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Abstract: This article is oriented to the application of generalized type-2 fuzzy systems in the dynamic
adjustment of the parameters of a recent metaheuristic based on nature that follows the rules of
the best feeding strategies of predators and prey in ecosystems. This metaheuristic is called fuzzy
marine predator algorithm (FMPA) and is presented as an improved variant of the original marine
predator algorithm (MPA). The FMPA balances the degree of exploration and exploitation through its
iterations according to the advancement of the predator. In the state of the art, it has been shown
that type-2 fuzzy increases metaheuristic performance when adapting parameters, although there
is also an increase in the execution time. The FMPA with generalized type-2 and interval type-2
parameter adaptations was applied to a group of benchmark functions introduced in the competition
on evolutionary computation (CEC2017); the results show that generalized FMPA provides better
solutions. A second case for FMPA is also presented, which is the optimal fuzzy control design, in the
search for the optimal membership function parameters. A symmetrical distribution of these functions
is assumed for reducing complexity in the search process for optimal parameters. Simulations were
carried out considering different degrees of noise when analyzing the performance when simulating
each of the used fuzzy methods.

Keywords: generalized type-2 fuzzy; fuzzy control; mobile robots; marine predator algorithm; shark
smell optimization

1. Introduction

In this article, a particular metaheuristic is considered: the marine predator algorithm
(MPA), which can be considered a robust metaheuristic that has many advantages, for
example, simple procedures, few design variables, flexibility, high level of convergence,
almost global solution, and gradient-free attributes [1]. In addition, the MPA has been
applied in diverse areas and has shown effective results, in which it has already been com-
pared in previous studies in different problems, such as the prediction of COVID-19, and in
control. Some of the studies that have considered this algorithm are the following: the first
discussed a new integration between a neuro-fuzzy model and the marine predator opti-
mization algorithm, with a search for optimal system parameters to increase biomethane
gas production [2]. A hybrid computational intelligence approach for structural damage de-
tection using the marine predator algorithm and feedforward neural networks is described
in [3]. The following study implemented an MPA-based design for large-scale photovoltaic
(PV) systems to achieve maximum power under partial shading conditions in [4]. The
marine predator algorithm is proposed for solving transcendental nonlinear equations in
a selective harmonic elimination technique using a multilevel inverter (MLI) [5]. In the
search for the optimal values of the commutation angles with MPA, it is applied to control
a three-phase motor of 11 levels using a cascade H-bridge (CHB) topology in the control
of the fundamental component and cancel the low-order harmonics to all modulation
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index values from 0 to 1 [5]. The marine predator algorithm is used to optimize the gains
as well as the input scaling factors and membership functions of a proposed fuzzy PID
controller in [6]. A novel technique for multilevel thresholding of digital image segmen-
tation by combining fuzzy entropy type-II (FE-TII) with a metaheuristic marine predator
algorithm is proposed in [7]. A new short-term COVID-19 forecast model is proposed
using an improved version of the adaptive neuro-fuzzy inference system (ANFIS); then an
improved MPA, called chaotic MPA (CMPA), is applied to improve the ANFIS and avoid its
deficiencies [8]. More recently, a hybrid COVID-19 detection model based on an improved
marine predator algorithm (IMPA) and a ranking-based diversity reduction strategy is
proposed for X-ray image segmentation with the aim of rapidly extracting from chest X-ray
images the similar small regions that may contain the identifying features of COVID-19 [9].

Some researchers have proposed implementing the fuzzy logic controller (FLC) in par-
allel with conventional controllers to improve overall system performance [10–13]. A trend
that has occurred in recent years is that fuzzy controllers are optimized using metaheuristic
approaches and, in this way, optimally achieve a parameter setting and therefore reduce
the proposed objective function since the best is not usually achieved [14,15]. Although
these techniques can be very competitive, they do not necessarily obtain better times and
computational costs with their application [16]. The fuzzy controller input variables are
determined by combinations of membership functions known as fuzzy sets, and their
parameter values can be metaheuristically tuned to produce the desired performance re-
quired by the system [17]. The area of fuzzy logic continues to advance, since recently an
investigation was presented in which dynamic fractional order models are obtained from
an extension to general type-2 fuzzy systems, which are called interval type-3 fuzzy logic
systems (IT3FLS) [18].

In previous control investigations, different variants of algorithms have been presented
to adapt the parameter values of the membership functions of the fuzzy controller, such
as the hybrid harmony search and differential evolution algorithm for the optimal design
of fuzzy controllers [19,20], and the optimization of type-2 and type-1 fuzzy controllers
utilizing the shark smell optimization algorithm is described in [17]. In addition, to control
an inverted pendulum system in [21], the optimal parameter estimation of a controller for
an autonomous mobile robot for adjusting a fuzzy controller using the firefly algorithm is
described in [22], and an optimization of interval type-2 fuzzy controllers with parameter
adaptation utilizing fuzzy systems (of the interval type-2 and type-1 form) for the optimiza-
tion of the fuzzy controller of an autonomous mobile robot is presented in [23]. In addition,
fuzzy parameter adaptation of the grey wolf algorithm is offered in [24]. A variant of
differential evolution applying shaded and general type-2 systems for adjustment of the
main parameter of an evolutionary technique is presented in [25], a comparison applying
the multiverse optimizer and also varying the parameter values of the principal points in
each membership function, its comparison with other algorithms in the optimization of
fuzzy controllers, and benchmark problems in [26], An improved hybrid IT2FLC design
was proposed for the design of a fuzzy controller based on a variant of the shark smell and
salp swarm algorithms with parameter adaptation for the benchmark problem of a DC
motor. Additionally, test runs on CEC2017 benchmark functions are presented in [27].

Research has been developed that suggests the use of generalized type-2 fuzzy systems
(GT2FLSs) in the control area or in other more complex endeavors. In addition, very few
related works have been developed that apply optimization techniques to formulate an
optimal GT2FLS. In addition, the concepts of GT2FLS and the representation of planes
(α cuts) as a mechanism to increase their ability to find solutions to problems of different
complexity have been recently applied [28–33]. It has been established in previous research
how much type-2 fuzzy systems help when utilized, as they increase the performance
of metaheuristics by dynamically adapting the parameters through their executions [34].
However, there is a limitation when using fuzzy logic in the variation of parameters that
we get longer execution times for metaheuristics.
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Therefore, the application of the FMPA metaheuristic in solving complex problems has
been established with the guidance of previously referenced works as the main motivation
of this research, since in the state of the art, there are few works that deal with metaheuristics
inspired by nature and using parameter adjustment based on a GT2FLC. Appealing to the
robustness, as a property of the GT2FLS, we use it as a tool to find the best values of the P,
FADs, and CF parameters of the MPA algorithm.

The greatest contribution of this research, analyzing the divergence from previous
works in the literature, was to develop a comparative analysis by taking the different types
of FLSs, in the optimal tuning of the main parameters of the marine predator algorithm,
for the functionality of fuzzy controllers and, finally, for the improvement of results for
CEC2017 benchmark functions. Furthermore, the results obtained from the executions
with the marine predator algorithm based on the adaptation of generalized type-2 FLC
parameters show a great improvement. The generalized type-2 FLS (FMPAGT2) is by far
more efficient than the original MPA algorithm and its fuzzy counterparts, the interval
type-2 and type-1 FLS (FMPAIT2 and FMPAT1), in finding better parameter values.

Therefore, hybridization is an important contribution of this work, as GT2FLSs are
combined with marine predator algorithm to propose a novel variant of MPA to help in the
exploration of optimal fuzzy controllers and the optimal search for results in the CEC2017
benchmark functions. It was assumed that a goal was a better treatment and handling of
uncertainty in optimization problems, in addition to presenting a comparison between
T1FLC, IT2FLC, and GT2FLC for the development of optimal fuzzy controllers and the
application of fuzzy systems in the search for the key parameter values in the marine
predator algorithm implemented for the optimization of benchmark functions.

The composition of the document is as follows: Section 2 outlines a background of
the types of fuzzy systems used in this work. Section 3 puts forward the proposal for the
improvement on the optimization of fuzzy systems. Section 4 presents the case studies:
CEC2017 benchmark functions and fuzzy controller design, in addition to the formulation
of the objective function. Section 5 describes a compilation of results of experimentation
with both case studies: CEC2017 benchmark functions and mobile robot fuzzy controller
optimization. Section 6 offers conclusions and possible future works.

2. Fuzzy Systems

Fuzzy logic systems (FLSs) have advanced through the years since their inception in
1965 with a type-1 fuzzy logic system (T1FLS) to represent the vagueness in the real world,
as a methodology for control, as well as the application of mathematical models to emulate
human understanding, industrial developments, electronic applications, medical opinion
systems, and robotics, to name a few. Later, due to the interest in managing uncertainties,
what we now know as type-2 fuzzy logic did emerge, which has steadily evolved to the
present day.

Although the area of fuzzy logic continues to advance, recently, an investigation was
presented in which dynamic fractional-order models were obtained from an extension of
general type-2 fuzzy systems, which are called interval type-3 fuzzy logic systems (IT3FLS),
where the secondary membership function (SMF) is an interval type-2 fuzzy set (FS). Values
of a tertiary membership are unity over the footprint of uncertainty (FOU) of secondary
membership [35]. A proposed novel method based on interval type-3 fuzzy logic systems
(IT3-FLSs), an online learning approach for solar energy management systems, is described
in [18]. Finally, the design of an interval type-3 (IT3) Takagi–Sugeno (T-S) fuzzy logic
system (FLS) using the alpha plane representation is presented in [34].

2.1. Type-1 Fuzzy Systems

Based on the foundations of fuzzy logic [36], we can define a fuzzy set (FS) charac-
terized by the membership function (MF). This initial definition of a type-1 fuzzy set is
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expressed as: a fuzzy set is characterized by an MF µA(x) that has values on [0, 1] and can
be interpreted as a set of pairs defined by Equation (1):

A = {(x, µA(x))| x ∈ X} (1)

where µA: X→ [0, 1]. Here, µA(x) represents the membership degree of the element x ∈X
to the set A. Figure 1 depicts a type-1 fuzzy system, which is structured by the fuzzifier, the
rules, the inference, and finally, the defuzzifier [37].

Figure 1. Architecture of type-1 fuzzy systems.

The fuzzifier performs the process of converting precise numbers to fuzzy sets, the
inference process computes fuzzy rules based on the activation of the inputs, and finally,
the defuzzifier performs the reverse process, converting the resulting fuzzy sets to precise
numbers. Figure 2 illustrates the inference process of a Mamdani-type T1FIS. In the control
area, the fuzzy systems have had a great boom due to their great ability to control nonlinear
systems. Some examples of recent applications can be found in [14,36,37], having each day
more applications in different areas, like to Robot control [38,39].

Figure 2. Stages of a Mamdani T1FLS.

Given the inputs (numerical values), different membership values are obtained for
each of the values. This represents an “input fuzzification”. If the premise of the rule
contains more than one expression, we will apply an operator (t-norm or t-conorm) to
obtain the activation of the rule. This is shown in the example in Figure 2.

Starting from the consequent of each rule in addition to the value of the obtained
antecedent, we use a fuzzy implication operator, resulting in a new FS. One of the most
used implication operators is the minimum, which cuts the MF of the consequent, and the
product, which scales it.

The outputs resulting from each rule in step 2 are combined into a single fuzzy set
using an aggregation operator. The most popular aggregation operators are the maximum,
the sum, or the probabilistic or. In Figure 2, the maximum is utilized.
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In the case of finding a solution to a decision problem, what we need as output is a
number. Therefore, we have to transform the fuzzy set calculated in step 3 into a number.
One of the most used methods is the centroid method that calculates the center of the area
defined by the FS calculated in step 3. The calculation is shown in Figure 2.

2.2. Interval Type-2 Fuzzy Systems

Based on Zadeh’s ideas, Mendel et al. introduced the definition of a type-2 fuzzy
set [40,41]. Based on the initial concepts of FS [42,43], interval type-2 fuzzy sets (IT2FS)
represent an uncertainty model [44] (see Table 1). An IT2FS Ã is represented by µ

Ã
(x) and

µÃ(x), the lower and upper MFs of µÃ(x, u), where x ∈ X, and u ∈ Jx ⊆ [0, 1]. Equation
(2) describes the concept of an IT2FS [45]:

Ã =
{(

(x, u), µÃ(x, u)
)∣∣ ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(2)

where X is the primary domain, and Jx is the the secondary domain of the primary mem-
berships, which is the secondary domain. All secondary degrees µÃ(x, u) are equal to
1 representing the membership degree of each element. Figure 3 illustrates and represents
an IT2FLS.

Table 1. Formula for the upper and lower MFs.

FOU µ¯
A
(x) µA

_
(x)

F
A
(x) =


0, x ≤ a

x−a
b−a , a < x ≤ b

1, b < x ≤ c
d−x
d−c , c < x ≤ d

0, x ≥ d

FA(x) =



0, x ≤ e
x−e
f−e , e < x ≤ f

g−x
g− f , f < x ≤ g

0, x > g

Figure 3. The footprint of uncertainty for an IT2 MF.

An MF of type IT2 can be represented as two T1 MFs, described as upper MF and
lower MF, and the extension between them is recognized as the footprint of uncertainty
(FOU) [46,47], and Figure 3 illustrates this representation.

What also characterizes an IT2FLS are the IF-THEN control rules; what differentiates
it are its fuzzy sets that now have the form of a type-2 interval. A T2FS can be used when
the events are too ambiguous to specify the relationship with exact degrees of membership,
as in a fuzzy controller, where the membership functions take on many values, and we seek
to determine the assignment of the best MF features that give optimal results and a stable
controller [48] and function optimization [49].
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The main difference in an IT2FS is that it includes a type-reducer module to summarize
an IT2FS to a T1FS, and later is presented in the defuzzifier module, obtaining a crisp
result [40]. The IT2FLS takes the uncertainty or ambiguity in the system, while the T1FLS
just does not do it properly [41]. Although it is similar to a T1FLS, a block diagram
presented in Figure 4 describes an IT2FLS.

Figure 4. ITFLS architecture.

In this work, we used the architecture of the fuzzy system, as described in Figure 4.
For all inputs p and rule l, we are using MFs with an uncertain mean. The upper and lower
MFs for the IT2FS are described in Table 1.

Taking into account that we formulate N rules on a rule base of T2FLC, these are with
the form [41] of Equations (3) and (4):

Rl : I f x1 is F̃l
i and . . . , xp is F̃l

p then y is Gl , l = 1, . . . , N (3)

where xi(i = 1, ..p) are inputs and F̃l
i are antecedent sets, Gl are consequent sets, y is the

output variables, and ‘~’ implies that the set is a type-2 fuzzy set.
The firing strength is the following set of type-2 intervals:

Fi(x) = [ f i (x), f
i
(x) ≡

[
f i, f

i
]]

(4)

There are different techniques for the implementation of an IT2FLS type reducer, where
the center of gravity (cos) is one of the most used techniques, where yCOS is an interval,
described by the values yi

l , yi
r, which are computed with Equations (5) and (6). Karnik and

Mendel [43] showed that the two endpoints yl and yr depend on a combination of f
i

and

f i values.

yl = yl

(
f

1
, . . . , f

N
, f L+1, . . . , f N , y1

l , . . . , yN
l

)
yr = yr

(
f 1, . . . , f N , f

R+1
, . . . , f

N
, y1

r , . . . , yN
r

) (5)

Here, f j and f
j

are upper and lower values of F, and Karnik and Mendel developed

an iterative process for computing the values of yl and yr.

µÃi
k
( xk) =

[
µ

Ãi
k
( xk), µÃi

k
( xk)

]
=
[
µi, µi

]
(6)

They proposed an algorithm that finds the switch points L and R and calculates the
end points yl and yr of a type-reduced set in the following way:

yl =
∑L

i=1 fiyl
i + ∑N

i=L+1 fiyl
i

∑L
i=1 f i + ∑N

i=L+1 fi
(7)
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yr =
∑R

i=1 fiyr
i + ∑N

i=R+1 fiyr
i

∑R
i=1 fi + ∑N

i=R+1 fi
(8)

Here, with the Karnik–Mendel algorithm (Table 2), the change points can be calculated.
Finally, the crisp outputs in the defuzzification process can be evaluated as:

y =
yl + yr

2
(9)

Table 2. Karnik–Mendel algorithm.

Step Left Point Right Point

1 Sort xi by increasing order Sort xi by increasing order
2 Initialize wi as: wi =

wi+wi
2 Initialize wi as: wi =

wi+wi
2

3 Compute y = ∑N
i=1 xiwi

∑N
i=1 wi

Compute y = ∑N
i=1 xiwi

∑N
i=1 wi

4 Find k where xk < y < xk+1 Find k where xk < y < xk+1

5 Set wi =

{
wi, i ≤ k
wi, i > k Set wi =

{
wi, i ≤ k
wi, i > k

6 Compute y = ∑N
i=1 xiwi

∑N
i=1 wi

Compute y = ∑N
i=1 xiwi

∑N
i=1 wi

7 If, then stop, set, and if not, go to step 8 If, then stop, set, and if not, go to step 8
8 Go to step 3 Go to step 3

Here, y is a defuzzified output. The Karnik–Mendel algorithm is not too time-
consuming, and it is efficient for the application of T2FLSs.

2.3. Generalized Type-2 System

The GT2FLS was determined approximately in 1999; however, its practical use has
been impeded by its greater computational complexity, favoring the simplest version, the
IT2FLS. The logic that is applied in IT2FLSs and T1FLSs is similar to that used in a GT2FLS,
only that there is relatively more complexity in its procedure and operations [30]. Figure 5
describes a membership function using an example of a generalized type-2 Gaussian
illustrated from various angles, which is showing the relationship with a third dimension
and presents a better approximation to uncertainty.

Figure 5. Generalized type-2 Gaussian MF: (a) top view; (b) isometric view.

The difference of a GT2FLS is due to the need to utilize the vertical axis, where the
main reason lies in the complexity involved in the GT2FLS compared with the less complex
fuzzy sets in T1FLSs and IT2FLSs [50,51].

Equation (10) describes the function of the generalized T2 fuzzy set:

Ã =
{
( (x, u), µÃ(x, u) )|∀x ε X, ∀u ∈ Jx ⊆ [0, 1] } (10)
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where Jx ⊆ [0, 1], x is in the domain of the primary MF, and u is in the domain of the
secondary MF.

Figure 6 describes the architecture of a GT2FLS in a more synthesized and stylized way.

Figure 6. Generalized type-2 system.

2.3.1. The Fuzzification Stage

The generalized fuzzy set, in its fuzzification stage, has a single non-zero member-
ship point. So the singleton fuzzy block interprets the crisp input xP into a Type-2
fuzzy singleton, whose MF is µ Ãp

(
xp
)
= 1

1 for xp = x′p and µ Ãp

(
xp
)
= 0 for all xp 6=

x′p for all p = 1, 2, . . . ,P, where P is the number inputs [52].

2.3.2. The Inference Stage

This stage introduces the interpretation of the rule base configuration; it is used in
a GT2FLS using the definition of Mamdani-type rules, similar to those described for a
T1FLS and IT2FLS. In this case, the antecedents and the consequent are characterized for
a GT2FLS. Therefore, there are K rules defined, and the kth rule in the GT2FLS can be
formulated by means of Equation (11) [20,32] and defines the relationship between the
input and output fields.

Rkk : IF x1 isF̃k
1 and . . . and xp is F̃k

p , THEN y is G̃k (11)

where Rk is a specific rule, xp is the input p, F̃k
p is an MF on rule y and the input p, and y is

the output on MF G̃k. Both F̃k
1 and G̃k are in the forms µF(x) and µG(y), respectively.

The inference of the rules is generated with Equations (12) and (13) by means of
the t-norm connectors (∗̃), where µB̃ defines the membership function that arises in the
consequents when inferring each rule, and w corresponds to the space of the consequents.
The GT2FLS is used in the inference process, which involves two procedures identified as
meet and join. These are formulated in Equations (12) and (13), respectively.

µÃ(x, u)
⊔

µB̃(x, w) = {(v, fx(u) ∗̃ fx(w)) | v ∈ u ∨ w, u ∈ Ju
x ⊆ [0, 1], w ∈ Jw

x ⊆ [0, 1]} (12)

µÃ(x, u) µB̃(x, w) =
{
(v, fx(u) ∗̃ fx(w))

∣∣∣ v ∈ u
∧

w, u ∈ Ju
x ⊆ [0, 1], w ∈ Jw

x ⊆ [0, 1]
}

(13)
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2.3.3. Interpretation of α-Planes

The interpretation of an α-plane for a GT2FLS (Ã ) takes the following form: it is
denoted by Ã ∝, and it is postulated as the union of all primary MFs of Ã , whose secondary
memberships are higher than or equal to α (0 ≤ α ≤ 1) [40,41]. The definition for the
α-plane is described by Equation (14), and Figure 7 depicts a particular case of an α-
plane [20,28].

Ã α=
{
(x, u), µÃ (x, u) ≥ α|∀x ∈ X, ∀u ∈ JX ⊆ [ 0, 1]} (14)

Figure 7. Alpha planes.

2.3.4. Type Reduction

Regarding the type reducer that is applied to a GT2FLS, the most used technique is
the centroid, described by Equation (15), taking it as the definition of the centroid CÃ of
a GT2FLS. θi represents the changes in relation to the secondary degree of the function
fx1(θ1)∗̃ . . . ∗̃ fxN (θN).

CÃ = {(z, µ(z)) | z ∈ ∑N
i=1 xiθi

∑N
i=1 θi

, µ(z) ∈ fx1(θ1 ) × ... × fxN (θN ), θ1 ∈ Jx1×... × JxN} (15)

One of the techniques for type reduction is the one developed by Karnik and Mendel [43],

where Ωk
α indicates the upper MFs’ alpha plane and Ωk

α denotes the lowest alpha plane of
the MF. Equations (16) and (17) condense this type reduction.

yl
α

(
x′
)
=

∑L
k=1 Ωk

α(x′)yi
l + ∑N

j=L+1 Ωj
α(x′)yj

l

∑L
k=1 Ωk

α(x′) + ∑N
j=L+1 Ωj

α(x′)
(16)

yr
α

(
x′
)
=

∑R
k=1 Ωk

α(x′)yi
r + ∑N

k=R+1 Ωk
α(x′)yk

r

∑R
i=1 Ωi

α(x′) + ∑N
i=R+1 Ωi

α(x′)
(17)

The process that continues is composed of the integration of the alpha planes, and
Equations (18) and (19) describe the procedures necessary to achieve this [28,43].

ŷl
j
(
x′
)
=

∑N
i=1 α

αi
i yl

j(x′)

∑N
i=1 αi

(18)
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ŷr
j
(
x′
)
=

∑N
i=1 α

αi
i yr

j (x′)

∑N
i=1 αi

(19)

2.3.5. The Defuzzification Stage

Once the type reduction operation has been carried out, the resulting values go to the
defuzzification stage, which is obtained by the mean of yl and yr. Equation (20) represents
the defuzzified output of a nonsingleton GT2FLS [32,33].

ŷj
(

x′
)
=

ŷl
j(x′) + ŷr

j (x′)

2
(20)

3. Metaheuristic of Marine Predators

Now, in current research, it has become very common to apply metaheuristics when
determining feasible solutions to problems in different areas, and they are used expecting
to optimize the results of the problems. This research presents a recently created algorithm,
its main qualities, and mathematical procedures for its implementation. The algorithm is
the marine predator algorithm (MPA) with the implementation of GT2FLS for parameter
adaptation. The combination between the GT2FLS and the marine predator algorithm is
called FMPAGT2, which is a new variant proposed in this work (see Figure 8).

Figure 8. Proposed fuzzy marine predator algorithm (FMPA) method.
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3.1. Marine Predator Algorithm

The marine predator’s algorithm (MPA) is a fairly recent proposed algorithm inspired
by the actions of predator and prey in nature [1–5]. When presenting the proposed algo-
rithm, it is very important to first know the mathematical model of the two main random
movements on which this approach is based, the (i) Brownian movement and (ii) the
Lévy movement.

3.1.1. Brownian Motion

The Brownian motion is the random motion observed in particles, where the trajecto-
ries developed by the Brownian particle are irregular (Equation (21)) and, of course, depend
on the experimental observation times; that is, the sampling points on the path will not be
the same as if the particle is observed in different time intervals.

It is a stochastic process in continuous time, where the extension of its step is extracted
from a probability function determined by the normal distribution (Gaussian) with zero
mean (µ = 0) and unit variance (σ2 = 1). The probability density function (PDF) that governs
point x for this movement is given by (Equation (21)):

fB(x; µ, σ) =
1√

2πσ2
e(−

(x−µ)2

2σ2 ) (21)

Figure 9a shows how the Brownian motion covers more domain areas with more
uniform and controlled steps, unlike the Lévy strategy.

Figure 9. (a) 2D Brownian motion; (b) Levy motion.

3.1.2. Levy Movement

The probability density function of the Lévy distribution over the x≥ µ (Equation (22))
is defined as.

fL(x; µ, c ) =
√

c
2π

e−
c

2(x−µ)

(x− µ)
3
2

(22)

The side of this function exhibits heavy tail behavior that falls according to a power
law (Equation (23)):

fL(x; µ, c ) =
√

c
2π

1

x
3
2

, i f x → ∞ (23)
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where c is the scale parameter. This shows that Lévy not only has a tail, but also has a thick
tail where µ = 0. Figure 9b shows that a Lévy flight is mainly related to small steps and
occasional long jumps.

Therefore, predators take the Lévy strategy when there is a low conglomeration of prey
and Brownian motions when there is prey abundance [2], where the velocity ratio v from
the prey to the predators represents the tradeoff between the Lévy and Brownian strategies:

As in any population-based algorithm, the MPA does not differ from other metaheuris-
tics, in which the candidate’s position and its interpretation in mathematical terms give
rise to a series of steps and their appropriate mathematical expressions:

Step 1: Initialize the candidate position and parameters, updated as in Equation (24):

→
X0 =

→
Xmin + rand(0, 1)

(→
Xmax −

→
Xmin

)
(24)

where
→
Xmin and

→
Xmax represent the upper and lower limits of the design variable for the

search space of each dimension, and rand represents a random vector with upper and lower
bounds ∈ [0 1].

Step 2: As established by the survival strategy of the fittest, the main predators have
great capacity in the process of foraging. Therefore, the one with the most outstanding
fitness value is the top predator. Such elite seekers who survey and find the prey have the
knowledge of the location of the most abundant prey:

Elite =


X I

1,1 . . . X I
1,D

X I
2,1 . . . X I

2,D
. . . . . . . . .

X I
n,1 . . . X I

n,D

 (25)

where X I is the vector of the top predator, produced n times to form the elite matrix;
n represents the number of search agents; and D is the number of dimensions. At the
conclusion of each iteration, the elite matrix is updated with the best predator.

Step 3: Initialize the second matrix called prey with the same dimension as elite.

Prey =


X1,1 . . . X1,D
X2,1 . . . X2,D
. . . . . . . . .

Xn,1 . . . Xn,D

 (26)

In Equation (26), X i, j shows the jth dimension of ith prey, clarifying at this point that
the entire optimization process depends mainly on the update of these two matrices.

Step 4: Update the position memory. To update the MPA with the new solutions
matrix, elite, and prey, the optimization scenarios will be used to evaluate them. An
evaluation is performed to see whether the worst historical solution is eliminated and
updated with a new one.

3.1.3. High-Velocity-Rate Scenario

At first, the prey moves faster than the predator (high-speed rate). It occurs when they
are the initial iterations, in which the idea of exploration is important. When the movement
speed is high (v ≥ 10), the predator remains still and watches the prey search for food
quickly. This stage is mathematically modeled as follows [1]:

For Iter < Itermax/3

→
STEPSIZEi =

→
RB ⊗

( →
Elitei −

→
RB ⊗

→
Preyi

)
→

Preyi =
→

Preyi + P.R⊗ S
→

TEPSIZEi

i = 1, . . . n (27)
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where
→
RB is a vector based on a normal distribution, which interprets Brownian motion,

P is a dynamic value (the author establishes it as a constant value equal to 0.5), R is a
vector of random numbers between 0 and 1, and Iter and Itermax describe the current
and maximum iterations, respectively. This stage occurs in the first 1

3 of the optimization
process, where the exploration capacity is high due to the length of the jump and the speed
of the movement.

3.1.4. Velocity Rate Unit Scenario

This scenario describes a similar speed between predator and prey in their search for
food. This change occurs midway through the optimization process. Therefore, in this part
of the process, the prey is in charge of the exploitation, and the predator is the cause of the
exploration. When the velocity is (v ≈ 1), the predator applies Brownian motion, and the
prey will tend to move in Lévy. Its mathematical description of this stage is the following
(Equations (28) and (29)):

- A process for the first half of the population:

For Itermax/3 < Iter

S
→

TEPSIZEi =
→
RL⊗

( →
Elitei −

→
RL ⊗

→
Preyi

)
→

Preyi =
→

Preyi + P.R⊗ S
→

TEPSIZEi

i = 1, . . .
n
2

(28)

where
→
RL is a vector of random numbers that represents the Lévy flight strategy. The

notation ⊗ describes entrywise multiplications.
→
RL ⊗

→
Preyi represents the movement of

the prey based on Lévy, and in this part by means of the position and the size of the prey’s
passage, the movement of the prey is emulated.

- A process with the second half of the population:

For Iter < 2/3·Itermax

S
→

TEPSIZEi =
→
RB⊗

(→
RB ⊗

→
Elitei −

→
Preyi

)
→

Preyi =
→

Elitei + P·CF⊗
→

STEPSIZEi

i =
n
2

, . . . n (29)

where
→
RB ⊗

→
Elitei represents the predator movement using the Brownian approach; here,

the prey updates its position based on the motion of the predator when changing to advance
with Brownian. CF is an adaptive variable designed to control the stride length of this
movement, and is generated using Equation (30).

CF =

(
1− Iter

Itermax

)(2 Iter
Itermax )

(30)

3.1.5. Low-Velocity-Rate Scenario

In this last stage, the predator moves rapidly towards the prey representing the
optimization process that results in a high exploitation process. Otherwise, the predator
with a low-speed ratio (v = 0.1) will move with a Levy approach. This procedure is
mathematically formulated using Equation (31) as follows:

For Iter > 2/3·Itermax

S
→

TEPSIZEi =
→
RL⊗

(→
RL⊗

→
Elitei −

→
Preyi

)
→

Preyi =
→

Elitei + P·CF⊗
→

STEPSIZEi

i = 1, . . . n (31)
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Step 5: Check if stopping criteria are satisfied, where the iterations are repeated until
the established criterion is satisfied (Itermax); if it is not fulfilled, it repeats the process from
steps 2 and 4. Lastly, an optimal solution is obtained, and it is presented as an unbeatable
result for the established problem.

Step 6: The formation of marine eddies or the effects of fish aggregation devices (FADs)
are environmental issues that determine the behavior of the predators. These avoid falling
into stagnation as local minimums and affect our search space and can be formulated
mathematically, causing predators to search the surroundings for their prey 80% of their
time, and during the remaining time, they prowl in another environment. This stage is
known as FADs and is evaluated as follows:

→
Preyi =



→
Preyi + CF

[→
Xmin +

→
R ⊗

(→
Xmax −

→
Xmin

)]
⊗
→
U

i f r ≤ FADs
→

Preyi + [FADs(1− r) + r]
( →

Preyr1 −
→

Preyr2

)
i f r ≥ FADs

(32)

where FADs is selected;
→
U is a vector that is made up of arrays of zeros and ones. This is

structured to generate a random vector between 0 and 1 and modify this matrix to zero if

the array is less than 0.2 and one if it is greater than 0.2.
→
Xmin and

→
Xmax are the vectors that

comprise the upper and lower limits of the dimensions, r is the uniform random number in
[0, 1], and r1 and r2 represent random indices of the prey matrix.

MPA achieves less memory consumption by maintaining the old position of the
dam. Then, after updating the current solutions, the suitability values of each of them are
evaluated with each previous solution, so if the suitability of the previous one is better than
the current one, they are permuted.

The FADs′ effect with long steps of the Lévy strategy greatly helps MPA to avoid
local optima stagnation and ensure better performance of the method (Equation (32)).
The adaptive defined convergence factor (CF) parameter represents the intensification of
exploitation (Equation (30)) and the adjustment (P), and the randomization parameter (R)
(Equations (27) and (28)) represents the exploration of the algorithm.

3.2. Fuzzy Marine Predator Algorithm (FMPA) Design

The main approach given to the adaptation of dynamic parameters using fuzzy sys-
tems is to enhance the quality of the results achieved by performing a better local and
global search than with MPA. The metric used in the input of the fuzzy system is the
iterations postulated by Equation (33) [27], where the current Iter describes the current iter-
ation, partitioned by the maximum number of iterations to execute what is called IterMax.
The output is the dynamic fuzzy fit of the main FMPA parameters, the P, FADs, and CF
parameters representing the exploration, exploitation, and avoidance deadlocks of local
optima (stagnation) in the search space, established by Equations (34)–(36). The values
are considered fuzzy since they are computed with the FMPA progress and are calculated
by Equation (33), where the CF values are in the ratio [0, 1]. The FADs′ effect in the ratio
[0.1, 0.3], synchronously with the long steps (the Lévy strategy) to avoid stopping at the
local optima, improving the performance of the method and the adjustment (P) with the
ratio [0.35, 0.75], works the exploration of the algorithm.

Iteration(Iter) =
Current Iteration(Iter)

Total o f Iterations(Itermax)
(33)

Equation (33) generates a percentage of iterations generated to detect the CF, FADs,
and p values. It is initialized with very low CF values so that the algorithm reaches
alternation and then achieves an increase. This is a process in which the three phases of the
FMPA depend on the exploration and exploitation of search space.
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Equations (34)–(36) express the outputs of the FMPA algorithm, respectively:

P =
∑

rp
i=1 µ

p
i (p1 i)

∑
rp
i=1 µ

p
i

(34)

where P is the speed ratio or when a predator moves towards the prey (fast-slow), rp is
the given number of fuzzy system rules assigned to p, p1 i is the output result for rule i
corresponding to p, and µ

p
i i is the MF of rule i corresponding to p:

FADs =
∑

r f ads
i=1 µ

f ads
i ( f ads1 i)

∑
r f ads
i=1 µ

f ads
i

(35)

where FADs are to avoid local optima stagnation and achieve better performance of the
method, r f ads is the given number of fuzzy system rules assigned to f ads, f ads1 i is the

output result for rule i corresponding to f ads, and µ
f ads
i i is the MF of rule i corresponding

to FADs:

CF =
∑

rc f
i=1 µ

c f
i (c f1 i)

∑
rc f
i=1 µ

c f
i

(36)

where CF is the speed ratio or when a predator moves towards the prey (fast–slow), rc f is
the given number of fuzzy system rules assigned to c f , c f1 i is the output result for rule i
corresponding to c f , and µ

c f
i i is the MF of rule i that corresponds to c f .

The tuning of the optimization parameters for the marine predator algorithm is
performed with the type-1 and type-2 fuzzy systems (interval and generalized), which
have iteration as an input variable that is in a range [0, 1], and as output variables, they
have the parameters CF (convergence coefficient) in a range [0, 1], FADs (the probability
effect on the optimization process) in a range [0.1, 0.3], and P (a dynamic value) in a range
[0.35, 0.75] [9]. In addition, the FMPA dynamically obtains the values of the parameters
CF, FADs, and P through iterations, thus addressing the search for solutions at a local
and global level. The proposed fuzzy marine predator metaheuristic is shown below in
Algorithm 1 and Figure 10.

The basis for optimizing the parameters, the main parameters of MPA mentioned
above, will be: First, the fuzzy system of the FMPA is Mamdani type with T1FLS and
IT2FLS. The input variable is the iteration, granulated in three MFs, low, medium, and high,
with two trapezoidal to the extremes and triangular to the middle; and the output variables
CF, FADs, and P are granulated into partitions of three MFs, low, medium, and high of the
triangular type. These are shown below in Figure 11 of the proposed fuzzy system.

Another important part to consider is the set of rules of the FMPA for the dynamic
tuning of the parameter values of the MPA algorithm for the method where the parameter
values of the FMPA MFs are adjusted. The function that the rules achieve allows us to
evaluate it. This means that as the iterations in the stages progress, P and FADs increase
and CF tends to decrease. The rules are summarized in Table 3.

Table 3. Rules of FMPA fuzzy system.

Iter/ P FADs CF

L L L H
M M M M
H H H L
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Algorithm 1. The fuzzy MPA

START STAGE 1 (Initialization):
Initialize search agents (prey) Pi (i = 1, 2, 3, . . . n)
Set parameters value
Fuzzy evaluation of the main parameters P, FAD, and CF by FMPA
Top_Predator_Fit == MAX_VALUEX
Top_Predator_Position = NULL
While (Iter < Max_Iter/3 termination criteria are not met:
For each i prey
Calculate the fitness value of prey
End for
construct the elite matrix
accomplish the memory saving.
START STAGE 2: (FMPA optimization is divided into three main phases):
For each i prey
/ Scenario 1
If Iter < MaxIter/3

Update the current prey with Equation (27)
/ Scenario 2
Else if MaxIter/3 < Iter < 2/3*Max_Iter
/ The first half of the populations (i = 1, . . . ,n/2)
Update the current prey with Equation (28)
/ The second half of the population (i = n/2, . . . ,n)
Update the current prey with Equation (29)
/ Scenario 3
Else if Iter > 2/3*Max_Iter
Update the current prey with Equation (31)
End (if)
End For
START STAGE 3 (Detecting top predator):
Recalculate the fitness value of prey
if (Top_Predator_Position < Top_Predator_Best)
Top_Predator_Best = Predator
Top_Predator_Position = Pi
End (if)
Achieve memory saving and elite update
Accomplish the FADs’ effect for each predator and update using Equation (32)
It ++
End while
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Figure 10. Flowchart: (a) MPA, (b) FMPA.
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Figure 11. Mamdani FMPA system: (a) type-1; (b) interval type-2.

Second, we apply a Sugeno method to FMPA with T1FLS and IT2FLS. In this method,
as in Mamdani, the input variable is the iteration, granulated in three MFs, two trapezoidal
to the extremes and one triangular to the middle. The output variables CF, FAD, and P are
of the linear type so that in each combination of antecedent–consequent values, a function
of the linear type is obtained in the general form f (x, y) = ax + by + c. In Figure 12, the
proposed fuzzy system is shown:

Figure 12. Sugeno FMPA system: (a) type-1; (b) type-2.

Lastly, the generalized fuzzy system FMPAGT2 is of Mamdani type without optimiza-
tion, where the input variable is iteration, granulated in three MFs of the low, medium,
and high membership of the triangular type; and the output variables CF, FAD, and P
are granulated into partitions of three MFs, low, medium, and high of the triangular type.
The main goal is the dynamic adaptation of MPA parameters using fuzzy systems to im-
prove the results achieved by performing a better local and global search than with MPA.
Similarly, the metric used in the input of the generalized fuzzy system is the percentage
of iterations defined by Equation (33), and the output is the dynamic adjustment of the
parameters P, FADs, and CF that represent the exploration and exploitation of the search
space. In Figure 13, the proposed fuzzy system is illustrated.
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4. Study Cases for Testing the Proposal
4.1. Study Case CEC2017 Benchmark Functions

This first case study considers the improvement on the optimization of the CEC2017
(Competition on Evolutionary Computation 2017) mathematical functions. In this case, 19
functions are taken with the purpose of augmenting their performance with GT2FLS by
dynamically finding the best parameter values for MPA. We perform 30 experiments with
each reference function. Table 4 describes the mathematical functions that were considered.
The mathematical functions were optimized with the MPA fuzzy variants, with T1FLS,
IT2FLS, and GT2FLS, respectively.

Table 4. CEC2017 benchmark functions.

Type No Functions Fi* = Fi(x*)

Unimodal Fnct
1 Shifted and Rotated Bent Cigar Function 100

2 Shifted and Rotated Zakharov Function 200

Simple Multimodal

3 Shifted and Rotated Rosenbrock’s Function 300

4 Shifted and Rotated Rastrigin’s Function 400

5 Shifted and Rotated Expanded Scaffer’s F6 fcn 500

6 Shifted and Rotated LunacekBi_Rastrigin Fcn 600

7 Shifted and Rotated Noncontinuous Rastrigin’s 700

8 Shifted and Rotated Levy Function 800

9 Shifted and Rotated Schwefel’s Function 900

Hybrid Functions

10 Hybrid Function 1 (N = 3) 1000

11 Hybrid Function 2 (N = 3) 1100

12 Hybrid Function 3 (N = 3) 1200

13 Hybrid Function 4 (N = 4) 1300

14 Hybrid Function 5 (N = 4) 1400

15 Hybrid Function 6 (N = 4) 1500

16 Hybrid Function 6 (N = 5) 1600

17 Hybrid Function 6 (N = 5) 1700

18 Hybrid Function 6 (N = 5) 1800

19 Hybrid Function 6 (N = 6) 1900
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Table 4. Cont.

Type No Functions Fi* = Fi(x*)

Composition
Functions

20 Composition Function 1 (N = 3) 2000

21 Composition Function 2 (N = 3) 2100

22 Composition Function 3 (N = 4) 2200

23 Composition Function 4 (N = 4) 2300

24 Composition Function 5 (N = 5) 2400

25 Composition Function 6 (N = 5) 2500

26 Composition Function 7 (N = 6) 2600

27 Composition Function 8 (N = 6) 2700

28 Composition Function 9 (N = 3) 2800

29 Composition Function 10 (N = 3) 2900

Search Range: [−100, 100] D

The Competition on Evolutionary Computation 2017 functions for real-parameter
single-objective optimization with learning is composed of a set of unimodal, simple multi-
modal, hybrid, and composition functions [49]. Table 4 shows the complete 29 functions of
CEC2017, which are formed by 2 unimodal functions, 7 multimodal functions, 10 hybrid
functions, and finally, 10 composite functions that can be utilized to validate the algorithms
proposed in this research.

4.2. Mobile Robot Controller

The second case study analyzes the control procedure for tracking a trajectory by
a mobile robot. The main objective is to control the ability to follow the direction of
a predetermined trajectory through the control of the two independent wheels of the
differential-type robot. Figure 14a presents a graphical representation of the kinematic
model to pursue the direction of the trajectory, and Figure 14b schematically illustrates the
mathematical model block representation.

Figure 14. (a) Wheeled mobile robot model; (b) mobile robot control scheme design.

The main goal of the FMPA fuzzy system is to find the values that form each of the MFs,
where the best solution to the problem is found in the optimal parameters that represent the
best positions in each of the MFs of the controller. When each of the outputs of the FMPA
system is iterated, the aim is to dynamically move the parameter values to improve the
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performance of the algorithm. Figure 15 illustrates how to make the optimization of MFs of
the trapezoidal and triangular type, which takes advantage of a symmetrical distribution
of the MFs for reducing complexity in the search process of optimal parameters.

Figure 15. The adjustment of parameters of the MFs: (left) type-1FLS; (right) type-2FLS.

Objective Function Formulation

A predator symbolizes the parameter values of the MFs of the FLC, where in the
process of the iterations, the values of the mean square error (MSE) (Equation (37)) that
are calculated denote the fitness function as a result of the reduction in the calculation of
the error in the simulation. When obtaining the minimum error, the best predator with
the best predator error is evaluated, until completing the total iterations. The adjustments
of parameters a, b, c, and d in the trapezoidal case of the type-1 and type-2 inputs and
outputs are listed in Tables 5 and 6, respectively. This will be adjusted in Section 5.2 using
the proposed FMPA. The structures of the type-1 and type-2 fuzzy systems and controller
are illustrated in Figure 15 we describe the parameters in each of the MFs of the different
tracking controllers proposed in Figure 16. The rules are described in Table 7, and the
control surface can be found in Figure 17, where in Figure 17a is shown for wheel 1 and
in Figure 17b for wheel 2, respectively. The interpretation of the predator size in MPA in
searching for the adjustment of values of the MFs is shown in Figure 18 for the second case
study (fuzzy controllers of a mobile robot).

Table 5. Adjusting parameters of the type-1 and type-2 inputs without optimization.

Type-1 FLS Type-2 FLS

Inputs MFs a b c d a1 b1 c1 d1 a2 b2 c2 d2

N −1 −0.6 −0.4 0 −1 −0.8 −0.5 −0.3 −0.8 −0.6 −0.4 0
Evl Z −0.4 0 0.4 - −0.6 −0.1 0.4 – −0.4 −0.07 0.6 –

P 0 0.4 0.7 1 0 0.4 0.7 0.8 0.2 0.6 0.8 1
N −1 −0.6 −0.4 0 −1 −0.8 −0.5 −0.3 −0.8 −0.6 −0.4 0

Ewl Z −0.4 0 0.4 - −0.6 −0.1 0.4 – −0.4 −0.07 0.6 –
P 0 0.4 0.7 1 0 0.4 0.7 0.8 0.2 0.6 0.8 1

Table 6. Adjusting parameters of the type-1 and type-2 outputs without optimization.

Type-1 FLS Type-2 FLS

Outputs MFs a b c a1 b1 c1 a2 b2 c2

N −1 −0.5 0 −1 −0.7 −0.3 −0.8 −0.5 −0.1
TW1 Z −0.5 0 0.5 −0.6 −0.1 0.4 −0.4 0.1 0.6

P 0 0.5 1 0.1 0.4 0.8 0.3 0.6 1
N −1 −0.5 0 −1 −0.7 −0.3 −0.1 −0.5 −0.1

TW2 Z −0.5 0 0.5 −0.6 −0.1 0.4 −0.4 0.1 0.6
P 0 0.5 1 0.1 0.4 0.8 0.3 0.6 1



Symmetry 2022, 14, 859 22 of 36

Figure 16. Fuzzy controller: (a) type-1, (b) interval Type-2, (c) generalized type-2.

Table 7. Fuzzy rules for the autonomous mobile robot controller.

Rules
Inputs Outputs

Evl Ewl TW1 TW2

1 N N N N
2 N Z N Z
3 N P N P
4 Z N Z N
5 Z Z Z Z
6 Z P Z P
7 P N P N
8 P Z P Z
9 P P P P
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Figure 18. Representation of predators in the distribution of MF parameters.

In the T1FLC, the size of the predators is 40 parameter values that belong to the inputs
and outputs. When implementing the IT2FLC, the size is 80 values because the IT2FLC
requires 6 points for triangular MFs and 8 points for trapezoidal MFs in total; the IT2FLC
has 8 triangular MFs and 4 trapezoidal MFs.

Finally, the GT2FLC needs 92 values because each triangular MF needs 6 points and
9 points for trapezoidal MFs in total, taking the same parameter values from the IT2FLC,
where the last parameter in the configuration that describes the trapezoidal MFs represents
the thickness, which is represented by the rho parameter (ρ) taking values between [0, 1];
in this way, the number of secondary MFs is defined.

The case of the FLC design requires a fitness function; in this case, we utilized
Equation (37), which describes the mean square error (MSE):

MSE =
1
N

n

∑
I=1

(Xi −Yi)
2 (37)

where Xi represents the reference value at the time i and is given in [50], Yi is the value
produced by the system at the time i, and n is the number of samples utilized in the experi-
mentation.

The desired path for the robot is described by the following (Equation (38)), where u(t)
represents the changes in time:

vd(t) =
{

vd(t) = 0.9 ∗ cos(0.9− exp(−u(t)))
wd(t) = 0.9 ∗ sin(0.5 ∗ u(t))

(38)

5. Experimentation Results

This section summarizes the results achieved with the experimentation on the CEC2017
mathematical functions: First, the results are presented with FMPAT1 and FMPAIT2; then
statistical testing is performed. Then for the results obtained with FMPAGT2, the same
procedure is followed; after that, a statistical test with respect to FMPAIT2 is performed,
demonstrating its good performance. In addition to performing in the second case, the op-
timization of the FLC of an AMR with the proposed fuzzy methods shows its performance
evaluation with the following metrics: IAE, ISE, ITAE, and MSE.
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5.1. Case 1: Experimentation and Statistical Analysis

This section shows a breakdown of the results in the application of the fuzzy marine
predator algorithm, and we use the CEC2017 mathematical functions that are described in
Section 4.1 to carry out the experiments considering the following parameter values:

• Dimensions: D = 30, 50, 100.
• Space search: [−100, 100] D.
• The maximum number of the function’s evaluations: 1000*D.
• Optimization trials per problem: 30.
• The optimization process is finished upon completing of the maximum number of the

function’s evaluations.

The parameters that were taken for the tests of the optimized marine predator algo-
rithm with the Mamdani and Sugeno types of inference, for dimensions 30, 50, and 100, are
described in Table 8.

Table 8. Parameters utilized in the experiments.

Parameter MPA FMPA with
T1FLS

FMPA with
IT2FLS

FMPA with
GT2FLS

SearchAgents 100 100 100 100
Iterations 1000 1000 1000 1000

P 0.7 Dyn Dyn Dyn
FADs 0.5 Dyn Dyn Dyn

CF Random [0, 1] Dyn Dyn Dyn

Tables 9–11 show the solutions of the tests after 30 runs with the Mamdani FMPAT1
and FMPAIT2 fuzzy systems, and show the averages after 30 runs for 30, 50, and 100
dimensions with the statistical tests (best results highlighted in bold).

Table 9. Mamdani results for 30 dimensions.

F M P A 30D

I T 2 FLS T 1 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 2.24 × 10+3 1.27 × 10+3 2.39 × 10+3 1.26 × 10+3 −4.59 × 10−1

f3 300 3.89 × 10+3 2.06 × 10+3 3.08 × 10+3 2.05 × 10+3 1.53 × 10 0

f4 400 4.09 × 10+2 2.29 × 10+1 4.47 × 10+2 2.63 × 10+1 −5.97 × 10 0

f5 500 6.00 × 10+2 2.03 × 10+1 5.21 × 10+2 2.23 × 10+1 1.43 × 10+1

f6 600 6.00 × 10+2 1.11 × 10−2 6.00 × 10+2 1.16 × 10−2 0.00 × 10 0

f7 700 7.07 × 10+2 1.07 × 10+1 7.33 × 10+2 1.76 10+1x −6.91 × 10 0

f8 800 8.06 × 10+2 2.17 × 10+1 8.06 × 10+2 2.23 × 10+1 0.00 × 10 0

f9 900 9.02 × 10+2 1.24 × 10+1 9.01 × 10+2 3.49 × 10−1 4.42 × 10−1

f10 1000 2.06 × 10+3 1.03 × 10+2 2.12 × 10+3 1.78 × 10−1 −3.19 × 10 0

f11 1100 1.13 × 10+3 2.11 × 10+2 1.13 × 10+3 2.40 × 10+2 0.00 × 10 0

f12 1200 2.22 × 10+3 2.14 × 10+2 2.24 × 10+3 2.24 × 10+2 −3.54 × 10−1

f13 1300 2.06 × 10+3 2.44 × 10+2 2.36 × 10+3 2.54 × 10+2 −4.67 × 10 0

f14 1400 1.48 × 10+3 3.11 × 10+1 1.49 × 10+3 3.13 × 10+1 −1.24 × 10 0

f15 1500 1.53 × 10+3 6.30 × 10+2 1.51 × 10+3 3.68 × 10+2 1.50 × 10−1

f16 1600 2.66 × 10+3 2.10 × 10+1 2.69 × 10+3 2.14 × 10+1 −5.48 × 10 0

f17 1700 1.82 × 10+3 1.21 × 10+2 1.87 × 10+3 1.24 × 10+2 −1.58 ×10 0

f18 1800 1.81 × 10+3 2.25 × 10+2 1.85 × 10+3 2.25 × 10+3 −9.69 × 10−2

f19 1900 2.94 × 10+3 2.27 × 10+2 2.39 × 10+3 1.26 × 10+3 −4.59 × 10−1
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Table 10. Mamdani results for 50 dimensions.

F M P A 50D

I T 2 FLS T 1 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 1.00 × 10+2 0.00 × 10 0 1.36 × 10+6 2.84 × 10+5 −2.62 × 10+1

f3 300 6.26 × 10+2 1.77 × 10+1 4.89 × 10+2 2.79 × 10+1 2.27 × 10+1

f4 400 6.02 × 10+2 9.18 × 10−1 6.39 × 10+2 1.94 × 10+1 −1.04 × 10+1

f5 500 8.51 × 10+2 3.26 × 10+1 6.03 × 10+2 1.18 × 10 0 4.16 × 10+1

f6 600 9.23 × 10+2 1.53 × 10+1 8.69 × 10+2 2.25 × 10+1 1.09 × 10+1

f7 700 9.64 × 10+2 3.50 × 10+1 9.23 × 10+2 1.66 × 10+1 5.80 × 10 0

f8 800 5.78 × 10+3 4.65 × 10+2 9.99 × 10 0 3.85 × 10+1 6.77 × 10+1

f9 900 1.18 × 10+3 1.48 × 10+1 5.48 × 10+3 4.42 × 10+2 −5.33 × 10+1

f10 1000 7.13 × 10+3 1.18 × 10+2 1.18 × 10+3 1.58 × 10+1 2.74 × 10+2

f11 1100 1.70 × 10+3 5.40 × 10+1 1.67 × 10+5 2.35 × 10+4 −3.85 × 10+1

f12 1200 1.53 × 10+3 1.24 × 10+1 2.04 × 10+3 9.11 × 10+1 −3.04 × 10+1

f13 1300 1.65 × 10+3 1.67 × 10+1 1.55 × 10+3 1.03 × 10+1 2.79 × 10+1

f14 1400 2.21 × 10+3 7.80 × 10+1 1.65 × 10+3 3.31 × 10+1 3.62 × 10+1

f15 1500 2.27 × 10+3 8.04 × 10+1 2.26 × 10+3 1.82 × 10+2 2.75 × 10−1

f16 1600 1.90 × 10+3 9.66 × 10 0 2.33 × 10+3 1.03 × 10+2 −2.28 × 10+1

f17 1700 1.97 × 10+3 8.15 × 10 0 1.93 × 10+3 9.65 × 10 0 1.73 × 10+1

f18 1800 1.00 × 10+2 0.00 × 10 0 1.96 × 10+3 2.20 × 10+1 −4.63 × 10+2

f19 1900 1.00 × 10+2 0.00 × 10 0 1.36 × 10+6 2.84 × 10+5 −2.62 × 10+1

Table 11. Mamdani results for 100 dimensions.

F M P A 100D

I T 2 FLS T 1 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 1.41 × 10+8 4.73 × 10+7 1.13 × 10+8 4.25 × 10+7 2.41 × 10 0

f3 300 7.56 × 10+2 4.06 × 10+1 1.02 × 10+3 1.14 × 10+2 −3.49 × 10+1

f4 400 9.19 × 10+2 7.04 × 10+1 1.10 × 10+3 7.29 × 10+1 −1.19 × 10+1

f5 500 6.17 × 10+2 2.98 × 10 0 6.43 × 10+2 5.66 × 10 0 −9.78 × 10 0

f6 600 1.41 × 10+3 7.24 × 10+1 1.65 × 10+3 8.62 × 10+1 −2.23 × 10+1

f7 700 1.19 × 10+3 5.27 × 10+1 1.37 × 10+3 6.95 × 10+1 −1.17 × 10+1

f8 800 1.23 × 10+4 5.06 × 10+3 3.07 × 10+4 5.72 × 10+3 −1.13 × 10+1

f9 900 1.42 × 10+4 9.27 × 10+2 1.28 × 10+4 5.12 × 10+2 −1.32 × 10+1

f10 1000 1.99 × 10+3 9.41 × 10+1 2.16 × 10+3 4.31 × 10+1 7.24 × 10 0

f11 1100 2.99 × 10+7 7.51 × 10+6 5.30 × 10+7 2.46 × 10+7 −9.00 × 10 0

f12 1200 1.32 × 10+5 1.82 × 10+4 9.45 × 10+4 4.11 × 10+4 −4.92 × 10 0

f13 1300 1.91 × 10+3 3.38 × 10+1 1.94 × 10+3 2.18 × 10+1 4.57 × 10 0

f14 1400 5.47 × 10+3 4.82 × 10+2 6.74 × 10+3 9.44 × 10+2 −4.09 × 10 0

f15 1500 4.26 × 10+3 3.56 × 10+2 4.70 × 10+3 4.11 × 10+2 −6.56 × 10 0

f16 1600 1.93 × 10+3 1.49 × 10+2 4.10 × 10+3 2.70 × 10+4 −4.43 × 10 0

f17 1700 6.78 × 10+3 1.12 × 10+3 3.28 × 10+3 2.59 × 10+2 −4.40 × 10+1

f18 1800 2.52 × 10+4 5.81 × 10+3 3.26 × 10+3 2.78 × 10+2 1.67 × 10+1

f19 1900 1.41 × 10+8 4.73 × 10+7 1.13 × 10+8 4.25 × 10+7 2.07 × 10+1

Tables 12–14 show the results of the tests after 30 runs with the Sugeno FMPAT1 and
FMPAIT2 fuzzy systems, and show the averages after 30 runs for 30, 50, and 100 dimensions
with the statistical tests.
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Table 12. Sugeno results for 30 dimensions.

F M P A 30D

I T 2 FLS T 1 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 1.85 × 10+5 2.38 × 10+4 1.99 × 10+5 3.57 × 10+4 −1.79 × 10 0

f3 300 3.01 × 10+2 3.02 × 10−1 3.01 × 10+2 2.16 × 10−1 0.00 × 10 0

f4 400 4.77 × 10+2. 1.60 × 10+1 4.75 × 10+2 1.18 × 10+1 5.51 × 10−1

f5 500 5.61 × 10+2 9.47 × 10 0 5.55 × 10+2 7.06 × 10 0 2.78 × 10 0

f6 600 6.01 × 10+2 6.58 × 10−1 6.02 × 10+2 5.38 × 10−1 −6.44 × 10 0

f7 700 7.92 × 10+2 1.20 × 10+1 7.92 × 10+2 1.60 × 10+1 0.00 × 10 0

f8 800 8.58 × 10+2 8.79 × 10 0 8.58 × 10+2 7.91 × 10 0 0.00 × 10 0

f9 900 9.25 × 10+2 1.54 × 10+1 9.17 × 10+3 6.69 × 10 0 −2.69 × 10+3

f10 1000 3.13 × 10+3 4.98 × 10+2 3.32 × 10+3 2.77 × 10+2 −1.83 × 10 0

f11 1100 6.73 × 10+23 0.00 × 10 0 1.14 × 10+3 1.46 × 10+1 2.52 × 10+23

f12 1200 7.28 × 10+3 1.07 × 10+2 7.76 × 10+3 1.55 × 10+3 −1.69 × 10 0

f13 1300 1.47 × 10+3 1.09 × 10+1 1.48 × 10+3 1.15 × 10+1 −3.46 × 10 0

f14 1400 1.47 × 10+3 4.82 × 10 0 1.47 × 10+3 5.63 × 10 0 0.00 × 10 0

f15 1500 1.57 × 10+3 8.64 × 10 0 1.57 × 10+3 9.10 × 10 0 0.00 × 10 0

f16 1600 1.91 × 10+3 1.21 × 10+1 1.93 × 10+3 9.16 × 10+2 −1.20 × 10−1

f17 1700 1.77 × 10+3 1.35 × 10+1 1.77 × 10+3 1.32 × 10+1 0.00 × 10 0

f18 1800 1.85 × 10+3 4.05 × 10 0 1.85 × 10+3 5.23 × 10 0 0.00 × 10 0

f19 1900 1.94 × 10+3 2.17 × 10 0 1.94 × 10+3 2.91 × 10 0 0.00 × 10 0

Table 13. Sugeno results for 50 dimensions.

F M P A 50D

I T 2 FLS T 1 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 1.00 × 10+2 0.00 × 10 0 8.05 × 10+6 4.08 × 10+6 −1.08 × 10+1

f3 300 3.00 × 10+2 0.00 × 10 0 3.59 × 10+2 2.76 × 10+1 −1.17 × 10+1

f4 400 4.00 × 10+2 0.00 × 10 0 5.12 × 10+2 1.96 × 10+1 −3.13 × 10+1

f5 500 5.00 × 10+2 0.00 × 10 0 6.50 × 10+2 2.76 × 10+1 −2.98 × 10+1

f6 600 6.04 × 10+2 3.25 × 10 0 6.05 × 10+2 9.88 × 10−1 −1.61 × 10 0

f7 700 7.50 × 10+2 1.40 × 10−2 8.92 × 10+2 2.31 × 10+1 −3.37 × 10+1

f8 800 8.00 × 10+2 0.00 × 10 0 9.46 × 10+2 1.70 × 10+1 −4.70 × 10+1

f9 900 9.05 × 10+2 2.35 × 10−13 1.21 × 10+3 1.18 × 10+2 −1.42 × 10+1

f10 1000 1.00 × 10+3 0.00 × 10 0 5.71 × 10+3 5.21 × 10+2 −4.95 × 10+1

f11 1100 1.19 × 10+3 1.50 × 10+1 1.20 × 10+3 2.32 × 10+1 −1.98 × 10 0

f12 1200 5.20 × 10+3 1.45 × 10+5 5.09 × 10+5 1.26 × 10+5 3.14 × 10−1

f13 1300 4.78 × 10+3 5.53 × 10+2 4.82 × 10+3 6.13 × 10+2 −2.65 × 10−1

f14 1400 1.57 × 10+3 1.14 × 10+1 1.57 × 10+3 8.67 × 10 0 0.00 × 10 0

f15 1500 1.82 × 10+3 2.65 × 10+1 1.81 × 10+3 1.97 × 10+1 1.66 × 10 0

f16 1600 2.36 × 10+3 1.39 × 10+2 2.36 × 10+3 1.59 × 10+2 0.00 × 10 0

f17 1700 2.40 × 10+3 1.22 × 10+2 2.36 × 10+3 1.02 × 10+2 1.38 × 10 0

f18 1800 2.18 × 10+3 5.76 × 10+1 2.20 × 10+3 7.59 × 10+1 −1.15 × 10 0

f19 1900 2.03 × 10+3 9.48 × 10 0 2.03 × 10+3 7.19 × 10 0 0.00 × 10 0

Tables 9–17 show the results for 30, 50, and 100 dimensions, respectively. First,
Tables 9–11 show the results and statistical comparison between FMPAIT2 and FMPAT1
Mamdani-type fuzzy systems. In second place, we have Tables 12–14, which show the
results and statistical comparison between the FMPAIT2 and FMPAT1 fuzzy systems of
the Sugeno type. Finally, we have Tables 15–17, which show the results and statistical
comparison between the FMPAGT2 and FMPAIT2 fuzzy systems of Mamdani type. All
the experiments are with the proposed FMPA with dynamic adjustment in the parameters
P, FADs, and CF, respectively. The averages and standard deviations of 30 experiments
are summarized in these tables. From Table 9 with 30 dimensions, it is noticeable that in
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the FMPA optimizing a Mamdani-type IT2FLS, the results achieved in the mathematical
functions are more accurate, unlike the T1FLS results.

Table 14. Sugeno results for 100 dimensions.

F M P A 100D

I T 2 FLS T 1 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 2.10 × 10+8 6.08 × 10+6 2.36 × 10+8 6.89 × 10+7 −2.06 × 10 0

f3 300 5.41 × 10+3 1.53 × 10+3 6.22 × 10+3 2.06 × 10+3 −1.73 × 10 0

f4 400 7.55 × 10+2 3.05 × 10+1 7.64 × 10+2 2.43 × 10+1 −1.26 × 10 0

f5 500 8.58 × 10+2 4.89 × 10+1 8.86 × 10+2 4.77 × 10+1 −2.25 × 10 0

f6 600 6.21 × 10+2 6.11 × 10 0 6.20 × 10+2 4.25 × 10 0 7.36 × 10−1

f7 700 1.30 × 10+3 4.94 × 10+1 1.30 × 10+3 7.86 × 10+1 0.00 × 10 0

f8 800 1.16 × 10+3 4.42 × 10+1 1.18 × 10+3 4.15 × 10+1 −1.81 × 10 0

f9 900 6.98 × 10+3 2.39 × 10+2 8.82 × 10+3 3.82 × 10+3 −2.63 × 10 0

f10 1000 1.36 × 10+3 8.34 × 10+2 1.40 × 10+4 1.31 × 10+3 −4.46 × 10+1

f11 1100 2.19 × 10+3 1.21 × 10+2 2.18 × 10+3 1.24 × 10+2 3.16 × 10−1

f12 1200 5.10 × 10+7 1.19 × 10+7 6.05 × 10+7 2.84 × 10+7 −1.69 × 10 0

f13 1300 1.81 × 10+5 3.39 × 10+3 2.02 × 10+5 3.81 × 10+4 −3.01 × 10 0

f14 1400 2.15 × 10+3 5.38 × 10+1 2.15 × 10+3 4.89 × 10+1 0.00 × 10 0

f15 1500 1.54 × 10+4 4.10 × 10+3 1.62 × 10+4 3.36 × 10+3 −8.27 × 10−1

f16 1600 4.84 × 10+3 3.53 × 10+2 4.69 × 10+3 3.54 × 10+2 1.64 × 10 0

f17 1700 3.99 × 10+3 2.40 × 10+2 4.11 × 10+3 2.79 × 10+2 −1.79 × 10 0

f18 1800 1.23 × 10+4 1.57 × 10+3 1.19 × 10+4 2.86 × 10+3 6.72 × 10−1

f19 1900 4.15 × 10+4 8.97 × 10+3 4.07 × 10+4 5.65 × 10+3 4.13 × 10−1

Table 15. Results for 30 dimensions.

F M P A 30D

GT 2 FLS I T 2 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 2.53 × 10+7 2.57 × 10+7 1.00 × 10+2 1.33 × 10−6 5.39 × 10 0

f3 300 3.00 × 10+2 0.00 × 10 0 3.00 × 10+2 3.09 × 10−11 0.00 × 10 0

f4 400 4.00 × 10+2 0.00 × 10 0 4.02 × 10+2 2.62 × 10 0 −4.18 × 10 0

f5 500 5.00 × 10+2 0.00 × 10 0 5.36 × 10+2 4.01 × 10 0 −4.92 × 10+1

f6 600 6.06 × 10+2 4.25 × 10 0 6.00 × 10+2 7.05 × 10−2 7.73 × 10 0

f7 700 7.39 × 10+2 3.04 × 10+1 7.64 × 10+2 3.06 × 10 0 −4.48 × 10 0

f8 800 8.00 × 10+2 0.00 × 10 0 8.38 × 10+2 2.65 × 10 0 −7.85 × 10+1

f9 900 1.23 × 10+5 6.51 × 10+1 9.00 × 10+2 5.91 × 10−5 1.03 × 10+4

f10 1000 1.00 × 10+3 0.00 × 10 0 2.43 × 10+3 2.20 × 10+2 −3.56 × 10+1

f11 1100 1.23 × 10+3 4.56 × 10+1 1.11 × 10+3 4.01 × 10 0 1.44 × 10+1

f12 1200 2.13 × 10+6 1.17 × 10+6 1.49 × 10+3 1.44 × 10+2 9.96 × 10 0

f13 1300 1.51 × 10+3 2.87 × 10+2 1.35 × 10+3 1.46 × 10+1 3.05 × 10 0

f14 1400 1.61 × 10+3 2.38 × 10+1 1.43 × 10+3 3.99 × 10 0 4.09 × 10+1

f15 1500 1.56 × 10+3 3.18 × 10+1 1.51 × 10+3 4.47 × 10 0 8.53 × 10 0

f16 1600 1.70 × 10+3 1.15 × 10+2 1.83 × 10+3 4.14 × 10+1 −5.83 × 10 0

f17 1700 1.87 × 10+3 7.79 × 10+1 1.75 × 10+3 8.61 × 10 0 8.39 × 10 0

f18 1800 1.86 × 10+3 4.11 × 10+1 1.82 × 10+3 1.63 × 10 0 5.33 × 10 0

f19 1900 1.95 × 10+3 4.37 × 10+1 1.91 × 10+3 1.55 × 10 0 5.01 × 10 0

As functions, we have the Shifted and Rotated Rastrigin’s Function, Shifted and
Rotated Noncontinuous Rastrigin’s Function, Hybrid Function 1 (N = 3), Hybrid Function
4 (N = 4), and Hybrid Function 5 (N = 4), where it is demonstrated that by adjusting the
important parameters of the MPA algorithm, better errors are obtained. As shown in the
results, in the shifted and rotated Rastrigin’s functions, the average of 30 experiments, for
the FMPAT1, the average is 4.47 × 10+2, and in the FMPAIT2, the average is 4.09 × 10+2.
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Table 16. Results for 50 dimensions.

F M P A 50D

GT 2 FLS I T 2 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 1.19 × 10+2 8.02 × 10+1 1.00 × 10+2 0.00 × 10 0 1.30 × 10 0

f3 300 3.00 × 10+2 0.00 × 10 0 3.02 × 10+2 7.15 × 10−1 −1.53 × 10+1

f4 400 4.00 × 10+2 0.00 × 10 0 4.87 × 10+2 2.42 × 10+1 −1.97 × 10+1

f5 500 5.00 × 10+2 0.00 × 10 0 6.26 × 10+2 1.77 × 10+1 −3.90 × 10+1

f6 600 6.11 × 10+2 6.32 × 10 0 6.02 × 10+2 9.18 × 10−1 7.72 × 10 0

f7 700 9.19 × 10+2 1.31 × 10+1 8.51 × 10+2 3.26 × 10+1 1.06 × 10 0

f8 800 8.00 × 10+2 0.00 × 10 0 9.23 × 10+2 1.53 × 10+1 −4.40 × 10+1

f9 900 3.51 × 10+3 3.07 × 10+2 9.64 × 10+2 3.50 × 10+1 4.51 × 10+1

f10 1000 1.00 × 10+3 0.00 × 10 0 5.78 × 10+3 4.65 × 10+2 −5.63 × 10+1

f11 1100 1.33 × 10+3 2.17 × 10+1 1.18 × 10+3 1.48 × 10+1 3.13 × 10+1

f12 1200 1.68 × 10+3 2.73 × 10+2 7.13 × 10+3 1.18 × 10+2 −1.00 × 10+2

f13 1300 2.26 × 10+3 3.24 × 10+3 1.70 × 10+3 5.40 × 10+1 9.47 × 10−1

f14 1400 1.51 × 10+3 6.82 × 10+1 1.53 × 10+3 1.24 × 10+1 −1.58 × 10 0

f15 1500 1.58 × 10+3 7.15 × 10+1 1.65 × 10+3 1.67 × 10+1 −5.22 × 10 0

f16 1600 1.99 × 10+3 1.84 × 10+2 2.21 × 10+3 7.80 × 10+1 −6.03 × 10 0

f17 1700 1.77 × 10+3 6.00 × 10+1 2.27 × 10+3 8.04 × 10+1 −2.73 × 10+1

f18 1800 1.83 × 10+3 3.06 × 10+1 1.90 × 10+3 9.66 × 10 0 −1.19 × 10+1

f19 1900 3.10 × 10+3 4.51 × 10+3 1.97 × 10+3 8.15 × 10 0 1.37 × 10 0

Table 17. Results for 100 dimensions.

F M P A 100D

GT 2 FLS I T 2 FLS

FNC fi AVERAG DEV. STD AVERAG DEV. STD Z
f1 100 6.55 × 10+4 0.00 × 10 0 1.41 × 10+8 4.73 × 10+7 −1.63 × 10+1

f3 300 3.00 × 10+2 0.00 × 10 0 2.12 × 10+4 8.56 × 10+3 −1.34 × 10+1

f4 400 4.00 × 10+2 0.00 × 10 0 7.56 × 10+2 4.06 × 10+1 −4.80 × 10+1

f5 500 5.00 × 10+2 0.00 × 10 0 9.19 × 10+2 7.04 × 10+1 −3.26 × 10+1

f6 600 6.75 × 10+2 7.02 × 10 0 6.17 × 10+2 2.98 × 10 0 4.17 × 10+1

f7 700 9.02 × 10+2 2.33 × 10+2 1.41 × 10+3 7.24 × 10+1 −1.14 × 10+1

f8 800 8.00 × 10+2 0.00 × 10 0 1.19 × 10+3 5.27 × 10+1 −4.05 × 10+1

f9 900 9.10 × 10+2 1.18 × 10−13 1.23 × 10+4 5.06 × 10+3 −1.23 × 10+1

f10 1000 1.00 × 10+3 0.00 × 10 0 1.42 × 10+4 9.27 × 10+2 −7.80 × 10+1

f11 1100 1.39 × 10+3 5.43 × 10+1 1.99 × 10+3 9.41 × 10+1 −3.02 × 10+1

f12 1200 1.10 × 10+9 4.75 × 10+8 2.99 × 10+7 7.51 × 10+6 1.23 × 10+1

f13 1300 1.86 × 10+7 1.11 × 10+7 1.32 × 10+5 1.82 × 10+4 9.11 × 10 0

f14 1400 6.70 × 10+3 2.59 × 10+3 1.91 × 10+3 3.38 × 10+1 1.01 × 10+1

f15 1500 1.40 × 10+6 8.76 × 10+5 5.47 × 10+3 4.82 × 10+2 8.72 × 10 0

f16 1600 2.65 × 10+3 3.82 × 10+3 4.26 × 10+3 3.56 × 10+2 −2.30 × 10 0

f17 1700 5.19 × 10+3 4.81 × 10+2 1.93 × 10+3 1.49 × 10+2 3.55 × 10+1

f18 1800 7.14 × 10+5 3.89 × 10+5 6.78 × 10+3 1.12 × 10+3 9.96 × 10 0

f19 1900 5.28 × 10+6 2.15 × 10+6 2.52 × 10+4 5.81 × 10+3 1.34 × 10+1

From Tables 10 and 11, with 50 and 100 dimensions, it is noticeable that in regard to
the FMPAIT2 of the Mamdani type, the results achieved with the mathematical functions
are more accurate, unlike the FMPAT1 results.

As functions, we have the Shifted and Rotated Schwefel’s Function, Hybrid Function 2
(N = 3), Hybrid Function 3 (N = 3), and Hybrid Function 6 (N = 5), where it is demonstrated
that by adjusting the important parameters of the MPA metaheuristic, better errors are
obtained. As shown in the results, in the Shifted and Rotated Schwefel’s Function (FCN
9), the average of 30 experiments, for the FMPAT1, the average is 5.48 × 103, and for the
FMPAIT2, the average is 1.18 × 10+3 (in 50 dimensions). Now for the Hybrid Function 2
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(N = 3), Hybrid Function 3 (N = 3), and Hybrid Function 6 (N = 5) are presented. As shown,
the results are follows: for the Hybrid Function 2 (N = 3), the average of 30 experiments, for
the FMPAT1, the average is 5.30 × 10+7, and for the FMPAIT2, the average is 2.99 × 10+7

(in 100 dimensions).
From Tables 12–14, with 30, 50, and 100 dimensions, it is noticeable that in regard to

the FMPAIT2 optimized with the Sugeno type, the results achieved in the mathematical
functions are more accurate, unlike the FMPAT1. Functions, such as the Shifted and Ro-
tated Bent Cigar Function, Shifted and Rotated Schwefel’s Function, and Hybrid Function
1 (N = 3), once again have demonstrated that by adjusting the important parameters of
the MPA algorithm, better errors are obtained. As shown in the results, in the Shifted and
Rotated Bent Cigar Function (FCN 1), the average of 30 experiments, for the FMPAT1, the
average is 1.99 × 10+5, and for the FMPAIT2, the average is 1.85 × 10+5 (in 30 dimen-
sions). For the FMPAT1, the average is 8.05 × 10+6, and for the FMPAIT2, the average is
1.00 × 10+2 (in 50 dimensions). Finally, for the FMPAT1, the average is 2.36 × 10+8, and
for the FMPAIT2, the average is 2.10 × 10+8 (in 100 dimensions).

From Tables 15–17, with 30, 50, and 100 dimensions, it can be seen that with regard to
the FMPAGT2, the results achieved in the mathematical functions are more accurate, unlike
for the FMPAIT2, as the dimensions are increased. This is true for functions, such as the
Shifted and Rotated Rastrigin’s Function (FCN 4), Shifted and Rotated Expanded Schaffer’s
F6 Function (FCN 5), and Shifted and Rotated Levy Function (FCN 8). For example, for
the Shifted and Rotated Rastrigin’s Function (FCN 4), the average of 30 experiments, for
the FMPAIT2, the average is 4.02 × 10+2, and for the FMPAGT2, the average is 4.00 × 10 0

(in 30 dimensions). For the FMPAIT2, the average is 4.87 × 10+2, and for the FMPAGT2,
the average is 4.00 × 10+2 (in 50 dimensions). Finally, for the FMPAIT2, the average is
4.87 × 10+2, and for the FMPAGT2, the average is 4.00 × 10+2 (in 100 dimensions).
Analyzing the results in Tables 15–17, we confirm that the results of the functions improve
in most cases with the FMPAGT2, not due to the absence of uncertainty, in contrast to the
FMPAT1 and FMPAIT2. For example, for the Hybrid Function 1 (N = 3) (FCN 10), the P
parameter found for the featured experiment with GT2FLS is in [0.35, 0.75], the parameters
of FADs are in [0.2, 0.5], and for the CF, the parameter is in [0, 1].

5.2. Case 2: Mobile Robot Fuzzy Controller Optimization

The composition and organization of the values of the FMPA metaheuristic for the
experimentation with the FLC are described in Table 18. Figure 19 illustrates an overview
of the proposed FLCs.

Table 18. FMPA parameters assigned to fuzzy controller design.

Parameters Values

SearchAgents 50
Iterations 10

P Dynamic
FADs Dynamic

CF Dynamic

The phase that highlights the efficiency and stability of a FLC is the application of
disturbance, for example, in the form of white noise to the inputs and in other experiments
in the feedback loop of the fuzzy controller with Gaussian noise [17,51].

Initially, the tests were carried out with the proposal without affecting the controller
with noise, and later, the following tests were carried out, applying a Gaussian noise of 0.7,
which would be equivalent to 70% of the noise (alteration) in the robot controller. In this
case study, the results of the experimentation are summarized using the mean or average
of 30 runs, contrasting the averages of their integral errors (ITAE, IAE, ISE) describing their
performance and MSE as an objective function in error minimization. Additionally, the



Symmetry 2022, 14, 859 30 of 36

best, the worst, and the standard deviation are selected from the fitness function and are
represented by the MSE values in Tables 19 and 20.

Figure 19. Architecture of a fuzzy logic controller (FLC) proposed.

Table 19. Performance index and statistical test results for the FMPAT1FLC and FMPAIT2FLC.

Performance
Index

Output Wheel Torque (TW1) and (TW2)

FMPAT1FLC
without Noise

FMPAIT2FLC
without Noise

FMPAT1FLC
with Noise

FMPAIT2FLC
with Noise

ITAE 2.32 × 10 2 2.37 × 10 2 3.41 × 10 2 2.13 × 10 2

ISE 4.04 × 100 4.07 × 100 6.28 × 10 2 4.11 × 100

IAE 1.15 × 10 1 1.22 × 10 1 1.46 × 10 1 1.26 × 10 1

Average 2.81 × 10−1 5.3 × 10−2 8.7 × 10−1 3.1 × 10−2

STD 1.8 × 10−1 9.4 × 10−2 2.5 × 10−2 2.0 × 10−3

Best 4.15 × 10−3 6.64 × 10−3 7.35 × 10−3 2.05 × 10−4

Worst 3.17 × 10−1 4.81 × 10−2 4.52 × 100 5.09 × 10−2

Z-Value −7.5 −1.85

Table 20. Performance index and statistical test results for the FMPAIT2FLC and FMPAGT2FLC.

Performance
Index

Output Wheel Torque (TW1) and (TW2)

FMPAIT2FLC
without Noise

FMPAGT2FLC
without Noise

FMPAIT2FLC
with Noise

FMPAGT2FLC
with Noise

ITAE 2.37 × 10 2 2.08 × 10 2 2.13 × 10 2 1.93 × 10 2

ISE 4.07 × 100 4.26 × 100 4.11 × 100 3.95 × 100

IAE 1.22 × 10 1 1.04 × 10 1 1.26 × 10 1 1.19 × 10 1

Average 5.3 × 10−2 3.3 × 10−4 3.1 × 10−2 2.2 × 10−4

Std Dev 9.4 × 10−2 2.0 × 10−4 2.0 × 10−3 1.8 × 10−4

Best 6.64 × 10−3 6.54 × 10−5 2.05 × 10−4 3.05 × 10−5

Worst 4.81 × 10−2 9.13 × 10−4 5.09 × 10−2 2.92 × 10−4

Z-Value −3.068 −83.95

In the Z-statistical value described in Equation (39), the parameter values used in this
test were as follows: the level of significance, 0.05, for all Z-values lower than −1.645:

Z =

(
X1 − X2

)
− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

(39)

where X1 and X2 represent the values of the means of the samples; µ1 and µ2 are the
values of the population means for FMPAT1, FMPAIT2, FMPAGT2, and FHSIT2; σ2

1 and σ2
2
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represent the standard deviations of the samples; and n1 and n2 are the sizes of the samples
used in the experimentation.

Tables 19 and 20 show a comparison first between the FMPAT1 and FMPAIT2 con-
trollers, and later between the FMPAIT2 and FMPAGT2 for the autonomous mobile robot,
and the average values and standard deviations for the MSE fitness function are presented.
This comparison was made for 30 experiments with both methods.

The results of Table 20 show the minimum errors in the simulations with the different
fuzzy methods, FMPAIT2 and FMPAGT2, with and without applying noise. For example,
in the case of the autonomous mobile robot controller with FMPAGT2 without noise, the
minimum error without noise is 3.3 × 10−4 with a standard deviation of 2.0 × 10−4, and
for the FMPAIT2 algorithm, it is 5.3 × 10−2 with a standard deviation of 9.4 × 10−2. With
a Gaussian noise of 0.7 (70%) FMPAGT2, the error is 2.2 × 10−4 with a standard deviation
of 1.8 × 10−4, and for the FMPAIT2 algorithm, it is 3.1 × 10−2 with a standard deviation of
2.0 × 10−3. Therefore, the FMPAGT2FLC shows good performance with the best minimum
errors in the simulations.

In Table 20, when analyzing the statistical results, it can be established that there is
significant evidence to establish conclusions. First, in the tests without Gaussian noise, the
error generated by the FMPAGT2 controller is less than that generated by the FMPAIT2
controller with a Z-value of −3.06. For the case of tests with Gaussian noise, the error
generated by the FMPAGT2 controller is less than that generated by the FMPAIT2 controller
with a Z-value of −83.95.

Table 21 shows a comparison with the FHS algorithm [53] for the autonomous mobile
robot controller, and the average and standard deviation values for the fitness function of
MSE are presented. This comparison was realized for 30 experiments with both works.

Table 21. Performance index and statistical test results for error in comparison of FMPAGT2FLC and
FHSIT2FLC methods.

Performance
Index

Output Wheel Torque (TW1) and (TW2)

FHSIT2FLC
without Noise

FMPAGT2FLC
without Noise

FHSIT2FLC
with Noise

FMPAGT2FLC
with Noise

ITAE 3.03 × 106 2.08 × 10 2 3.10 × 10 6 1.93 × 10 2

ISE 5.72 × 104 4.26 × 100 6.49 × 104 3.95 × 100

IAE 6.09 × 10 3 1.04 × 10 1 6.47 × 10 3 1.19 × 10 1

Average 1.11 × 10−1 3.3 × 10−4 3.69 × 10−2 2.2 × 10−4

Std Dev 1.37 × 10−1 2.0 × 10−4 4.20 × 10−2 1.8 × 10−4

Z-Value −4.42 −4.78

Results in Table 21 show minimal errors in the simulations with the FMPAGT2 algo-
rithm. For example, in the case of the autonomous mobile robot controller, the minimal
error without noise is 3.3 × 104 with a standard deviation of 2.0 × 104, and for the FHSIT2
algorithm, it is 1.11 × 10−1 with a standard deviation of 1.37 × 10−1. With the noise
FMPAGT2, the error is 2.2 × 10−4 with a standard deviation of 1.8 × 10−4, and for the
FHSIT2 algorithm, it is 3.69 × 10−2 with a standard deviation of 4.20 × 10−2. Therefore,
the FMPAGT2FLC shows the best errors in the simulations.

In Table 21, when analyzing the statistical results, it can be established that there is
significant evidence to establish, first, in the tests without Gaussian noise, that the error
of the FMPAGT2 is less than that of the FHSIT2 with a Z-value of −4.42. For the case of
tests with Gaussian noise, the error of the FMPAGT2 is less than that of the FHSIT2 with a
Z-value of −4.78.

Figure 20 illustrates a better simulation resulting with the FMPAT1FLC, FMPAIT2FLC,
and FMPAGT2FLC methods without considering noise.
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Figure 20. Analysis of results with the methods without noise using the (a) FMPAT1FLC, (b) FM-
PAIT2FLC, and (c) FMPAGT2FLC methods.

Figure 21 illustrates the simulation with the FMPAT1FLC, FMPAIT2FLC, and FM-
PAGT2FLC methods with Gaussian noise in the controller.

Figure 21. Analysis of results with the methods and Gaussian noise using the (a) FMPAT1FLC,
(b) FMPAIT2FLC, and (c) FMPAGT2FLC methods.

The red curves in Figures 20 and 21 detail the controller reference, and the blue curves
indicate the best results achieved by the best simulation achieved in each proposed method.
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Finally, when we supervise the route in the autonomous mobile robot, the FMPA ob-
tains a better behavior with the FMPAGT2FLC than that with its counterpart, FMPAIT2FLC
and FMPAT1FLC, despite the disturbance (0.7 Gaussian noise) in the model (Figure 22), so
the results demonstrate the excellent performance and behavior of the fuzzy predators with
the GT2FLC (FMPAGT2) algorithm for optimal stabilization and tuning of fuzzy controllers.

Figure 22. The contrast of results of the best MSE for the mobile robot with the fuzzy proposals.

6. Conclusions

In this article, an efficient FMPA algorithm for function optimization and the design of
MFs for the autonomous mobile robot control problem is presented as the main goal of this
research. The scheme presented to find an optimal distribution of the MFs in the control
problem shows that when a disturbance in the form of Gaussian noise is added to the
model, the FMPA algorithm achieves stabilization by reducing the error in the autonomous
mobile robot controller. Then, based on the results, the strategy of the FMPA to explore
and exploit stands out. A symmetrical distribution of these membership functions was
assumed for reducing computational complexity and was found to be successful in this
case for finding optimal parameter values.

Therefore, to demonstrate the aforementioned, comprehensive performance met-
rics were applied, such as ITAE, ISE, IAE, and MSE, to reveal the performance of the
FMPA algorithm.

By applying the FMPA algorithm, it can be determined that it is an excellent search
tool for the optimal design of FLS MFs, achieving capable and stable fuzzy controllers. The
results of Tables 19–21 present the contrasts in the minimum errors achieved by the three
methods used in the simulations and their comparison with the harmony search method.

As future work for this research, it would be a good idea to make use of type-2 shadow
sets to make a comparison in search for shorter times and reduce computational overhead
when applying generalized type-2 fuzzy. In this way, an improvement in the design of
fuzzy controllers for dynamic trajectory tracking control, obstacle evasion, and goal seeking
from mobile autonomous robots is achieved.
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