∫  0  ∞    x r   x  β − 1    exp  { −  ( p + 1 )    ( α  x )  β  }   d x .  



(24)




After solving the last integral, the nth moment expression for X will be


   μ  r  ′   =  Γ   r β  + 1    ∑  p = 0   k + s − 1     t p    α r    ( p + 1 )   r / β     .  



(25)




In general, some characteristics of a model can be obtained through moments especially mean, variance, skewness and kurtosis. Table 1 displays the first four moments of NKwW distribution on different parametric values using Equation (24). The skewness and kurtosis plots of NKwW model are displayed in Figure 2. These plots reveal that the parameters a and b play a significant role in modeling the skewness and kurtosis behaviors of X.



The rth incomplete moment expression can be written as


   m r   ( z )   =    ∑  p = 0   k + s − 1     v p    α r    ( p + 1 )   r / β      γ    r β   + 1 ,  ( p + 1 )    ( α  x )  β   ,  



(26)




where   γ  ( q , x )  =  ∫ 0 ∞   x  q − 1    exp  ( − x )   d x   is Euler gamma function.




5.2. Estimation of Univariate NKw Family Parameters


The log-likelihood function ℓ for the parameters vector   θ =   ( α , β , a , b )  ⊤    of NKwW model given in Equation (20)


    ℓ   =    n  log  ( a  b   α β   β )  +  ( β − 1 )   ∑  i = 1  n  log   (  x i  )  +  ∑  i = 1  n  log  1 − exp [ −   ( α   x i  )  β  ]  −  ∑  i = 1  n    ( α   x i  )  β          +  ∑  i = 1  n   1 − exp [ −   ( α   x i  )  β  ]  +  ( a − 1 )   ∑  i = 1  n  log  1 − exp  [ −   ( α   x i  )  β  ]     e   1 − exp [ −   ( α   x i  )  β  ]            +  ( b − 1 )   ∑  i = 1  n  log  1 −   1 − exp  [ −   ( α   x i  )  β  ]     e   1 − exp [ −   ( α   x i  )  β  ]    a   .     








when maximizing the log-likelihood for constrained parameters, the parameters are often transformed to avoid the constraints and failure of Newton-Raphson [22]. This is the case of the proposed model since all the parameters are constrained (>0).





6. Simulation Study


Using Monte Carlo simulations, we now evaluate the asymptotic properties of the MLEs for the parameters of the NKwW model. The simulation study is repeated 1000 times with sample sizes of n = 50, 100, 200 and 500 with the following parameter scenarios: I: a = 0.9, b =1.5,  α  = 0.1, and  β  = 2.5, II: a = 2.5, b =2.8,  α  = 0.4, and  β  = 0.8, and III: a = 0.5, b =5.5,  α  = 1.5, and  β  = 1.5. The random samples are generated using Equation (23). Table 2, Table 3 and Table 4 display the average estimate (Average), average bias (Bias) of the MLEs, mean square error (MSE), average standard error (Average SE), standard deviation (SD), model-based coverage probabilities (CP), lower bound (LB) and upper bound (UB) for the parameters a, b,  α  and  β , respectively, for these scenarios and sample sizes. We conclude from the simulation findings that MLEs perform well in estimating parameters a, b,  α  and  β . The CPs of the confidence intervals are quite close to the 95% nominal levels. It is apparent that the bias and MSE decreases as the sample size increases. This gives an indication that maximum likelihood method has performed well while estimation of NKwW model parameters. The related bias, MSE, SD and Average SE are, respectively, defined by


  B i a s  (  θ ^  )  =  ∑  i = 1  N     θ i  ^  N  − θ ,   M S E  (  θ ^  )  =  ∑  i = 1  N     (   θ i  ^  − θ )  2  N  ,  










  S D  (  θ ^  )  =     ∑  i = 1  N      θ i  ^  − θ  2    N − 1      and  A v e r a g e S E  (  θ ^  )  =   S D   N   =   N  N − 1       ∑  i = 1  N      θ i  ^  − θ  2    .  











For the 95% confidence intervals of the MLEs, we calculate the empirical coverage probability (CP) which is defined by


  C P  (  θ ^  )  =  1 N   ∑  i = 1  N  I     θ i  ^   − 1.9599  s    θ i  ^    < θ <    θ i  ^   + 1.9599  s    θ i  ^     ,  








where   I ( . )   is the indicator function and    s    θ i  ^    =   s   α i  ^   ,  s   β i  ^   ,  s   a i  ^   ,  s   b i  ^      are the standard errors of the MLEs.




7. Bivariate New Kumaraswamy (BvNKw) G-Family


In this Section, we introduce a bivariate extension of the NKw-G univariate family by considering Marshall and Olkin shock model (see, Marshall and Olkin [23]). This approach has been adopted by Kundu and Gupta [24], Barreto-Souza and Lemonte [25], Ghosh and Hamedani [26], Eliwa and El-Morshedy [27], El-Morshedy et al. [28,29] etc. among others, for developing bivariate extensions of the well-known parent models. The BvNKw-G family is constructed from three independent NKw-G families using a minimization process. Assuming that the three independent rvs are    Z 1  ∼  NKw − G   (  b 1  , a , ξ )   ,    Z 2  ∼  NKw − G   (  b 2  , a , ξ )    and    Z 3  ∼  NKw − G   (  b 3  , a , ξ )   . Define    X 1  = min  {  Z 1  ,  Z 3  }    and    X 2  = min  {  Z 2  ,  Z 3  }   . Thus, the random vector    X = (   X 1  ,  X 2  )   is said to have the BvNKw-G family with parameters vector   Ω = (  b 1  ,  b 2  ,  b 3  , a , ξ  ) if its joint reliability function (jrf) is given by


    F ¯    X 1  ,  X 2     (  x 1  ,  x 2  )  =       S  NKw - G    (  x 1  ;  b 1  , a , ξ )    S  NKw - G    (  x 2  ;  b 2  +  b 3  , a , ξ )   if   x 1  ≤  x 2  ,        S  NKw - G    (  x 1  ;  b 1  +  b 3  , a , ξ )    S  NKw - G    (  x 2  ;  b 2  , a , ξ )   if   x 1  >  x 2  .       



(27)




The marginal rfs of the BvNKw-G family are


    F ¯   X i    (  x i  )  = Pr  min  {  T i  ,  T 3  }  >  x i   =   F ¯    NKw - G      (  x i  ;  b i  +  b 3  , a , ξ )  ;  i = 1 , 2 .  



(28)




The joint pdf (jpdf) corresponding to Equation (27) is


   f   X 1  ,  X 2     (  x 1  ,  x 2  )  =       f  NKw - G    (  x 1  ;  b 1  , a , ξ )    f  NKw - G    (  x 2  ;  b 2  +  b 3  , a , ξ )   if  0 <  x 1  <  x 2  < ∞ ,        f  NKw - G    (  x 1  ;  b 1  +  b 3  , a , ξ )    f  NKw - G    (  x 2  ;  b 2  , a , ξ )   if  0 <  x 2  <  x 1  < ∞ ,         b 3    b 1  +  b 2  +  b 3      f  NKw - G    ( x ;  b 1  +  b 2  +  b 3  , a , ξ )   if  0 <  x 1  =  x 2  = x < ∞ .       



(29)




The jpdf over the domains   0 <  x 1  <  x 2  < ∞   and   0 <  x 2  <  x 1  < ∞   can be obtained by differentiating Equation (27) with respect to   x 1   and   x 2  , whereas the jpdf over the domain   0 <  x 1  =  x 2  = x < ∞   can be derived from a well-known formula (see Eliwa and El-Morshedy [27]). The marginal pdfs corresponding to Equation (28) can be proposed as


   f  X i    (  x i  )  =  f   NKw - G      (  x i  ;  b i  +  b 3  , a , ξ )  ;  i = 1 , 2 .  



(30)







Using Equations (27) and (29), the joint hrf (jhrf) can easily be derived by using    h   X 1  ,  X 2     (  x 1  ,  x 2  )  =    f   X 1  ,  X 2     (  x 1  ,  x 2  )      F ¯    X 1  ,  X 2     (  x 1  ,  x 2  )     . In Figure 3, Figure 4 and Figure 5, some plots of the jpdf, jhrf, and jrf are presented for selected values of the BvNKw-Weibull (BvNKwW) parameters.



If X have the BvNKw-G family, then the distributions of   max {  X 1  ,  X 2  }   and   min {  X 1  ,  X 2  }   are


   F  max {  X 1  ,  X 2  }    ( t )  =  ∏  i = 1  3   F  N K w − G    ( t ;  b i  , a , ξ )   and   F  min {  X 1  ,  X 2  }    ( t )  = 1 −  ∏  i = 1  3    F ¯   N K w − G    ( t ;  b i  , a , ξ )  ,  








respectively. If    X 1  ∼  NKw − G   (  b 1  +  b 3  , a , ξ )    and    X 2  ∼  NKw − G   (  b 2  +  b 3  , a , ξ )   , then the qf for the marginals is


  Q   ( u )   X i   =  G  − 1    W     e   − 1     1 −   ( 1 − u )   1 / (  b i  +  b 3  )     1 / a   − 1  + 1  ;  i = 1 , 2 .  



(31)




Using (31), the coefficient of correlation between   X 1   and   X 2   is


  Q   ( u )    X 1  ,  X 2    =      4  F   NKw - G      Q   ( u )   X 2   ;  b 2  +  b 3  , a , ξ   F  NKw - G    Q   ( u )   X 1   ;  b 1  , a , ξ  − 1  if   x 1  <  x 2        4  F   NKw - G      Q   ( u )   X 1   ;  b 1  +  b 3  , a , ξ   F  NKw - G    Q   ( u )   X 2   ;  b 2  , a , ξ  − 1  if   x 1  >  x 2  .       



(32)




The coefficient of median correlation between   X 1   and   X 2   can be derived at   u = 0.5  . The BvNKw-G family exhibits both characteristics such as absolute continuous as well as singular part likewise reported in Marshall and Olkin’s bivariate exponential model. Thus, the joint distribution function (jdf) of   X 1   and   X 2   exhibits a singular part along the line    x 1  =  x 2    having weight    b 3  /  (  b 1  +  b 2  +  b 3  )   , and an absolute continuous part for   0 <     x 1  ≠  x 2   <∞ having weight    (  b 1  +  b 2  )  /  (  b 1  +  b 2  +  b 3  )   . If    γ i  =   F ¯   X i    (  x i  )    where    X i  ∼  NKw − G   (  b i  +  b 3  , a , ξ )  ;    i = 1 , 2  , then the jrf by utilizing the Marshall-Olkin copula will be as follows:


    F ¯    X 1  ,  X 2     (  x 1  ,  x 2  )  =  γ  1   1 −  Ω 1     γ  2   1 −  Ω 2    max   γ  1   Ω 1   ,  γ  2   Ω 2    ,  for  0 <  Ω 1  ,  Ω 2  < 1 ,  








where    Ω i  =   b 3    b i  +  b 3    .  



7.1. The MLE for the BvNKw-G Parameters


Here we dealt with the estimation of BvNKw-G family parameters through maximum likelihood method. Suppose that    (  x 11  ,  x 21  )  ,  (  x 12  ,  x 22  )  , … ,  (  x  1 m   ,  x  2 m   )    is a sample of size m from the BvNKw-G family where    Ψ 1  =  {  x  1 i   <  x  2 i   }   ,    Ψ 2  =  {  x  1 i   >  x  2 i   }   ,    Ψ 3  =  {  x  1 i   =  x  2 i   =  x i  }   ,     Ψ 1   =  m 1  ,      Ψ 2   =  m 2   ,      Ψ 3   =  m 3    and    Ψ  =  ∑  i = 1  3   m i  = m  . Using Equation (29), the likelihood function   ℓ ( Ω )   can be written as


     ℓ ( Ω )    =     ∏  i = 1   m 1    f   NKw - G      (  x  1 i   ;  b 1  , a , ξ )   f   NKw - G      (  x  2 i   ;  b 2  +  b 3  , a , ξ )   ∏  i = 1    m 2    f   NKw - G      (  x  1 i   ;  b 1  +  b 3  , a , ξ )          ×  f   NKw - G      (  x  2 i   ;  b 2  , a , ξ )   ∏  i = 1   m 3     b 3    b 1  +  b 2  +  b 3     f   NKw - G      (  x i  ;  b 1  +  b 2  +  b 3  , a , ξ )  .     



(33)




Differentiating after taking logarithm of the above likelihood function with respect to parameters   b 1  ,   b 2  ,   b 3  , a and  ξ , and then equating them equal to zero can help in obtaining estimates of the bivariate model. If the solution is not possible, then optimization methods can be adopted to obtain numerical results.




7.2. Kendall’s Rank Correlation ( τ )


Assume (   W 1  ,  W 2   ) and (   Z 1  ,  Z 2   ) are two independent and identically distributed random vectors, then the  τ  is defined as follows


  τ = P    W 1  −  Z 1     W 2  −  Z 2   > 0  − P    W 1  −  Z 1     W 2  −  Z 2   < 0  .  



(34)




Nelsen [30] has shown that the  τ  is also a copula property. The BvNKwW distribution can be obtained using the copula function also. For every bivariate distribution function, with continuous marginals    F  X 1    (  x 1  )    and    F  X 2    (  x 2  )   , corresponds a unique function   C :   [ 0 , 1 ]  2  →  [ 0 , 1 ]   , called a copula such that


   F   X 1  ,  X 2     (  x 1  ,  x 2  )  = C  (  F  X 1    (  x 1  )  ,  F  X 2    (  x 2  )  )  ,  








where   C ( . , . )   is the Clayton copula (see Nelsen [30,31]). Thus, if   (  Z 1  ,  Z 2  )   has the BvNKwW family, the  τ  between   Z 1   and   Z 2   is given by


  τ =  ∫  0  1   ∫  0  1  C  ( u , v )     ∂ 2  C  ( u , v )    ∂ u ∂ v   d u d v − 1 .  



(35)








7.3. Simulation for the BvNKw-G Family


In this section, the MLE method is used to estimate the parameters    b 1  ,  b 2  ,  b 3  , α , β   and a of the BvNKwW distribution. The population parameters are generated using software R package. The sampling distributions are obtained for different sample sizes   n =   50, 100, 200 from   N =  1000 replications. This study proposed an assessment of the properties of the MLE for the parameters. Table 5 reports the simulation results for the BvNKwW model for    b 1  = 3  ,    b 2  = 3  ,    b 3  = 3  ,   α = 0.5  ,   a = 0.3  ,   β = 1.5    with different sample sizes.



From Table 5, it is observed that the bias and MSE are reduced as the sample size is increased for the MLE. Further, the results of simulation indicate that the BvNKwW distribution works well under the situation where no censoring occurs.





8. Empirical Illustrations of the Proposed Univariate Model


We compare the newly proposed 4-parameter model, NKwW distribution, with some well-established models viz. 4-parameter Kumaraswamy-Weibull [32], 4-parameter beta-Weibull [33], 4-parameter exponentiated-generalized Weibull [34], 5-parameter exponentiated Kumaraswamy-Weibull [35], 3-parameter gamma-Weibull [36], 3-parameter exponentiated-Weibull [37] and 2-parameter Weibull [38] distributions. Table 6 shows the abbreviation of some well–established competitive models.



Three real-life data sets, namely, Air Conditioned Failures Data [39], Flood Data [40] and Breaking Strength Data [41] (see Appendix A for data sets) are used to compare and illustrate the potentiality of NKwW model.



The MLEs (  ℓ ^  ) and the standard errors (SEs) of the estimates, and the results of goodness-of-fit (GoF) criterion viz. Akaike information criterion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), Anderson-Darling (AD), Cramér–von Mises (CvM) and Kolmogrov-Smirnov (KS) are computed using AdequacyModel package in R-Statistical Computing Environment written by Marinho et al. [42]. Then, GoF values of all models are compared to search for the best model. The lower values of GoF statistics (GoFS) and high KS p-values indicate good fits.



In Table 7, Table 8 and Table 9, the values of MLEs and their SEs are listed for the NKwW, KwW, BW, EGW, EKwW, GaW, EW and W models, when applied to three real-life data sets. In Table 10, Table 11 and Table 12, the numerical values of the GoFS are reported. It is observed from the results of Table 10, Table 11 and Table 12 that our proposed univariate model NKwW shows minimum value of GoFS in comparison to other competitive models. This superiority is valid for the three real-life data sets. The graphs presented in Figure 6, Figure 7 and Figure 8 also support that “the model NKwW is better as compared to other well-known and well-established models”.




9. Empirical Illustration of the Proposed Bivariate Model


In this section, we empirically show that our proposed bivariate NKwW (BvNKwW) model is better in performance in comparison to some selected bivariate models. The MLEs of bivariate models are computed and are then compared on the basis of GoFS viz. AIC, BIC and HQIC. The fitting of marginal of the BvNKwW distribution is assessed through KS GoFS and its p-value. The UEFA Champion’s League data (Meintanis, [43]) is considered for the empirical illustration of the proposed bivariate model. The proposed BvNKwW model and other bivariate models, bivariate exponentiated modified Weibull extension (BExMW) (El-Gohary et al. [44]), bivariate exponentiated Weibull-Gompertz (BvExWGz) (El-Bassiouny et al. [45]), bivariate Weibull (BvW) (Kundu and Dey, [24]), bivariate odd Weibull exponential (BvOWE) (Eliwa and El-Morshedy [46]), bivariate exponentiated Weibull (BvExW) (new), bivariate generalized power Weibull (BvGPW) (new) models are fitted to UEFA Champion’s League data. Firstly, we fit the marginals   X 1  ,   X 2   and   max (  X 1  ,  X 2  )   to the UEFA League data, and obtain the MLEs of the parameters (b, a,  α ,  β ) of the corresponding NKwW distribution for   X 1  ,   X 2   and   max (  X 1  ,  X 2  )   yielding (124.9434, 16.3415, 2.8149, 0.1685), (123.7074, 3.4388, 0.0159, 0.2619) and (7.82 × 10   4  , 39.6294, 854.4094, 0.0780), respectively. The K-S and its corresponding p-values for the marginals are reported in Table 13. It is evident from the graphs in Figure 9, Figure 10 and Figure 11, that our proposed model fits well on the basis of numerical values of Table 13.



The sample   τ ^   and the model-based  τ  are approximately equal where    τ ^   τ  s a m p l e   = 0.505   and    τ  B v N K w W   = 0.513   having p-value =0.879.



It is clear from the above plots that the BvNKwW distribution fits well to the UEFA Champion’s League data. In Table 14, we report the MLEs,   −  ℓ ^   , AIC, BIC and HQIC values for the BvNKwW and some competitive bivariate models.



It is evident from the results of Table 14 that the proposed BvNKwW model provides a better goodness-of-fits results as compared to other competitive bivariate distributions.




10. Concluding Remarks


We considered Kumaraswamy distribution and proposed new univariate and bivariate Kumaraswamy-G family from a newly proposed generator   1 −  G ¯   ( x )   exp  [ G  ( x )  ]    for support (0, 1) with the objective to provide an alternative family in comparison to Kumaraswamy-G family of distributions already introduced in literature by Cordeiro and de-Castro in 2011. By using this new generator, alternative beta-G, Mc-G and TL-G families of distributions can also be developed. One can easily inspect that the proposed generator   1 −  G ¯   ( x )   exp  { G  ( x )  }    has a different functional form as compared the existing generator   G ( x )   for (0, 1). Some mathematical properties of the new univariate family are reported. Also, some structural properties of a special model of this class called the New Kumaraswamy-Weibull distribution were also obtained. After comparing the proposed special univariate model with some well-known extended Weibull models such as Kumaraswamy-Weibull, beta-Weibull, exponentiated-generalized Weibull, exponentiated Kumaraswamy-Weibull, gamma-Weibull and exponentiated-Weibull models, we observed that our proposed univariate model is better in performance as compared to all competitive models when applied to these three real-life data sets. Similarly, the BvNKwW distribution is proposed, and then compared with other well-known bivariate models such as bivariate exponentiated modified Weibull extension, bivariate exponentiated Weibull-Gompertz, bivariate Weibull, bivariate odd Weibull exponential, bivariate exponentiated Weibull (new) and bivariate generalized power Weibull (new) distributions. The results of some popular goodness-of-fit statistics showed that the proposed bivariate Kumaraswamy model is better in comparison to other bivariate models.
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Appendix A


Data Set 1. Air Conditioned Failure Data



The first data set represents the successive failures of 179 air conditioning system given by Kus [39]. The data are as follows: 50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 71.



Data Set 2. Flood Data



The second data set represents the maximum annual flood discharges (in units of 1000 cubic feet per second) of the North Saskachevan River at Edmonton, over a period of 48 years given by Asgharzadeh et al. [40]. The data are as follows: 19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 26.720, 27.500, 28.100, 28.600, 30.200, 30.380, 31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39.200, 40.000, 40.400, 40.400, 42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800, 61.200, 61.740, 65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600, 109.700, 121.970, 121.970, 185.560.



Data Set 3. Breaking Strength Data



The third data set represents breaking strengths of 100 yarn given by Duncan [41]. The data are as follows: 66, 117, 132, 111, 107, 85, 89, 79, 91, 97, 138, 103, 111, 86, 78, 96, 93, 101, 102, 110, 95, 96, 88, 122, 115, 92, 137, 91, 84, 96, 97, 100, 105, 104, 137, 80, 104, 104, 106, 84, 92, 86, 104, 132, 94, 99, 102, 101, 104, 107, 99, 85, 95, 89, 102, 100, 98, 97, 104, 114, 111, 98, 99, 102, 91, 95, 111, 104, 97, 98, 102, 109, 88, 91, 103, 94, 105, 103, 96, 100, 101, 98, 97, 97, 101, 102, 98, 94, 100, 98, 99, 92, 102, 87, 99, 62, 92, 100, 96, 98.
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Figure 1. Plots of the (a) densities, and (b) hazard rate of the NKwW model. 
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Figure 2. Plots of the skewness and kurtosis of NKwW model for different parametric values. 
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Figure 3. The surface plots of the jpdf, jhrf and the jrf of the BvNKwW model for    b 1  = 3 ,  b 2  = 3 ,     b 3  = 3 , a = 0.5 , α = 0.3   and   β = 1.5  . 
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Figure 4. The surface plots of the jpdf, jhrf and the jrf of the BvNKwW model for    b 1  = 0.3 ,  b 2  = 0.3 ,     b 3  = 0.3 , a = 1.5 , α = 0.3   and   β = 0.5  . 
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Figure 5. The surface plots of the jpdf, jhrf and the jrf of the BvNKwW model for    b 1  = 7 ,  b 2  = 7 ,     b 3  = 7 , a = 2 , α = 2.3   and   β = 0.5  . 






Figure 5. The surface plots of the jpdf, jhrf and the jrf of the BvNKwW model for    b 1  = 7 ,  b 2  = 7 ,     b 3  = 7 , a = 2 , α = 2.3   and   β = 0.5  .
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Figure 6. The plots of estimated densities for the (a) Air Conditioned Failures Data (b) Flood Data (c) Breaking Strength Data sets. 
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Figure 7. The plots of the estimated sf for the (a) Air Conditioned Failures Data (b) Flood Data (c) Breaking Strength Data sets. 
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Figure 8. The plots of estimated hazard rate for the (a) Air Conditioned Failures Data (b) Flood Data (c) Breaking Strength Data sets. 
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Figure 9. Fitted density plots for   X 1  ,   X 2   and   max (  X 1  ,  X 2  )  . 
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Figure 10. Estimated CDFs plots for   X 1  ,   X 2   and   max (  X 1  ,  X 2  )  . 
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Figure 11. pp-plots for   X 1  ,   X 2   and   max (  X 1  ,  X 2  )  . 
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Table 1. First four moments of NKwW distribution for different parametric values.
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	a
	b
	   α   
	   β   
	    μ  1  ′    
	    μ  2  ′    
	    μ  3  ′    
	    μ  4  ′    





	0.5
	2.5
	0.5
	0.5
	0.9387
	4.3451
	45.8866
	863.8300



	2.5
	2.5
	0.5
	1.5
	2.8303
	8.5624
	27.5141
	93.4544



	0.9
	1.2
	0.5
	1.8
	2.3023
	6.1339
	18.3379
	60.3563



	5.0
	3.0
	1.0
	3.0
	1.2997
	1.7046
	2.2555
	3.0102
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Table 2. Average, Bias, MSE, SD, Average SE, CP, LB and UB for scenario-I.
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    n = 50    

	

	

	

	
    n = 100    




	

	
a

	
b

	
   α   

	
   β   

	
a

	
b

	
   α   

	
   β   






	
Average

	
0.914

	
1.501

	
0.1

	
2.515

	
0.913

	
1.501

	
0.1

	
2.509




	
Bias

	
0.014

	
0.001

	
0.0

	
0.011

	
0.013

	
0.001

	
0.0

	
0.009




	
MSE

	
0.005

	
0.000

	
0.0

	
0.004

	
0.005

	
0.000

	
0.0

	
0.003




	
SD

	
0.103

	
0.031

	
0.006

	
0.067

	
0.067

	
0.014

	
0.003

	
0.046




	
Average SE

	
0.013

	
0.004

	
0.001

	
0.009

	
0.006

	
0.001

	
0.001

	
0.004




	
CP

	
0.928

	
0.886

	
1.000

	
0.997

	
0.921

	
0.879

	
1.000

	
0.995




	
LB

	
0.345

	
13.020

	
0.245

	
0.913

	
1.016

	
10.341

	
0.395

	
0.982




	
UB

	
1.350

	
15.544

	
0.576

	
2.905

	
2.301

	
12.286

	
0.792

	
3.353




	

	

	
   n = 200   

	

	

	

	
   n = 500   




	

	
a

	
b

	
  α  

	
  β  

	
a

	
b

	
  α  

	
  β  




	
Average

	
0.905

	
1.502

	
0.1

	
2.507

	
0.904

	
1.501

	
0.1

	
2.503




	
Bias

	
0.005

	
0.002

	
0.0

	
0.007

	
0.004

	
0.001

	
0.0

	
0.003




	
MSE

	
0.003

	
0.000

	
0.0

	
0.003

	
0.001

	
0.000

	
0.0

	
0.000




	
SD

	
0.062

	
0.023

	
0.003

	
0.061

	
0.028

	
0.008

	
0.002

	
0.024




	
Average SE

	
0.004

	
0.001

	
0.0001

	
0.004

	
0.001

	
0.0002

	
0.000

	
0.001




	
CP

	
0.93

	
0.910

	
1.000

	
0.99

	
0.947

	
0.988

	
1.000

	
0.982




	
LB

	
0.211

	
11.130

	
0.166

	
0.963

	
0.244

	
7.910

	
0.108

	
1.056




	
UB

	
0.983

	
14.164

	
0.452

	
2.585

	
0.795

	
11.150

	
0.366

	
2.205











[image: Table] 





Table 3. Average, Bias, MSE, SD, Average SE, CP, LB and UB for scenario-II.
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    n = 50    

	

	

	

	
    n = 100    




	

	
a

	
b

	
   α   

	
   β   

	
a

	
b

	
   α   

	
   β   






	
Average

	
2.519

	
2.775

	
0.405

	
0.831

	
2.520

	
2.775

	
0.404

	
0.821




	
Bias

	
0.019

	
−0.025

	
0.005

	
0.031

	
0.020

	
−0.025

	
0.004

	
0.021




	
MSE

	
0.168

	
0.054

	
0.007

	
0.012

	
0.148

	
0.051

	
0.006

	
0.007




	
SD

	
0.424

	
0.240

	
0.088

	
0.109

	
0.344

	
0.199

	
0.070

	
0.081




	
Average SE

	
0.058

	
0.033

	
0.012

	
0.015

	
0.039

	
0.022

	
0.007

	
0.008




	
CP

	
0.883

	
0.868

	
0.998

	
0.961

	
0.873

	
0.855

	
1.000

	
0.949




	
LB

	
13.682

	
15.354

	
3.052

	
1.379

	
6.780

	
12.997

	
1.213

	
1.269




	
UB

	
19.074

	
17.775

	
4.216

	
3.868

	
11.046

	
15.678

	
2.096

	
3.521




	

	

	
   n = 200   

	

	

	

	
   n = 500   




	

	
a

	
b

	
  α  

	
  β  

	
a

	
b

	
  α  

	
  β  




	
Average

	
2.494

	
2.801

	
0.399

	
0.809

	
2.490

	
2.800

	
0.399

	
0.806




	
Bias

	
−0.006

	
0.002

	
−0.001

	
0.009

	
−0.006

	
0.001

	
−0.001

	
0.006




	
MSE

	
0.042

	
0.012

	
0.002

	
0.003

	
0.040

	
0.011

	
0.002

	
0.002




	
SD

	
0.218

	
0.117

	
0.044

	
0.053

	
0.217

	
0.112

	
0.042

	
0.041




	
Average SE

	
0.016

	
0.009

	
0.003

	
0.004

	
0.010

	
0.005

	
0.002

	
0.002




	
CP

	
0.866

	
0.870

	
0.988

	
0.940

	
0.848

	
0.899

	
0.998

	
0.879




	
LB

	
5.042

	
9.692

	
1.056

	
0.879

	
3.450

	
8.729

	
0.547

	
0.740




	
UB

	
9.145

	
12.739

	
1.839

	
2.921

	
7.240

	
12.422

	
1.122

	
2.520
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Table 4. Average, Bias, MSE, SD, Average SE, CP, LB and UB for scenario-III.






Table 4. Average, Bias, MSE, SD, Average SE, CP, LB and UB for scenario-III.





	

	

	
    n = 50    

	

	

	

	
    n = 100    




	

	
a

	
b

	
   α   

	
   β   

	
a

	
b

	
   α   

	
   β   






	
Average

	
0.590

	
5.525

	
1.740

	
1.566

	
0.539

	
5.512

	
1.609

	
1.550




	
Bias

	
0.090

	
0.025

	
0.240

	
0.066

	
0.039

	
0.012

	
0.109

	
0.050




	
MSE

	
0.102

	
0.017

	
0.446

	
0.260

	
0.041

	
0.007

	
0.157

	
0.143




	
SD

	
0.282

	
0.111

	
0.575

	
0.474

	
0.192

	
0.077

	
0.362

	
0.364




	
Average SE

	
0.039

	
0.016

	
0.077

	
0.070

	
0.021

	
0.008

	
0.039

	
0.038




	
CP

	
0.998

	
0.849

	
1.000

	
0.998

	
0.997

	
0.851

	
1.000

	
1.000




	
LB

	
3.631

	
56.393

	
58.803

	
1.329

	
1.044

	
42.404

	
11.521

	
1.173




	
UB

	
5.319

	
60.696

	
73.584

	
3.463

	
2.259

	
46.958

	
22.151

	
3.020




	

	

	
   n = 200   

	

	

	

	
   n = 500   




	

	
a

	
b

	
  α  

	
  β  

	
a

	
b

	
  α  

	
  β  




	
Average

	
0.523

	
5.507

	
1.567

	
1.552

	
0.514

	
5.503

	
1.531

	
1.504




	
Bias

	
0.023

	
0.007

	
0.067

	
0.052

	
0.014

	
0.003

	
0.031

	
0.004




	
MSE

	
0.026

	
0.005

	
0.082

	
0.118

	
0.008

	
0.001

	
0.023

	
0.042




	
SD

	
0.148

	
0.071

	
0.256

	
0.337

	
0.086

	
0.032

	
0.142

	
0.199




	
Average SE

	
0.010

	
0.0043

	
0.017

	
0.023

	
0.004

	
0.001

	
0.006

	
0.009




	
CP

	
0.997

	
0.891

	
0.999

	
0.999

	
0.993

	
0.903

	
1.000

	
0.998




	
LB

	
0.556

	
35.430

	
7.104

	
1.033

	
0.340

	
25.285

	
4.695

	
1.009




	
UB

	
1.528

	
40.668

	
16.144

	
2.674

	
1.021

	
31.077

	
12.4051

	
2.271
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Table 5. Simulation results for the BvNKwW model.
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   n = 50   






	

	
   b 1   

	
   b 2   

	
   b 3   

	
  α  

	
  β  

	
  a  




	
Average

	
3.254

	
3.325

	
3.145

	
0.485

	
1.536

	
0.334




	
Bias

	
0.014

	
0.034

	
0.029

	
−0.015

	
0.085

	
0.074




	
MSE

	
0.024

	
0.037

	
0.019

	
0.018

	
0.035

	
0.085




	
    SD

	
0.021

	
0.031

	
0.014

	
0.012

	
0.027

	
0.079




	
    CP

	
0.857

	
0.967

	
0.898

	
0.923

	
0.991

	
0.935




	
    LB

	
2.987

	
2.854

	
2.334

	
0.259

	
1.183

	
0.227




	
    UP

	
4.117

	
4.598

	
4.969

	
0.743

	
1.887

	
0.633




	

	
   n = 100   




	

	
   b 1   

	
   b 2   

	
   b 3   

	
  α  

	
  β  

	
  a  




	
Average

	
3.165

	
3.214

	
3.098

	
0.489

	
1.523

	
0.321




	
Bias

	
0.008

	
0.023

	
0.015

	
−0.011

	
0.049

	
0.036




	
MSE

	
0.008

	
0.017

	
0.012

	
0.012

	
0.024

	
0.056




	
    SD

	
0.004

	
0.012

	
0.007

	
0.003

	
0.017

	
0.044




	
    CP

	
0.998

	
0.876

	
0.964

	
0.876

	
0.910

	
0.962




	
    LB

	
2.597

	
2.367

	
2.122

	
0.377

	
1.101

	
0.245




	
    UP

	
3.911

	
3.637

	
3.876

	
0.864

	
2.018

	
0.886




	

	
   n = 200   




	

	
   b 1   

	
   b 2   

	
   b 3   

	
  α  

	
  β  

	
  a  




	
Average

	
3.072

	
3.110

	
3.025

	
0.496

	
1.513

	
0.313




	
Bias

	
0.003

	
0.007

	
0.008

	
−0.007

	
0.013

	
0.022




	
MSE

	
0.006

	
0.009

	
0.008

	
0.007

	
0.014

	
0.037




	
    SD

	
0.001

	
0.004

	
0.002

	
0.001

	
0.007

	
0.024




	
    CP

	
0.931

	
0.894

	
0.910

	
0.883

	
0.905

	
0.899




	
    LB

	
2.157

	
2.367

	
2.110

	
0.159

	
1.017

	
0.119




	
    UP

	
4.336

	
4.980

	
4.730

	
0.969

	
2.340

	
0.887
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Table 6. Some well-established competitive models.






Table 6. Some well-established competitive models.





	Some Well—Established Models
	Abbrivations





	Kumaraswamy-Weibull
	KwW



	Beta-Weibull
	BW



	Exponentiated-generalized Weibull
	EGW



	Exponentiated Kumaraswamy-Weibull
	EKwW  



	Gamma-Weibull
	GaW



	Exponentiated-Weibull
	EW



	Weibull
	W
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Table 7. The MLEs and their SEs (in parentheses) of all competing models for Air Conditioned Failures Data set.






Table 7. The MLEs and their SEs (in parentheses) of all competing models for Air Conditioned Failures Data set.













	Model
	a
	b
	   α   
	   β   
	   θ   





	NKwW
	1.4234
	0.1476
	0.1570
	0.7035
	-



	
	(0.3004)
	(0.0123)
	(0.0093)
	(0.0059)
	-



	KwW
	6.9878
	0.1371
	0.4437
	0.6404
	



	
	(0.0674)
	(0.0104)
	(0.0033)
	(0.0026)
	-



	BW
	3.8696
	0.1436
	0.3662
	0.6566
	-



	
	(0.7402)
	(0.0124)
	(0.0047)
	(0.0063)
	-



	EGW
	1.3659
	1.6063
	0.0128
	0.7089
	-



	
	(0.8344)
	(0.4839)
	(0.0103)
	(0.1106)
	-



	EKwW
	3.5743
	0.1525
	0.1756
	0.7516
	0.8511



	
	(0.1978)
	(0.0192)
	(0.0165)
	(0.0110)
	(0.0888)



	GaW
	1.2854
	-
	0.0174
	0.7854
	-



	
	(0.3523)
	-
	(0.0082)
	(0.1273)
	-



	EW
	1.5398
	-
	0.0188
	0.7278
	-



	
	(0.4638)
	-
	(0.0068)
	(0.1143)
	-



	W
	-
	-
	0.0118
	0.9057
	-



	
	-
	-
	(0.0010)
	(0.0512)
	-
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Table 8. The MLEs and their standard errors (in parentheses) for Flood Data set.






Table 8. The MLEs and their standard errors (in parentheses) for Flood Data set.













	Model
	a
	b
	   α   
	   β   
	   θ   





	NKwW
	47.4853
	0.2245
	0.2413
	0.8860
	-



	
	(1.2203)
	(0.0747)
	(0.0365)
	(0.0898)
	-



	KwW
	54.7825
	0.2041
	0.1609
	1.0252
	-



	
	(0.1358)
	(0.0382)
	(0.0153)
	(0.0276)
	-



	BW
	23.0602
	0.1940
	0.1320
	1.1080
	-



	
	(8.7941)
	(0.0324)
	(0.0073)
	(0.0068)
	-



	EGW
	5.5966
	10.5493
	0.0090
	0.7774
	-



	
	(2.0458)
	(5.6821)
	(0.0041)
	(0.1370)
	-



	EKwW
	13.5103
	0.2625
	1.0662
	0.6682
	10.4554



	
	(1.4869)
	(0.0374)
	(0.0114)
	(0.0093)
	(3.4956)



	GaW
	14.7225
	-
	4.6144
	0.4983
	-



	
	(1.7239)
	-
	(0.1518)
	(0.0217)
	-



	EW
	113.6840
	-
	0.7698
	0.4651
	-



	
	(142.9147)
	-
	(1.0663)
	(0.1165)
	-



	W
	-
	-
	0.0171
	1.7719
	-



	
	-
	-
	(0.0015)
	(0.1776)
	-
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Table 9. The MLEs and their SEs (in parentheses) of all competing models for Breaking Strength Data set.






Table 9. The MLEs and their SEs (in parentheses) of all competing models for Breaking Strength Data set.













	Model
	a
	b
	   α   
	   β   
	   θ   





	NKwW
	10.3003
	1.9955
	0.0179
	2.0187
	-



	
	(5.5072)
	(0.9568)
	(0.0029)
	(0.3505)
	-



	KwW
	12.3850
	1.4312
	0.0143
	2.7814
	-



	
	(6.5412)
	(0.8195)
	(0.0018)
	(0.6625)
	-



	BW
	6.8561
	0.6098
	0.0133
	4.1015
	-



	
	(4.8522)
	(0.3226)
	(0.0016)
	(1.0461)
	-



	EGW
	0.4074
	8.6459
	0.0171
	3.5077
	-



	
	(0.2631)
	(5.8742)
	(0.0037)
	(0.7875)
	-



	EKwW
	1.1559
	3.1680
	0.0096
	3.0390
	6.7019



	
	(0.2743)
	(1.4522)
	(0.0013)
	(0.4169)
	(2.1035)



	GaW
	14.4806
	-
	0.0353
	2.1128
	-



	
	(2.5218)
	-
	(0.0050)
	(0.1240)
	-



	EW
	42.8741
	-
	0.0199
	2.1092
	-



	
	(21.3162)
	-
	(0.0026)
	(0.2529)
	-



	W
	-
	-
	0.0095
	7.5137
	-



	
	-
	-
	(0.0001)
	( 0.5450)
	-
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Table 10. The values of GoFS AIC, BIC, HQIC, AD, CvM, KS and KS p-value of all competing models for Air Conditioned Failures Data set.






Table 10. The values of GoFS AIC, BIC, HQIC, AD, CvM, KS and KS p-value of all competing models for Air Conditioned Failures Data set.





	

	

	

	

	

	

	

	

	
KS




	
Model

	
    −  ℓ ^     

	
AIC

	
BIC

	
HQIC

	
AD

	
CvM

	
KS

	
p-Value






	
NKwW

	
976.7081

	
1961.4160

	
1974.1660

	
1966.5860

	
0.1954

	
0.0238

	
0.0377

	
0.9615




	
KwW

	
978.2675

	
1964.5350

	
1977.2850

	
1969.7050

	
0.2925

	
0.0313

	
0.0388

	
0.9501




	
BW

	
977.0803

	
1962.1610

	
1974.9100

	
1967.3300

	
0.2001

	
0.0219

	
0.0391

	
0.9470




	
EGW

	
978.7362

	
1965.4720

	
1978.2220

	
1970.6420

	
0.5620

	
0.0878

	
0.0420

	
0.9100




	
EKwW

	
977.6941

	
1963.3880

	
1979.3250

	
1969.8510

	
0.1918

	
0.0229

	
0.0388

	
0.9505




	
GaW

	
979.8445

	
1965.6890

	
1975.2510

	
1969.5660

	
0.7633

	
0.1219

	
0.0504

	
0.7530




	
EW

	
978.8859

	
1963.7720

	
1974.3340

	
1967.6490

	
0.5957

	
0.0935

	
0.0440

	
0.8797




	
W

	
981.1477

	
1966.2950

	
1975.6700

	
1968.8800

	
0.9755

	
0.1577

	
0.0567

	
0.6123
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Table 11. The values of GoFS AIC, BIC, HQIC, AD, CvM, KS and KS p-value of all competing models for Flood Data set.






Table 11. The values of GoFS AIC, BIC, HQIC, AD, CvM, KS and KS p-value of all competing models for Flood Data set.





	

	

	

	

	

	

	

	

	
KS




	
Model

	
    −  ℓ ^     

	
AIC

	
BIC

	
HQIC

	
AD

	
CvM

	
KS

	
p-Value






	
NKwW

	
215.0072

	
438.0144

	
445.4992

	
440.8429

	
0.1725

	
0.0235

	
0.0691

	
0.9761




	
KwW

	
215.5195

	
439.0389

	
446.5238

	
441.8675

	
0.2495

	
0.0347

	
0.0834

	
0.8924




	
BW

	
216.1573

	
440.3147

	
447.7995

	
443.1432

	
0.3387

	
0.0477

	
0.0973

	
0.7538




	
EGW

	
218.1801

	
444.3601

	
451.8449

	
447.1887

	
0.6147

	
0.0913

	
0.0973

	
0.7543




	
EKwW

	
216.8837

	
443.7674

	
453.1234

	
447.3031

	
0.4183

	
0.0609

	
0.0893

	
0.8387




	
GaW

	
219.4700

	
444.9401

	
450.5537

	
447.0615

	
0.8278

	
0.1250

	
0.1176

	
0.5203




	
EW

	
216.1707

	
438.7413

	
445.9549

	
440.4627

	
0.3006

	
0.0430

	
0.0763

	
0.9428




	
W

	
225.7065

	
455.4131

	
459.1555

	
456.8273

	
1.7286

	
0.2765

	
0.1399

	
0.3048
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Table 12. The values of GoFS AIC, BIC, HQIC, AD, CvM, KS and KS p-value of all competing models for Breaking Strength Data set.






Table 12. The values of GoFS AIC, BIC, HQIC, AD, CvM, KS and KS p-value of all competing models for Breaking Strength Data set.





	

	

	

	

	

	

	

	

	
KS




	
Model

	
    −  ℓ ^     

	
AIC

	
BIC

	
HQIC

	
AD

	
CvM

	
KS

	
p-Value






	
NKwW

	
391.4242

	
790.8485

	
801.2692

	
795.0659

	
2.1765

	
0.3684

	
0.1349

	
0.0525




	
KwW

	
391.6541

	
791.3081

	
801.7288

	
795.5256

	
2.2478

	
0.3781

	
0.1372

	
0.0463




	
BW

	
392.1492

	
792.2985

	
802.7192

	
796.5159

	
2.3690

	
0.3983

	
0.1446

	
0.0305




	
EGW

	
391.8419

	
791.6838

	
802.1045

	
795.9012

	
2.3105

	
0.3878

	
0.1417

	
0.0361




	
EKwW

	
393.8688

	
797.7376

	
810.7635

	
803.0094

	
2.3206

	
0.3892

	
0.1544

	
0.0170




	
GaW

	
393.0037

	
792.0073

	
799.8228

	
795.1704

	
2.5727

	
0.4276

	
0.1511

	
0.0208




	
EW

	
393.8216

	
793.6431

	
801.6586

	
796.8062

	
2.4039

	
0.4211

	
0.1363

	
0.0505




	
W

	
404.7118

	
813.4235

	
818.6339

	
815.5323

	
4.7488

	
0.7985

	
0.1978

	
0.0008
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Table 13. The   −  ℓ ^   , KS and KS p-values for   X 1  ,   X 2   and   max (  X 1  ,  X 2  )  .






Table 13. The   −  ℓ ^   , KS and KS p-values for   X 1  ,   X 2   and   max (  X 1  ,  X 2  )  .





	

	
    X 1    

	
    X 2    

	
    max (  X 1  ,  X 2  )    






	
Model

	
   − ℓ   

	
KS

	
KS p-Value

	
   − ℓ   

	
KS

	
KS p-Value

	
   − ℓ   

	
KS

	
KS p-Value




	
NKwW

	
164.7087

	
0.1037

	
0.8212

	
163.6799

	
0.1165

	
0.6973

	
166.1881

	
0.1288

	
0.5716
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Table 14. The MLEs with its SE and GoFS for UEFA Champion’s League data.






Table 14. The MLEs with its SE and GoFS for UEFA Champion’s League data.





	

	
Model






	
Statistic

	
BvNKwW

	
BvW

	
BvExW

	
BvGPW

	
BvExMW

	
BvOWE

	
BvExWGz




	
    b 1  ^   

	
18.963

	
0.397

	
1.227

	
3.229

	
0.167

	
0.135

	
0.5474




	
SE

	
0.025

	
0.063

	
0.772

	
4.252

	
0.281

	
   1.4 ×  10  − 3     

	
0.9043




	
    b 2  ^   

	
17.646

	
0.274

	
0.382

	
1.983

	
0.061

	
0.302

	
0.1920




	
SE

	
0.635

	
0.066

	
0.356

	
2.580

	
0.101

	
0.0001

	
0.3137




	
    b 3  ^   

	
37.392

	
0.339

	
0.661

	
4.084

	
0.139

	
0.265

	
0.4437




	
SE

	
0.985

	
0.067

	
0.454

	
5.340

	
0.227

	
   9.0 ×  10  − 4     

	
0.7173




	
   α ^   

	
4.689

	
0.083

	
0.012

	
0.037

	
85.918

	
0.025

	
0.4109




	
SE

	
0.098

	
0.025

	
0.033

	
0.048

	
33.829

	
   9.8 ×  10  − 3     

	
1.9960




	
   β ^   

	
0.166

	
–

	
1.268

	
–

	
4.505

	
–

	
0.0797




	
SE

	
   0.007   

	
−

	
0.609

	
–

	
6.924

	
–

	
1.2465




	
   a ^   

	
14.473

	
–

	
–

	
–

	
0.025

	
1.094

	
0.0048




	
SE

	
0.743

	
–

	
–

	
–

	
0.054

	
   2.9 ×  10  − 5     

	
0.0325




	
   ϑ ^   

	
–

	
–

	
–

	
–

	
–

	
–

	
1.3582




	
SE

	
–

	
–

	
–

	
–

	
–

	
–

	
1.3611




	
   − ℓ   

	
287.666

	
346.00

	
298.930

	
344.76

	
294.135

	
291.129

	
294.610




	
AIC

	
587.332

	
700.00

	
607.860

	
697.53

	
600.280

	
592.259

	
603.220




	
BIC

	
596.997

	
706.44

	
615.914

	
703.97

	
609.945

	
600.313

	
07.082




	
HQIC

	
590.739

	
702.27

	
610.699

	
699.79

	
603.687

	
595.099

	
607.195
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