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Abstract: Josephson junctions are essential ingredients in the superconducting circuits used in many
existing quantum technologies. Additionally, ultracold atomic quantum gases have also become
essential platforms to study superfluidity. Here, we explore the analogy between superconductivity
and superfluidity to present an intriguing effect caused by a thin finite barrier in a quasi-one-
dimensional toroidal spinor Bose–Einstein condensate (BEC). In this system, the atomic current
density flowing through the edges of the barrier oscillates, such as the electrical current through
a Josephson junction in a superconductor, but in our case, there is no current circulation through
the barrier. We also show how the nontrivial broken-symmetry states of spinor BECs change the
structure of this Josephson-like current, creating the possibility to probe the spinor symmetry, solely
using measurements of this superfluid current.

Keywords: Josephson effect; Bose–Einstein condensate; spinor BEC; toroidal superfluid

1. Introduction

The Josephson effect [1,2] is one of the most relevant phenomena in superconductivity;
for his theoretical predictions, Brian D. Josephson received the Nobel Prize in Physics in
1973. In a superconductor, the phenomenon is characterized by the tunneling of Cooper pairs
through a junction, or a weak link, represented by a potential energy barrier between two
superconductor regions [3–5]. When a voltage V is applied to these regions, the electrical
current in the junction, Ij, oscillates according to the expression:

Ij = I0 sin(φ); with
dφ

dt
=

2eV
h̄

, (1)

where I0 is the current amplitude and φ is the angle representing the phase difference of the
order parameter between each superconducting region [4]. There is a conceptual analogy
between superconductivity and superfluidity [6], given by the lack of resistance in the flow
of the electrical current, or, equivalently, the lack of viscosity in the flow of a superfluid. In
fact, since superfluidity emerges naturally in Bose–Einstein condensates (BECs) produced
in dilute ultracold Bose gases [7–15], the analogue of the Josephson effect has already been
studied in experiments [16–19].

For scalar BECs [7,8] (i.e., condensates with a scalar order parameter: ψ =
√

neiθ),
the superfluid velocity is always proportional to the global phase gradient (∇θ), and it
represents the complete structural symmetry of the system. On the other hand, for spinor
BECs [9–11] (i.e., condensates with multi-component order parameter: [ψ]m = ψm), the
superfluid flow is related to the properties of their symmetry and topology, which can
generate nontrivial spatial spin textures and current distributions not found in scalar BEC
systems. In fact, there are many topological states in spinor BECs analogous to particles
and structures studied across several areas of physics, such as skyrmions, Dirac monopoles,
knot solitons, vortices, half-vortices [9,20–24], to name a few.
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Here, based on the analogy between superfluidity and superconductivity, we study a
Josephson-like oscillating current produced in toroidal spinor Bose–Einstein condensates
due to the presence of a thin finite energy barrier (Figure 1), and we show that the current
density at the edges of the barrier behaves similarly to Ij, and depends on the structural
symmetry of the spinor condensate.

Figure 1. Schematic illustration of the external potentials applied to the condensate: (a) effective
toroidal region T (with average radius R) where the potential Utrap confines the condensate; (b) re-
pulsive barrier UB = UB(ϕ), for ϕ the azimuthal angle in cylindrical coordinates (r, ϕ, z). Here, we
consider thin angular widths 2δ� 2π.

2. General Modeling of Spinor BECs

For a system with atomic spin f = 1, the order parameter of a spinor BEC satisfies the
following vector Gross–Pitaevskii equation (GPE) [9]:

ih̄
∂

∂t
ψ =

[
− h̄2∇2

2M
+ Utotal − pfz + qf2

z + c0n + c1~F ·~f
]

ψ . (2)

In the equation, the bold fonts indicate matrix quantities related to the vector order pa-
rameter ψ = (ψ f (~r, t), . . . , ψ− f (~r, t))T , and where n = ψ†ψ = ∑m |ψm(~r, t)|2 = ∑m nm(~r, t)
is the number density, with spin components ψm(~r, t) =

√
nm(~r, t) eiθm(~r,t), ~F = ψ†~f ψ is

the spin density, and~f = (fx, fy, fz) is the spin operator (in the f = 1 representation). The
constants p ∝ |~B| and q ∝ |~B|2 are related to the linear and quadratic Zeeman effects, respec-
tively, when an external magnetic field, ~B, is applied. The system’s nonlinear interaction
“strength” is modeled by the coefficients c0 and c1 (see Reference [9] for details).

In this work, we consider a toroidal trapping potential, Utrap, with a repulsive barrier,
UB, restricted to a region of small azimuthal angle. Therefore, the total external potential is
given by Utotal = Utrap + UB, as sketched in Figure 1. We assume that Utotal provides the
necessary means to trap all the components of the spinor BEC in the torus. For instance, by
using the appropriate optical trapping techniques [25]. Optical traps have the advantage
of providing flexible control over the potential symmetry when combined, for example,
with digital holography [26,27], direct imaging [28], or phase-mapping [29] of sharp optical
patterns, to design almost arbitrary shapes. In fact, a toroidal optical potential with
a controllable energy barrier similar to the one described here has been demonstrated
in [30–32], and a toroidal potential with spinor BEC in [33].

The order parameter of a spinor BEC, represented as a column matrix, can always
be factored into ψ = ψ(~r, t) ζ, as the product of a scalar part, ψ(~r, t) =

√
n(~r, t) eiθ(~r,t), and

a normalized spinor part, ζ (with ζ†ζ = 1) [9]. This vector description has a gauge symmetry
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with artificial gauge fields related to ζ. These fields emerge naturally from the description,
and are analogous to the scalar and vector electromagnetic potentials [9,34]:

Φ = −iζ† ∂

∂t
ζ, (3)

~A = iζ†~∇ζ. (4)

In particular, the superfluid number current density,~J = n~v, depends linearly on the
vector potential ~A, as the superfluid velocity ~v of a spinor BEC is given by:

~v =
h̄
M

(~∇θ − ~A). (5)

Note that the action of the artificial vector potential is analogous to the electromagnetic
vector potential on the expression of the electrical current in a superconductor [4]. In
addition, some of the topological properties of the condensate are determined by the
circulation of ~v (i.e.,

∮
~v · ~dl), and, therefore, they may depend on artificial magnetic fluxes,

given by a synthetic magnetic field ~B ≡ h̄~∇× ~A [9].
In general, the current density of a spinor BEC is defined in the usual manner, replacing

the scalar order parameter by its vector form

~J =
h̄
M

(
ψ†~∇ψ− (~∇ψ†)ψ

)
=

h̄
M

Im{ψ†~∇ψ}, (6)

therefore,

~J =
h̄
M

f

∑
m=− f

Im{ψ∗m(~r, t)~∇ψm(~r, t)} (7)

=
f

∑
m=− f

~Jm(~r, t) (8)

Alternatively, using the spin components ψm(~r, t), one could write

~Jm =
h̄
M

nm(~r, t)~∇θm(~r, t) = nm(~r, t)~vm(~r, t), (9)

where the velocity spin components are ~vm(~r, t) = h̄
M
~∇θm(~r, t).

3. Modeling the Potential Barrier and Defining Some Approximations

This section explains in detail how we define the potential barrier, UB, and its general
properties. Because we will use the quasi-one-dimensional (quasi-1D) limit for the geometry
of the condensate later, we consider the barrier UB(ϕ) is written in terms of a normalized
angular distribution f (ϕ), not depending on other spatial variables (r, z):

UB(ϕ) = U0 f (ϕ), with
∫ π

−π
f (ϕ)dϕ = 1. (10)

We consider that the barrier is effectively restricted to an angular range ϕ ∈ [−δ, δ],
such that: ∫ π

−π
f (ϕ)dϕ ≈

∫ δ

−δ
f (ϕ)dϕ ≈ 1. (11)

Integrating the GPE (2) along the arc ϕ ∈ [−δ, δ], with fixed (r, z) in the thin barrier
condition (δ� π), leads to two dominant terms:

h̄2

2Mr2

[
∂ϕψ(δ)− ∂ϕψ(−δ)

]
≈
∫ δ

−δ
UB(ϕ)ψ(ϕ) dϕ, (12)
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where the left-hand side follows directly from the fundamental theorem of calculus, and
it is related to the momentum along the ϕ̂ direction (pϕ ϕ̂ = −ϕ̂(ih̄∂ϕ)/r). Note that we
simplified the notation ψ(r, ϕ, z)→ ψ(ϕ), given that we consider (r, z) fixed parameters.

The remaining terms not computed in the last equation were neglected because for
small δ they are proportional to δ (i.e., these terms are O(δ) while the dominant terms are
proportional to the unit), and can be neglected as one takes the limit of δ→ 0.

Additionally, in the limit of small δ, the integration of the barrier potential resembles
the integration of a Dirac’s delta (normalized) function, such that

lim
δ→0

[∫ δ

−δ
UB(ϕ)ψ dϕ

]
= U0 lim

δ→0

[∫ δ

−δ
f (ϕ)ψ dϕ

]
≈ U0 ψ(0). (13)

Here, it is important to emphasize that, in practice, the derivative of the potential
barrier must not exceed a limit given by the Landau critical velocity, otherwise, the flow is
dissipated and the system loses its superfluid properties [30,35]. To avoid such situations,
one may always choose a larger radius R (see Figure 1) so that the barrier UB(ϕ) is spatially
“smooth” enough. We discuss this condition in Section 6.

Finally, we consider one last approximation. If the number of atoms in the condensate
is kept the same, it is expected that the average cross-section area of T (at fixed ϕ) becomes
smaller when R is larger. So, for R big enough, the condensate would be trapped in small
∆r and ∆z ranges, and the number density would become approximately a function of only
one variable (quasi-1D approximation):

n(r, ϕ, z)→
{

n(ϕ), if (r, ϕ, z) ∈ T ;
0, otherwise.

(14)

Moreover, these conditions also restrict the direction of~J, such that:

~J ≈ Jϕ ϕ̂ =
h̄

Mr
Im{ψ†∂ϕψ}ϕ̂. (15)

In the next section, we discuss how the barrier potential, UB, acts on the current density
and the consequences of choosing an order parameter with defined parity.

4. Current Density and the Parity of the Order Parameter

Based on the discussion in the last section, we expect that, for relatively large R,
a toroidal condensate under the presented conditions, will behave similar to a quasi-1D
BEC with the current density effectively restricted to the ϕ̂ direction. Now, we are interested
in finding an expression for the current density Jϕ(δ) at the edges of the barrier UB (i.e., at
ϕ = ±δ). To help us find such an expression, we define the following quantity:

∆J(δ) := Jϕ(δ)− Jϕ(−δ). (16)

Its interpretation is quite simple: if we multiply it by the area, Ac, of the cross-section
of the condensate, it returns the rate of change in the number of atoms NB located inside
the barrier region:

∆J(δ) · Ac = −
d
dt

NB. (17)

Using (15) and (16), one finds the following expression for ∆J(δ):

∆J(δ) ≈ h̄
MR

Im
{

ψ†(δ)∂ϕψ(δ)−ψ†(−δ)∂ϕψ(−δ)
}

. (18)

To simplify it, we use symmetry arguments observing the parity of the order parameter
ψ. It is noticeable that, in general, the GPE (2) admits both even and odd solutions (with
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respect to the variable ϕ), and if we choose an even distribution f (−ϕ) = f (ϕ), the order
parameter follows {

ψ(−ϕ) = ψ(ϕ) → even,
ψ(−ϕ) = −ψ(ϕ) → odd.

(19)

Moreover, it is easy to show that Jϕ is always an odd function if the parity of ψ is well
defined. This way, it is clear that ∆J(δ) allows us to calculate Jϕ(δ) directly:

∆J(δ) = 2Jϕ(δ). (20)

In particular, if we choose ψ(ϕ) to be even, one finds that:

ψ†(δ)∂ϕψ(δ)−ψ†(−δ)∂ϕψ(−δ) = ψ†(δ)
[
∂ϕψ(δ)− ∂ϕψ(−δ)

]
, (21)

and, using the Equations (12) and (13), we finally obtain:

Jϕ(δ) ≈
U0R

h̄
Im{ψ†(δ)ψ(0)}. (22)

Note that making ψ an even function is not the only way of finding such an approx-
imation for the current difference ∆J(δ). For instance, choosing RU0 big enough in the
complete expression for ∆J(δ),

∆J(δ) ≈ h̄
MR

Im
{[

ψ†(δ)−ψ†(−δ)
]
∂ϕψ(δ) +

2MR2

h̄2 U0ψ†(−δ)ψ(0)
}

, (23)

should effectively return the same ∆J(δ) value from the even case, regardless of whether
the parity of ψ is defined or not. However, choosing the even parity case for ψ leads
to a symmetrical constraint of the BEC global phase, as we show in the next section (see
Equations (31) and (38)).

Recalling what we mentioned before, it is always possible to factorize the order
parameter ψ = ψζ, and the scalar term can be written as ψ =

√
n eiθ . Applying such

factorization in (22), we find:

Jϕ(δ) ≈
U0R

h̄

√
n(δ)n(0) Im

{
ζ†(δ)ζ(0)ei[θ(0)−θ(δ)]

}
. (24)

According to reference [9], ζ is highly dependent on the symmetrical and topological
properties of the condensate. Therefore, we expect that Jϕ will also depend on such
properties. Nevertheless, for now, to keep the analogy between the Josephson current (1)
and Jϕ(δ) as simple as possible, we consider the case of a scalar BEC (i.e., ζ ≡ 1):

Jϕ(δ) ≈
{

U0R
h̄

√
n(δ)n(0)

}
× sin[θ(0)− θ(δ)] (25)

Note that the current density Jϕ at the edges of the barrier (ϕ = ±δ) is proportional to
the sine of the phase difference between the barrier region (ϕ ∼ 0) and the remaining region
(ϕ & δ or ϕ . −δ), and the analogy to the Josephson current is (mathematically) clear.

It is also possible to derive the time-evolution equation for the global phase difference
∆θ = θ(0) − θ(δ), similarly to the second equation in (1). Here, we use the following
relation between ∂tθ and the local average energy per particle δE/δn(~r) [7]:

− h̄
∂

∂t
θ =

δE
δn(~r)

, (26)
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where δE/δn(~r) is the functional derivative of the average energy of the condensate, E,
with respect to the number density [7], n(~r),

E =
∫

ψ∗
[
− h̄2∇2

2M
+ Utotal

]
ψ +

c0n2

2
d3r . (27)

If we consider the phase difference ∆θ = θ(0)− θ(δ),

∂

∂t
[∆θ] =

1
h̄

δE
δn

∣∣∣∣ϕ=δ

ϕ=0
, (28)

we find that the difference of the local energy per particle (right-hand side of (28)) has the
same role to Jϕ(δ) as 2eV has to Ij in Equation (1).

5. The Broken-Symmetry Spinor BEC Case

This section discusses the current Jϕ(δ) beyond the scalar BEC case. For that, it
is convenient to define the function C(δ) as the quantity that characterizes such current
according to the spinor nature of the condensate:

C(δ) := Im
{

ζ†(δ)ζ(0)ei[θ(0)−θ(δ)]
}

. (29)

Note that, in general,
C(δ) 6= sin(∆θ), (30)

because the spinor part ζ may not be trivial (i.e., ζ 6≡ 1). Before discussing specific cases, we
recall some useful properties of spinor BECs applied to the system analyzed here.

Firstly, due to the defined parity of ψ, it is simple to show that the superfluid velocity
in the ϕ̂ direction (vϕ) is an odd function. Therefore, its circulation must always be zero
and the global phase circulation is proportional to the artificial magnetic flux:∮

dθ =
∮

~A · ~dl =
1
h̄

∫∫
~B · ~dS, (31)

which, in several situations [9], might be proportional to integer multiples of 2π.
In addition, the time-evolution equation for ∆θ in the spinor BEC case is given by:

∂

∂t
[∆θ] =

(
1
h̄

δE
δn

+ Φ
)∣∣∣∣ϕ=δ

ϕ=0
, (32)

where the average energy E is (for atomic spin f = 1):

E =
∫

ψ†

[
− h̄2∇2

2M
+ Utotal − pfz + qf2

z

]
ψ +

c0n2

2
+

c1~F2

2
d3r , (33)

and it implicitly depends on the gauge field ~A.
Moreover, according to reference [9], spinor BECs are naturally described by broken-

symmetry states in the long-wavelength limit (i.e., when the characteristic dimensions of the
condensate are much larger than its healing length). Furthermore, the spinor part of these
states is characterized by the following type of expansion:

ζ = e−iαfz e−iβfy e−iγfz ζ0, (34)
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where the parameters (α, β, γ) are functions of time and space, and represent an arbitrary
unitary transformation ∼= SO(3) (i.e., they are Euler angles). For f = 1 condensates, such
transformation is equivalent to the following matrix:

e−iαfz e−iβfy e−iγfz =


e−i(α+γ)cos2 β

2 − e−iα
√

2
sinβ e−i(α−γ)sin2 β

2
e−iγ
√

2
sinβ cosβ − eiγ

√
2
sinβ

ei(α−γ)sin2 β
2

eiα
√

2
sinβ ei(α+γ)cos2 β

2

. (35)

The constant generator of the spinor part ζ0 is directly related to the order parameter of
a uniform condensate, whose possible states (ferromagnetic, polar, anti-ferromagnetic, and
others) have been studied and classified [9,10,36]. For generators with average spin in the ẑ
direction (ζ†

0
~f ζ0 = ζ†

0fzζ0ẑ = f0ẑ), the artificial electromagnetic potentials are [9]:

~A = f0

(
cos(β)~∇α + ~∇γ

)
, (36)

Φ = − f0

(
cos(β)

∂

∂t
α +

∂

∂t
γ

)
. (37)

So, we can rewrite (31) as:∮
dθ = f0

∮
(cos(β)dα + dγ), (38)

which is a constrain between θ and the Euler angles (given that the parity of ψ is defined).
Now, we will show two examples of how such broken-symmetry states affect the

current Jϕ(δ)and how it differs from the scalar BEC case.

5.1. Ferromagnetic States

There are two families of ferromagnetic states in spinor ( f = 1) BECs, called positive and
negative, generated by ζferro+

0 = (1, 0, 0)T and ζferro−
0 = (0, 0, 1)T , respectively. Using (35),

one derives [9] the following spinor parts of the ferromagnetic states ζferro±:

ζferro+ = e−iγ

e−iαcos2 β
2

1√
2

sinβ

eiαsin2 β
2

 and ζferro− = eiγ

e−iαsin2 β
2

−1√
2

sinβ

eiαcos2 β
2

, (39)

from which one can compute all the symmetrical and topological properties. With these
expressions, we directly find how the parameters (α, β, γ) act on C(δ):

Cferro±(δ) = cos2 β(0)
2

cos2 β(δ)

2
sin[∆θ ∓ (∆γ + ∆α)] +

1
2

sinβ(0)sinβ(δ)sin[∆θ ∓ ∆γ]

+ sin2 β(0)
2

sin2 β(δ)

2
sin[∆θ ∓ (∆γ− ∆α)], (40)

for ∆G := G(0)− G(δ), when G = θ, α or γ.
Note that Cferro±(δ) is not equal to sin[∆θ] in general. This shows that the current

Jϕ(δ) in BECs is sensitive to their nontrivial structural spinor properties. However, we
are still able to access the scalar limit, because Cferro±(δ) = sin[∆θ], if (α, β, γ) are constant
parameters. This situation corresponds to spinor BECs with trivial spinor parts (for instance,
in the ferromagnetic case, ζ = (1, 0, 0)T or (0, 0, 1)T), representing an effective scalar BEC
in a rotated reference frame.
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5.2. Polar State

The polar states are generated by ζ
polar
0 = (0, 1, 0)T . Such a family of states is unique

because they are closely related to scalar BECs (given that f0 = 0 and ~F = 0), while their
symmetrical and topological properties might be nontrivial [9]. Using (35), one finds the
spinor part of the polar states:

ζpolar =


− e−iα
√

2
sinβ

cosβ
eiα
√

2
sinβ

. (41)

Applying this expression in (29), we obtain Cpolar(δ):

Cpolar(δ) =
1
2

sinβ(0)sinβ(δ)sin[∆θ − ∆α] + cosβ(0)cosβ(δ)sin[∆θ]

+
1
2

sinβ(0)sinβ(δ)sin[∆θ + ∆α]. (42)

With a little algebraic work, we find that Cpolar(δ) ∝ sin[∆θ] in general. In this sense,
we might interpret such a relation as a signature of the partial analogy between polar states
and scalar BECs, because the current density Jϕ(δ) can be written in the following way:

Jϕ(δ) = Jmax(α, β) sin[∆θ], (43)

where the parameters (α, β) modulate the maximum value of Jϕ(δ).

6. Landau Critical Velocity, Lower Bound for R, and Experimental Protocol

This section discusses the effects of the Landau critical velocity on the parameters
of our model and shows that it defines a lower bound for R. We also introduce a simple
experimental scheme to test the theory, proposing an upper limit to how fast the barrier
height, U0(t), can be turned on. In addition, we discuss some relevant considerations and
practical suggestions for the experiments, particularly related to time-lapsed measurements
of the BEC density distribution, using specialized imaging techniques, from which the
analysis of the time evolution would lead to C(δ).

The Landau critical velocity is an upper limit for the velocity of particles in a superfluid,
before the appearance of dissipation (viscosity) [7,8,13,35]. It is set by the energy gap
between the ground state and the lowest elementary excitation leading to dissipation in the
fluid. In BECs, this critical velocity is typically in the same order of magnitude as the sound
velocity, being identical to it for a weakly-interacting homogeneous (uniform) scalar BEC.
According to the Bogoliubov theory for spin-1 spinor BECs [9], similarly to the scalar case,
this velocity vc is

vc ∼
√

gn
M

, (44)

where here g is usually a linear combination of the constants c0 and c1 from Equation (2), and
it depends on the broken-symmetry state of the condensate. For example, in a ferromagnetic
state, according to Sec. 5.2.1 in Ref. [9], g = c0 + c1.

Because Jϕ(ϕ) is an odd (anti-symmetrical) function in our formulation, from sym-
metry arguments alone, we expect Jϕ(0) = Jϕ(π) = Jϕ(−π) = 0, with the maximum
amplitudes symmetrically occurring in the interval |ϕ| ∈ [0, π]. Therefore, assuming that
the dominant contribution to the current occurs at ϕ = ±δ, because we are interested in the
superfluid regime, we impose |~v(δ)| < vc(δ) =

√
gn(δ)/M, where n(δ) is the total (local)

density at ϕ = ±δ. Moreover, we use Equation (5) to estimate |~v(δ)|:

|~v(δ)| ∼ h̄
MR
|∂ϕθ(δ)− iζ†(δ)∂ϕζ(δ)| ∼ h̄

MR
1
δ

. (45)
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Considering δ is a given angle (i.e., we chose δ in an experiment), we can estimate a
lower bound for R, such that the condensate is in the superfluid regime:

R >
√

2
h̄√

2Mgn(δ)
1
δ
=
√

2
ξ

δ
; with ξ ≡

√
h̄2/(2Mgn(δ)). (46)

Or, more intuitively:

R� (Healing Length)
δ

(47)

if one wants the system to be far from the critical velocity.
As indicated previously in Equation (17), the currents Jϕ(±δ) are helpful to model the

rate of change in the number of atoms NB leaving the region inside the barrier. Conversely,
measuring this rate of change, i.e., monitoring NB(t), is a way to measure C(δ) as a function
of time. In principle, one could use non-destructive imaging techniques [37,38] to take
multiple snapshots of the condensate density distribution at different times. Depending
on the experimental parameters, such as the number of atoms and the radius R, the cross-
section Ac could be so small that the optical density of the atoms would make dispersive
(phase contrast) imaging [37] difficult, but this is exactly the conditions for which partial-
transfer absorption imaging (PTAI) [38] was developed. Therefore, in principle, one can
make these measurements even in the deep quasi-1D limit (i.e., extending the radius R as
necessary to fulfill the condition in Section 4).

According to Section 5, different types of spinor BECs (ferromagnetic, polar, and scalar,
with equivalent initial conditions for the density and velocity) should respond differently to
the application of the same potential barrier UB(ϕ). The details will depend on the specific
case, as well as the external magnetic field. Therefore, further theoretical, numerical, and
experimental studies are necessary, but they may unveil new ways of sensing the symmetry
of spinor BEC states, solely using measurements of C(δ).

As a simple example, we can imagine an experimental protocol starting initially with
the barrier turned off and a homogeneous condensate in equilibrium (n(0) = n(δ) and
∂tn(ϕ) = 0). At t = 0, the barrier is turned on and ramped up following a sufficiently fast
time protocol U0 = U0(t). The barrier causes a perturbation on the densities (and also on
NB and C(δ)), and, after a time t = τ, the system reaches a new equilibrium (∂tNB = 0 and
C(δ) = 0, ∀t > τ). For scalar BECs, the equilibrium is described by C(δ) = sin(∆θ) = 0,
with ∆θ = constant, which (as expected) simply implies in:

µ =

(
δE
δn

)
ϕ=δ

=

(
δE
δn

)
ϕ=0

. (48)

Finally, we briefly show here that the time protocol U0(t) must always have an up-
per limit that depends on the density’s perturbation and C(δ) at any given time so that
the condensate does not lose its superfluid properties. This upper limit is found using
Equation (24) to estimate |~v(δ)| and it corresponds to

U0(t) < vc(δ, t)
h̄
R

√
n(δ, t)
n(0, t)

1
|C(δ, t)| . (49)

7. Conclusions

In this manuscript, we used the parallel between superconductors and superfluids
to present a curious new effect in a superfluid, similar to the current oscillations in the
Josephson effect, but it happens without current flowing through the barrier. The result
was derived for BECs in toroidal traps with a thin finite repulsive barrier, and it works both
for scalar and spinor BECs.

Using a thin barrier approximation, in Equations (12) and (13), and assuming a defined
parity for the order parameter, we derived analytical expressions for the current density.
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We showed that the current at the edges of the barrier oscillates in a similar fashion to the
current flowing through a Josephson junction (1), but in our case, it happens without a
net circulation of the superfluid current. We also showed how the nontrivial symmetry
properties of spinor BECs could generate other current structures, beyond the typical
C(δ) = sin[∆θ] case, indicating that such current is sensitive to these properties, suggesting
that it could be used to probe spinor symmetry or, perhaps, provide precision measurements
related to the superfluid flow.

Throughout this work, we assumed the parity of ψ was defined, which is a strong
mathematical imposition to guarantee that Equation (24) is a reasonable approximation for
the current density. Moreover, this imposition implies that the circulation of the condensates
considered here is always zero, excluding several (θ, α, β, γ) configurations with nontrivial
symmetry and topology. However, as we discussed in Section 4, ensuring that the last
term in (23) is dominant should keep the structure of ∆J(δ) unchanged, regardless of the
parity of ψ. Therefore, it might be possible to derive a similar expression (24) for BECs
with nonzero circulation, such as the ones shown in experiments [30–33,39], and for spinor
BECs with nontrivial structure or topology [9,40–48].

Here, we also neglected the effects of fluctuations, either classical or quantum, which
can be relevant in the quasi-1D limit [49–51]. However, as we have shown previously
in Ref. [52], one can always play with the number of atoms and the aspect ratio of the
trapping potential to place oneself within the best range of parameters for the experiments.
Exercising this ability deliberately allows one to control the influence of thermal phase
fluctuations at finite temperatures. Therefore, interesting future directions would be to
explore the effects of finite temperature and thermal fluctuations, and the non-equilibrium
effects caused by quickly turning on the repulsive barrier in our proposed experimental
scheme. In Section 6, we discussed some considerations for an idealized protocol, but the
general spinor case is more complex and deserves a detailed analysis. For instance, our
simple estimate for the Landau critical velocity does not take into account other relevant
mechanisms of decay [33,39,53], especially at finite temperatures [54].

Therefore, further numerical, experimental, and theoretical studies are necessary and
may improve, expand, and, perhaps, help to classify (maybe in symmetry terms) the formu-
lation of this intriguing Josephson-like effect in toroidal spinor Bose–Einstein condensates.
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