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Abstract: This paper presents a new method of removing mismatches of redundant points based
on oriented fast and rotated brief (ORB) in vision simultaneous localization and mapping (SLAM)
systems. On the one hand, the grid-based motion statistics (GMS) algorithm reduces the processing
time of key frames with more feature points and greatly increases the robustness of the original
algorithm in a complex environment. On the other hand, aiming at the situation that the GMS
algorithm is prone to false matching when there are few symmetry feature point pairs, the random
sample consensus (RANSAC) algorithm is used to optimize and correct it. Experiments show that
the method we propose has an average error correction rate of 28.81% for individual GMS while the
time consumed at the same accuracy threshold is reduced by 72.18% on average. At the same time,
we compared it to locality preserving matching (LPM) and progressive sample consensus (PROSAC),
and it performed the best. Finally, we integrated GMS-RANSAC into the ORB-SLAM2 system for
monocular initialization, which results in a significant improvement.

Keywords: visual SLAM; ORB-SLAM2; GMS; RANSAC; feature matching

1. Introduction

With the proposal and popularization of intelligence in robotics, this also accelerates
the development of simultaneous localization and mapping (SLAM), which plays an im-
portant role in applications such as service robots, VR, 3D reconstruction and autonomous
navigation platforms. Depending on the kinds of sensors, we usually divide SLAM into two
main categories. One is based on a laser. The distance and angle of markings in adjacent
keyframes is used to estimated position and motion with Rao-Blackwellized Particle Filter
in the robot coordinate system [1]. The other category is vision SLAM, which can be carried
out by using just a monocular camera. With good robustness and accurate recognition in
position, these cameras which provide rich environmental information are also cheap.

MonoSLAM [2] is the first real-time monocular vision SLAM system, in which the
Extended Kalman Filter (EKF) [3] is used as the back-end to track the sparse feature points
at the front-end. In 2007, Klein et al. proposed Parallel Tracking and Mapping (PTAM) [4]
that realized the parallelization of the tracking and drawing process and used nonlinear
optimization instead of conventional filters at the back-end. ORB-SLAM [5] was put
forward in 2015. It has good versatility for supporting monocular, stereo and RGB-D. In the
traditional feature point method of the SLAM process, feature matching is a critical step
in visual SLAM [6], which fixes an issue with data association in SLAM. This means the
correspondence was determined between a road sign that is currently seen and before it was
seen. By accurately matching the description subs between the image and the image or the
map [7], we can reduce a lot of burden for subsequent attitude estimation, optimization and
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other operations. However, due to the local characteristics of image features, mismatches
are widespread, and this has not been effectively solved for a long time [8]. At present, it
has become a bottleneck in visual SLAM that restricts performance improvement [9].

As Figure 1 shows, researchers usually estimate the Fundamental matrix and Homog-
raphy matrix [10], and then choose the one which has smaller reprojection error to perform
the exercise estimation. We prefer to use random sample consensus (RANSAC) [11] tech-
niques when there may be mismatches. To meet the corresponding accuracy requirements
when processing large amounts of data, the number of iterations must be increased, which
greatly increases the time it takes to match images [12]. The response time has a great
impact on real-time performance [13], and its reduction will sacrifice the accuracy of the
SLAM system. Therefore, it is difficult to improve the response time and accuracy at the
same time when the amount of data is large.
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Figure 1. Partial flow of feature point method in SLAM.

This paper presents a new method in which grid-based motion statistics (GMS) [14]
and RANSAC techniques are introduced to eliminate the incorrect matches. The GMS
algorithm reduces the processing time of key frames with more feature points and greatly
increases the robustness of the original algorithm in a complex environment. On the other
hand, aiming at the situation that the GMS algorithm is prone to false matching when there
are few feature points, the proposed algorithm can correct it. By experimental comparison,
GMS-RANSAC improved the accuracy of GMS by about 28.81% and saved RANSAC
about 72.18% of the time by setting the RANSAC threshold instead of setting the number
of iterations.

Finally, we projected the method to create a new initializer based on the ORB-SLAM2 [15]
system for monocular initialization, in which the number of the RANSAC model is de-
creased significantly. Figure 2 presents the initialization process for new design. The
number of models is rapidly controlled within a corresponding range by GMS and cancel-
ing the number of iterations makes optimization global to achieve a better model, which
results in a significant improvement.
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The remainder of the paper is organized as follows: Section 2 describes related work.
In Section 3, we present our algorithm. The results are evaluated in Section 4. Section 5
concludes the paper. The source code of the demo is at https://github.com/fycie/demo.git,
accessed on 10 March 2022.

2. Related Work
2.1. RANSAC

RANSAC is used to randomly find a few points from all observations to fit the model
and calculate the residuals of the model and all observation data in turn. All points will be
judged as intrinsic points and be counted when they are less than a given threshold. On
the contrary, a point could be judged as an outer point. Then, a few points are randomly
selected to fit the model iteration again. If the number of fit inner points is larger than the
previous model, the old is iterated into the new one.

The traditional RANSAC algorithm needs to set an upper bound of iteration value
and error threshold, calculate the transformation matrix H1 through four symmetry pairs
of sample data, and record it as a data detection model M1 which is used to measure all of
the points and calculate the reprojection error. When the error is less than the set threshold,
this point is classified as an inner point and added to the set of inner points. If the current
set of inner points is more than the optimal, the current set is updated to the optimal set
of inner points. Then, we update the number of iterations n. The process ends when the
current is greater than the set number of iterations, otherwise the above steps are repeated
and iterations are set to n + 1. It is expressed as:

N =
lg(1− p)

lg(1− φm)
(1)

If a maximum overlap is not set in advance generation value, the iterations will
continue in this process. The optimal solution obtained at the end is determined by the
limitation of the number of iterations, and the upper limit of the number of iterations is
strongly consistent with the probability of obtaining the best model, which means the
greater the upper limit of the number of iterations, the greater the probability of obtaining
the best model. Although the iterations are increased at the same time, it slows down the
algorithm. In the ORB-SLAM2 system, RANSAC rudely iterates a smaller number of times
to ensure that the response time meets the real-time requirements. The proposed method is
not to limit the number of iterations, but to set the threshold to ensure the accuracy of the
results. No matter how large the amount of data is, in our method the GMS algorithm can
quickly filter data to prepare for the RANSAC algorithm. Figure 3 shows the example of
RANSAC algorithm.
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2.2. GMS

Combining smoothness constraints into feature matching is known to enable super
robust matching. However, it was complex and time-consuming for us to succeed in
this process in the past. GMS proposes a simple method to illustrate motion smoothness
as a number of matching statistical possibilities in an area, which makes high-quantity
matching with displacement have a high match quality. This provides a real-time, robust
matching system. Evaluation of a video with low texture, blur and wide baselines (a
pair of images that can be thought of as rotating displacements) shows that GMS exceeds
other real-time matching methods and achieves the same effect as more complex, slower
matching methods.

The key idea of GMS technology is to combine motion smoothing constraints (adjacent
pixels of images from different viewpoints share similar motion) [12] into a statistical
framework to reject wrong matching. The motion smoothing assumption means that the
real matching neighborhood view is the same 3D region. Formally, the number of similar
neighbors is used to identify good correspondences. The flaw in the model is that when
there are few points within each grid, confidence of neighborhoods is low, which may lead
to a large number of error results. By fusing RANSAC, the proposed approach is more
robust than GMS when faced with a dataset containing errors.

2.3. LPM

Locality preserving matching (LPM) [16] is to maintain the local neighborhood struc-
tures of those potential true matches. It derives a closed-form solution with linearithmic
time and linear space complexities in which the problem was formulated into a mathe-
matical model [17]. It utilizes a more relaxed geometric constraint, yet it achieves surpris-
ingly excellent performance and becomes the most popular performer considering the
time cost [18]. Compared with LPM, our method obtains better performance in accuracy
and runtime.

3. Methodology
3.1. Workflow of the Method

Figure 4 shows the workflow of the proposed method. Specifically, the main workflow
is as follows:

(1) Firstly, the ORB feature points of two images are extracted, respectively;
(2) Then, the ORB features are matched by Hamming distance of descriptor;
(3) Thirdly, the results of the previous step are roughly screened by GMS algorithm,

which makes the number of matches greatly reduced;
(4) Finally, the outliers are further removed by setting the random sampling consistency

of the threshold.

As shown in Figure 4, first, the same number of ORB feature points was created to
match two images I = {I1, I2}. We recorded their horizontal and vertical coordinates as kpi,
so that KPi = {kp1, kp2, . . . , kpn}. Secondly, by calculating the Hamming distance of ORB
features, we found the corresponding matching points through I2 in the order in which
the feature points were stored in KP1 and then recorded their serial numbers in the KP2.
mi is the number of KP2, which is matched to kpi in KP1. If there were no points matched,
mi = −1. After that, we would obtain M1 = {m1, m2, . . . , mn} and then

Fgms(i, mi) =

{
−1, mi ≤ 0
fgms(i, mi), mi > 0

(2)

We used Equation (2) that is GMS to set the value of mi which did not meet the
requirements to −1.
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According to the idea of GMS algorithm, the image was divided to be matched into
G×G grids, and we set G to 20 in this paper. M2 = {m1, m2, . . . , mn}was obtained through
GMS. Then, we sorted out the data. When mi 6= −1, we set

pn = f (i, mi) (3)

As a result, Pg = {p1, p2, . . . , pn}, which was prepared for RANSAC. After normaliz-
ing the points, we used RANSAC algorithm to calculate the Homography matrix, and set
the threshold of the algorithm to 5. According to the same form before, the outer points
were eliminated by re-projection error. Finally, we obtained Pg+r = {p1, p2, . . . , pn}, which
are excellent matches.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 13 
 

 

(3) Thirdly, the results of the previous step are roughly screened by GMS algorithm, 
which makes the number of matches greatly reduced; 

(4) Finally, the outliers are further removed by setting the random sampling consistency 
of the threshold. 

 
Figure 4. The workflow of the proposed method. 

As shown in Figure 4, first, the same number of ORB feature points was created to 
match two images 1 2{ , }I I I . We recorded their horizontal and vertical coordinates as 

ikp , so that 1 2{ , ,..., }i nKP kp kp kp . Secondly, by calculating the Hamming distance of ORB 
features, we found the corresponding matching points through 2I  in the order in which 
the feature points were stored in 1KP  and then recorded their serial numbers in the 2KP
. im  is the number of 2KP , which is matched to ikp  in 1KP . If there were no points 
matched, 1im   . After that, we would obtain  1 1 2, ,..., nM m m m  and then 

1, 0
( , )

( , ), 0
i

gms i
gms i i

m
F i m

f i m m
   

 (2)

We used Equation (2) that is GMS to set the value of im  which did not meet the 
requirements to −1. 

According to the idea of GMS algorithm, the image was divided to be matched into
G G  grids, and we set G to 20 in this paper.  2 1 2, ,..., nM m m m  was obtained through 
GMS. Then, we sorted out the data. When 1im   , we set 

( , )n ip f i m  (3)

As a result, 1 2{ , ,..., }g nP p p p , which was prepared for RANSAC. After normalizing 
the points, we used RANSAC algorithm to calculate the Homography matrix, and set the 
threshold of the algorithm to 5. According to the same form before, the outer points were 
eliminated by re-projection error. Finally, we obtained 1 2{ , ,..., }g r nP p p p  , which are 
excellent matches. 

  

Figure 4. The workflow of the proposed method.

3.2. GMS Mismatch Correction

Figure 5 presents false matches of GMS in left picture when 2000 features are created,
and the matches are corrected in the right image after RANSAC. RANSAC takes only
0.68 ms and improves 42% percent of accuracy at the criterion of the RANSAC threshold
of 5.
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Then, GMS was compared with GMS-RANSAC at different numbers of ORB feature
points. Figure 6 shows that GMS-RANSAC becomes more effective with the number of
points increasing, and the great gap from 1000 to 2000 is the weaknesses of the GMS.
The trend of optimization also reflects changes in GMS accuracy. We processed the data
according to the threshold value of 5. The highest point occurs when the number of ORB
feature points is 5000, and the accuracy is 59.76%. Each of feature points were matched for
record, and then set as Qi = {X1, X2, . . . , Xn}. The maximum and minimum values in Qi
were removed for analysis.

Qi =

n
∑

i=1
Xi

n
(4)

The average improvement efficiency A is about 54.24%.

A =

n
∑

i=1
Qi

n
(5)
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3.3. The Acceleration of RANSAC

GMS for continuity-based neighborhood search matching can quickly reduce a large
number of coarse matches. Time of different matching methods was measured by taking
same number of ORB feature points from the same two pictures, and numbers of fine
matches were recorded.

As Figure 7 shows, RANSAC takes more time with ORB feature points increasing at
the same RANSAC threshold. For example, after rough matching, outliers are removed by
the RANSAC algorithm. It takes 64.23 ms to reach the standard algorithm with a threshold
of 5 based on 1000 ORB features, but the method proposed only takes 1.86 ms in total. GMS
consumed 1.18 ms and other times are RANSAC In addition, through the calculation from
1000 to 10,000 feature points at 1000 intervals, the average time consumed was reduced
by 94% in parallel to RANSAC. Because GMS rapidly reduces the number of matches, the
number of RANSAC reaching the 5 threshold is greatly reduced. This is the reason why
the time required by RANSAC algorithm was reduced.



Symmetry 2022, 14, 849 7 of 12

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 13 
 

 

1

n

i
i

i

X
Q

n



 (4)

The average improvement efficiency A is about 54.24%. 

1

n

i
i
Q

A
n




 (5)

3.3. The Acceleration of RANSAC 
GMS for continuity-based neighborhood search matching can quickly reduce a large 

number of coarse matches. Time of different matching methods was measured by taking 
same number of ORB feature points from the same two pictures, and numbers of fine 
matches were recorded. 

As Figure 7 shows, RANSAC takes more time with ORB feature points increasing at 
the same RANSAC threshold. For example, after rough matching, outliers are removed 
by the RANSAC algorithm. It takes 64.23 ms to reach the standard algorithm with a 
threshold of 5 based on 1000 ORB features, but the method proposed only takes 1.86 ms 
in total. GMS consumed 1.18 ms and other times are RANSAC In addition, through the 
calculation from 1000 to 10,000 feature points at 1000 intervals, the average time consumed 
was reduced by 94% in parallel to RANSAC. Because GMS rapidly reduces the number of 
matches, the number of RANSAC reaching the 5 threshold is greatly reduced. This is the 
reason why the time required by RANSAC algorithm was reduced. 

 
Figure 7. The cost time of two methods. 

4. Experiments 
The experiments were conducted on a 4-threaded, 4-RAM virtual machine 

ubuntu16.04 installed by VMware Workstation Pro under intel i5-8400 CPU, 16G RAM, 
256G SSD desktops and C++ code. 

4.1. GMS-RANSAC for Correspondence Selection 
In order to evaluate GMS-RANSAC performance comprehensively, we 

experimented with different local features and different number of points. Two frames 

Figure 7. The cost time of two methods.

4. Experiments

The experiments were conducted on a 4-threaded, 4-RAM virtual machine ubuntu16.04
installed by VMware Workstation Pro under intel i5-8400 CPU, 16 G RAM, 256 G SSD
desktops and C++ code.

4.1. GMS-RANSAC for Correspondence Selection

In order to evaluate GMS-RANSAC performance comprehensively, we experimented
with different local features and different number of points. Two frames were selected from
a range of datasets for experimental comparison to simulate the operation of scenarios.

4.1.1. Datasets and Metrics

It consists of 2 datasets, including TUM [19] and KITTI [20], which provide indoor
scenes and street views. We calculated the ratio by counting the time spent by the algorithm
and the number of good matches obtained in Section 3. Figure 8 presents the comparison
of RANSAC and GMS-RANSAC in different datasets at 3000 feature points, and a.1, b.1
and c.1 represent the results of RANSAC under TUM and KITTI. The other results are
GMS-RANSAC’s. We evaluate the two methods by comparing the number of matches and
the time it takes.
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4.1.2. Experimental Results

It can be seen from Figure 9a that the matching numbers of RANSAC are more than
GMS and GMS-RANSAC. As the number of ORB points increases, all three methods
gradually increase, and the gap between RANSAC and the other two methods increases.
GMS-RANSAC is slightly higher than GMS around 8000 points of ORB features on KITTI
in Figure 9b. Figure 9c shows the results on TUM dataset in which the total number filtered
by the method is lower than that of the other two datasets.
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Figure 9a–c shows that the number of GMS-RANSAC results is similar to the number of
high-quality matches obtained by the original RANSAC method. Using Equations (4) and (5),
we summarize the correction rate of the above GMS-RANSAC compared to the GMS.
The data show that the number of matches obtained after GMS processing is greater than
RANSAC. However, when further filtered with the same threshold RANSAC, the resulting
number of fine matches is not much different from the original.

As can be seen in Figure 10a, the cost time of three methods increases with the increas-
ing number of ORB features on TUM desk. All three algorithms reach their maximum
values at 10,000 ORB features. It can be seen in Figure 10b that there are several inflection
points in RANSAC on KITTI. The extremum of RANSAC is 32.735 ms at 3000, and the
time consumed by the three algorithms is relatively close when ORB feature points are
1000–2000 (Figure 10c). The gap becomes increasing gradually with the number of ORB
features rising.
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Figure 10a–c present that as the ORB feature points increase, the time consumed by
RANSAC increases linearly. In contrast, the time required for GMS stabilized at 1–2ms.
GMS-RANSAC, where the growth of GMS-RANSAC is stabilizing.

As shown in Table 1, the method we propose has an average error correction rate of
28.81% for individual GMS. On the other hand, there is a reduction of about 72.18% in time
for individual RANSAC. Overall, it is a significant improvement in feature matching. The
effect of GMS-RANSAC is most pronounced on the TUM dataset, and the maximum of
correction rate between GMS and GMS-RANSAC is 30.94%. The time reduction maximum
between GMS and GMS-RANSAC is 84.54%. It plays an important role in both ways.

Table 1. Data obtained from three sets of experiments.

Datasets Correction Rate for GMS
GMS-RANSAC

Time Reduction for RANSAC
GMS-RANSAC

TUM desk [19] 28.28% 67.94%

KITTI [20] 27.23% 64.07%

TUM [19] 30.94% 84.54%

Average value 28.81% 72.18%

4.1.3. Comparisons

Table 2 reports the experimental results for PROSAC [21], LPM and GMS-RASAC.
Here, we mainly compare algorithms in terms of %Precision, %Recall and time cost after
RANSAC-based outlier removal.

Table 2. Experimental results of three algorithms under 2000 ORB features.

Datasets PROSAC [21] LPM [16] GMS-RANSAC

TUM desk [19]
%Precision 88.05 71.94 88.74

%Recall 100.00 84.77 93.98
Cost time (ms) 28.39 25.93 3.23

KITTI [20]
%Precision 91.53 57.55 86.86

%Recall 100.00 84.77 87.18
Cost time (ms) 27.89 23.94 2.89

TUM [19]
%Precision 93.29 77.42 89.27

%Recall 90.41 88.29 90.93
Cost time (ms) 29.47 24.96 3.17

All the above results demonstrate that GMS-RANSAC can show better performance
with LPM using the same feature correspondences as input. Although PROSAC is outstand-
ing, it is less stable at runtime with different number of points and consumes more time.

4.2. The New Initializer Based on ORB-SLAM2

To save computing resources, we inserted GMS-RANSAC in SearchForInitialization.
According to its original practice,vmatched12[i] at the outer point was set to −1 to mark it.
Furthermore, the number of iterations of the original group was replaced by the threshold
method, which was integrated into the initialization of ORB-SLAM2. The number of
iterations and the parallax angle of the initialization decision were changed to keep system
stability. We set the number of iterations of the original system from 200 to 300 and adjusted
the parallax angle limit from 0.36 to 0.2 to test the initializer.

4.2.1. Datasets and Metrics

Because the monocular initialization in KITTI datasets was easy, we chose TUM
dataset freiburg1_xyz and freiburg1_desk as the datasets for this experiment, and this was
beneficial for us to identify the ability of initializers. In each test, we measured (1) how
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many 3D points were triangulated; (2) how much time the algorithm cost. In addition,
we calculated the ratio of the number of points to the initialization time to evaluate the
efficiency of the initializers.

4.2.2. Experimental Results

Table 3 shows the results, in which RANSAC is in parallel to GMS-RANSAC based on
the original initializer. The results show that the proposed initializer can significantly im-
prove the initialization efficiency and make the 3D map denser. This is of great significance
for the ORB-SLAM2 system, especially when they meet the complex texture environment.
The proposed method can greatly increase the robustness of the system.

Table 3. Modified ORB-SLAM2 initialization results on the TUM dataset freiburg1_xyz (R:RANSAC
G-R:GMS-RANSAC #3D Points: points by triangulation).

ORB Numbers #3D Points
R G-R

Initialization Time (ms)
R G-R

Rate (Points/Time)
R G-R

1000 109 141 17.4 13.9 6.3 10.1

2000 127 217 30.9 30.7 4.1 6.5

3000 143 326 55.3 50.2 2.6 6.5

4000 107 392 74.5 69.1 1.4 5.7

5000 131 454 85.5 84.8 1.5 5.4

6000 179 970 104.6 133.6 1.7 7.3

7000 672 979 110.9 130.2 6.1 7.5

8000 209 973 122.6 132.8 1.7 7.3

9000 210 973 128.9 139.4 1.6 6.9

10000 210 973 129.1 133.9 1.6 7.3

Table 4 presents that the original initializer tends to be stable in the number of tri-
angulated map points while our proposed method increases steadily. Although the time
will increase significantly with the increase of 3D points after 3000 ORB points, the rate
is always higher than the original. Figure 11 presents the experimental scenarios under
different datasets.

Table 4. Modified ORB-SLAM2 initialization results on the TUM dataset freiburg1_desk (R:RANSAC
G-R:GMS-RANSAC #3D Points: points by triangulation).

ORB Numbers #3D Points Numbers
R G-R

Initialization Time (ms)
R G-R

Rate (Points/Time)
R G-R

1000 102 108 21.8 13.6 4.7 8.0

2000 166 171 28.9 27.4 5.7 6.2

3000 125 314 33.9 50.0 3.7 6.3

4000 103 411 32.5 76.6 3.2 5.4

5000 103 451 42.6 97.0 2.4 4.6

6000 103 556 34.9 132.1 3.0 4.2

7000 103 610 34.9 146.9 2.9 4.2

8000 103 665 31.8 158.3 3.2 4.2

9000 103 616 33.3 138.6 3.1 4.4

10000 103 616 32.6 138.7 3.1 4.4
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dataset freiburg1_desk.

5. Conclusions

This paper proposes a fast correspondence selection algorithm which combines GMS
and RANSAC. Consequently, it can make up for the shortcomings of the original two
algorithms used alone and make them more robust, especially when the ORB features are
too many or too little. Moreover, experiments show that the method we propose has an
average error correction rate of 28.81% for individual GMS while the time consumed at the
same accuracy threshold is reduced by 72.18% on average. This was also verified in the
ORB-SLAM2 system, in which it shows its great potential in real-time applications.

We think that the RANSAC in ORB-SLAM2 is quantitative from the method. As
experiments show, it can handle a peak of 3000, which does not fully utilize the acquired
image information. This paper proposes a new method of global optimization, which can
greatly improve the robustness of the system in a complex environment. We are simply
using the Homography matrix for experiments at present, and a new contrast structure
will be designed on the Homography matrix and the Fundamental matrix to improve the
monocular initialization in the future. In addition, we are considering replacing bag of
words (BOW) with GMS-RANSAC to make great progress in real time of the SLAM system.
Furthermore, mapping needs to be further developed, and building more reliable and
dense maps to support navigation is also the core pursuit of the SLAM system.
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