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Abstract: In recent years, with the development of deep learning, semantic segmentation for remote
sensing images has gradually become a hot issue in computer vision. However, segmentation for
multicategory targets is still a difficult problem. To address the issues regarding poor precision and
multiple scales in different categories, we propose a UNet, based on multi-attention (MA-UNet).
Specifically, we propose a residual encoder, based on a simple attention module, to improve the
extraction capability of the backbone for fine-grained features. By using multi-head self-attention
for the lowest level feature, the semantic representation of the given feature map is reconstructed,
further implementing fine-grained segmentation for different categories of pixels. Then, to address
the problem of multiple scales in different categories, we increase the number of down-sampling
to subdivide the feature sizes of the target at different scales, and use channel attention and spatial
attention in different feature fusion stages, to better fuse the feature information of the target at
different scales. We conducted experiments on the WHDLD datasets and DLRSD datasets. The
results show that, with multiple visual attention feature enhancements, our method achieves 63.94%
mean intersection over union (IOU) on the WHDLD datasets; this result is 4.27% higher than that of
UNet, and on the DLRSD datasets, the mean IOU of our methods improves UNet’s 56.17% to 61.90%,
while exceeding those of other advanced methods.

Keywords: remote sensing; image segmentation; multi-head self-attention; channel attention; spatial
attention; deep learning

1. Introduction

In recent years, with the development of computer technology and artificial intelli-
gence, image segmentation tasks have gradually become important elements of computer
vision [1–3]. Semantic segmentation for remote sensing images is a popular branch of
image segmentation tasks. Geospatial object segmentation [4] in remote sensing images, as
a special semantic segmentation task, can be widely used in typical task scenarios, such
as sea and land segmentation [5], old city transformation [6], building mapping [7], road
extraction [8], and vegetation cover assessment [9]. Semantic image segmentation classifies
each pixel in an image into a corresponding class to achieve pixel-level classification, which
constitutes a fundamental problem in computer vision, together with typical tasks, such
as motion estimation, image classification, target detection, and target tracking. However,
making machines learn to segment targets in remote sensing images is still a daunting
task, and a series of classic methods have been gradually created with the advancement of
technology and the innovation of researchers.

Traditional image segmentation methods cut an image into smaller areas based on its
grayscale, color, texture and shape features to form similarities within smaller areas, and
to differentiate between these smaller areas; but the accuracy of these traditional image

Symmetry 2022, 14, 906. https://doi.org/10.3390/sym14050906 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14050906
https://doi.org/10.3390/sym14050906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14050906
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14050906?type=check_update&version=1


Symmetry 2022, 14, 906 2 of 19

segmentation methods is relatively low, and they cannot perform pixel-level segmentation.
Most of these segmentation methods are based on thresholding, edge or graph theory
segmentation. For example, based on the position invariance, scale invariance and rotation
invariance of an image, a combination of AIR and SIFT algorithms [10] was proposed to
achieve segmentation and alignment for remote sensing images. Wang, Y. et al. proposed a
watershed segmentation method [11], combining multiscale morphological gradient recon-
struction and marker extraction, based on threshold theory; In addition to the threshold
method, a graph-based optimization algorithm, combined with region features, aims to
efficiently solve the image segmentation problem [12]. With the development of machine
learning, researchers have achieved image classification via hand-crafted features, and,
compared to traditional methods, machine learning methods are more adaptable to per-
forming feature extraction for different images. In machine learning, the Histogram of
Oriented Gradient (HOG) [13] is widely used in feature design. Dong, C. et al. proposed
a method to detect ships by using a gradient histogram for remote sensing images [14]
and achieved an accuracy of 97%. Qi, S. et al. proposed an unsupervised ship detection
approach based on saliency and S-HOG descriptors from optical satellite images [15], and
it demonstrates good performance compared to state-of-the-art methods.

The advent of deep learning has had a significant impact on image segmentation
methods. Convolutional neural networks (CNNs) [16] use an end-to-end approach to train
the model, i.e., after the structure of the model is designed, it is only necessary to input the
images and their corresponding labels to get the final model, which is different from the
way of designing features manually in machine learning, and greatly simplifies the process
of manually designing features. CNNs have a strong ability to mine spatial contextual in-
formation. CNNs-based image segmentation methods do not require hand-crafted features,
and the model has better ability to automatically mine and integrate features, which is why
more and more algorithms adopt CNNs. Long et al. made some modifications to a CNN,
based on the classification task, by removing the fully connected layer that condenses the
semantic representation obtained from the classification network and proposing a fully
convolutional network [17] to enable end-to-end pixel-level classification for the first time,
and it achieved improved segmentation of PASCAL VOC (30% relative improvement to
67.2% mean IOU on PASCAL VOC 2012). After that, a large number of classical segmen-
tation models have emerged, such as UNet [18], PSPNet [19] and Deeplab [20]. UNet is a
symmetric U-shaped network for encoding and decoding, aiming to focus on recovering
information lost during convolutional down-sampling, and it achieves, without any further
preprocessing or postprocessing, a warping error of 0.0003529 and a rand error of 0.0382 on
EM datasets. PSPNet is a pyramid scene parsing network for the multiscale problem, and
it yielded a new record of mIoU accuracy of 85.4% on PASCAL VOC 2012. DeepLab is
another typical architecture for semantic segmentation. Its representative approach is a
multiscale design based on dilated convolution, which eliminates repetitive up-sampling
structure. On the PASCAL VOC 2012 semantic image segmentation task, Deeplab reaches
79.7% mean IOU.

However, these algorithms are not ideal when applied directly to remote sensing
images. Remote sensing images have some difficulties, such as complex backgrounds and
large levels of noise, and many categories need to be segmented in remote sensing images,
such as buildings, vehicles, pedestrians, vegetation, water sources, etc. Furthermore,
the features and scales vary greatly between different categories. Researchers further
improved typical algorithms to adapt to the segmentation of remote sensing images [21–25].
Among these improvements, the most representative improved models are based on UNet:
UNet++ [26], Attention UNet [27] and Trans-UNet [28]. UNet++ is a deep supervised
network based on encoder-decoder. The encoder and decoder subnetworks perform
feature fusion through a series of nested, dense skip connections to reduce the semantic loss
between the feature mappings. Unlike the UNet++ stack subnetwork, Attention UNet and
Trans-UNet enable the model to pay attention [29–32] to detailed information of features
and enhance the mapping and expression of features, by adding an attention mechanism to
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the encoder and decoder. They are state-of-the-art models in different segmentation tasks
at present.

For remote sensing images, many difficulties are still faced in terms of segmenting
multicategory targets. Current segmentation networks have fewer backbone layers and
relatively poor feature extraction abilities, which leads to low accuracy when segmenting
adjacent pixels between different categories in complex scenes. Moreover, the multiple
scales in different categories of targets in remote sensing images lead to poor segmentation
for targets of different scales in the same image. To solve these two problems, we propose a
UNet based on multiple attention mechanisms, named multi-attention UNet (MA-UNet).
We incorporate various attention mechanisms into UNet, including the newly popular
multi-head self-attention mechanism of the transformer, to enhance the semantic representa-
tions of features through multiple dimensions. The implementation code is avalilable on the
following Github Link (https://github.com/1343744768/Multiattention-UNet, accessed
on 25 March 2022). The improvements are specified as follows:

1. We add a residual structure in the backbone to alleviate the gradient disappearance
problem and enhance the generalization performance of the backbone. To further im-
prove the extraction capability of the backbone for fine-grained features, a simple atten-
tion module is used in the residual unit, without increasing the computational effort;

2. We increase the number of down-sampling once (from the original 16-fold down-
sampling process of UNet to 32-fold down-sampling) and use multi-head self-attention
for the lowest level feature to rebuild the feature map and enhance the semantic repre-
sentation of each feature point on the feature map. This improves the refinement of
pixel segmentation between different categories;

3. To solve the problem regarding multiple scales in different categories, we use a
channel attention module and a spatial attention module in the feature fusion stage at
different scales to better fuse the feature information of targets at different scales;

4. To address the problem of unbalanced target categories among multiple categories,
we use weighted cross-entropy loss (WCE loss) to ensure the model focuses more on
categories with smaller sample sizes.

2. Methods

We used UNet as the baseline for the structural design of our model. UNet uses a
typical encoder-decoder structure, i.e., after continuous convolution and down-sampling
are performed by the encoder, feature maps with small resolutions, but condensed high
dimensional semantic representations, are generated. Then, the decoder is continuously
convolved and up-sampled to the original size to obtain a segmentation result. UNet
has five scales of feature maps; the first four scales of the feature maps are fused with
the lower-level features by skip connections after up-sampling at the decoding end. The
lowermost feature map is down-sampled 16 times, compared with the original map, and
contains high dimensional semantic features. The segmented image is finally generated
after continuous up-sampling, and feature fusion. The UNet structure is shown in Figure 1.

We added a variety of improved attention modules, based on UNet, and proposed
multi-attention UNet (MA-UNet). In this section, we first introduce the structure of MA-
UNet, giving the figure of its overall structure, then we introduce the construction method of
each attention module and its function step-by-step, and finally we introduce our improved
loss function.

2.1. Structure of MA-UNet

Based on the UNet structure, we introduced four attention modules and proposed MA-
UNet. We used a residual structure and a simple attention module (simAM) to construct
the encoder and build an attention-based residual encoder, to improve the fine extraction
ability of the backbone for target features. By using a 3 × 3 convolution, with a step size
of 2 and a padding of 1, instead of max pooling for down-sampling, we reduced detail
loss incurred due to max pooling, and increased the number of down-sampling once (from

https://github.com/1343744768/Multiattention-UNet


Symmetry 2022, 14, 906 4 of 19

the original 16-time down-sampling process to 32-time down-sampling), to improve the
feature extraction capability of the network for large scale targets. We used multi-head self-
attention for the lowest level feature to rebuild the feature map and enhance the semantic
representation of each feature point on the feature map. Unlike the general encoder and
decoder, MA-UNet performs feature enhancement on features after the skip connections, by
using an attention module. We argue that the shallow features, because of their relatively
large feature map resolutions and spatial feature distribution, have a greater impact on
feature fusion, so spatial attention is utilized to integrate the fused features at the first three
scales. High dimensional features tend to be compressed in channels, so fused features are
integrated by using channel attention at the last two scales. The overall network structure
is shown in Figure 2, and the attention module in the network is described in detail in
subsequent subsections.

Figure 1. The structure of UNet; BN in the figure represents batch normalization.

Figure 2. The structure of MA-UNet; LN in the figure represents layer normalization and BN
represents batch normalization.
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2.2. Residual Encoder Based on Attention

The residual structure first appeared in ResNet [33,34], effectively solving problems
such as gradient disappearance and gradient explosion, due to the deepening of the
network. Two kinds of structures are generally available: the ordinary residual structure,
shown in Figure 3a, and the improved bottleneck structure of the residual, shown in
Figure 3b. Since MA-UNet increases the number of down-sampling once, which deceptively
increases the network depth, it is necessary to delay the gradient disappearance process
during backpropagation, via the residual structure.

Figure 3. The structure of residual block. (a) The ordinary residual structure; (b) The improved
bottleneck structure of the residual. C and BN in the figure represent number of channels and batch
normalization, respectively.

Although the residual structure, based on bottlenecks, reduces the number of oper-
ations, we used the normal residual structure, because MA-UNet does not stack many
residual layers and the original UNet encoder also uses two 3 × 3 convolutions for each
scale of the feature layer. However, the residual structure alone cannot significantly im-
prove the feature extraction performance of the encoder, and, to prevent further increase in
the computational effort of the encoder, we added a simple parameter-free attention module
(simAM) to the residual structure. After the feature map is convolved, the importance
of each neuron needs to be evaluated, and simAM infers the attention weights from the
energy function. In detail, the approach is as follows:

1. We obtain the feature space mean d based on the input feature map X, as shown in
Equation (1);

d = (X− X.mean(dim = [2, 3]))2 (1)

2. We find the variance of the feature map width and height in its channel direction
based on the feature space mean d, as shown in Equation (2);

v =
d.sum(dim = [2, 3])

H + W− 1
(2)

3. We obtain the energy distribution of the feature map, as shown in Equation (3), where
q is the energy factor;

E =
d

4(v + r)
+ 0.5 (3)

4. Finally, the enhanced feature map is obtained, as shown in Equation (4).

X∗ = sigmoid(
1
E
)� X (4)
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The residual structure based on simAM is formed by adding simAM behind the 3 × 3
convolution kernel in the residual structure, as shown in Figure 4. Ultimately, the encoder
of the MA-UNet consists of five residual blocks, based on simAM, and five convolution
kernels, with step sizes of 2.

Figure 4. The structure of the residual, based on simAM.

2.3. Feature Map Reconstruction Based on Multi-Head Self-Attention

After 5 convolutions and 5 down-sampling operations, for an image with an input
size of 256 × 256 × 3, the final feature map size was 8 × 8 × 512, i.e., only 64 pixels
per dimension, and the perceptual field, corresponding to the high dimensional features,
was relatively large. To further improve the correlation and globalization between the
feature points, we reconstructed the feature map, via multi-head self-attention (MSA).
The specific approach involved the generation of a query vector, a key vector and a value
vector for the input vector through the fully connected layer. The query vector queries
all the candidate locations to find the vector that is most closely related to itself, and each
candidate location has a pair of key vectors and value vectors. The process of querying is
the process of calculating the dot product between this vector and the key vectors of all
candidate positions. The result of the dot product operation was weighted to the respective
value vectors after softmax activation, and the final result was obtained by summation.
MSA is based on self-attention with multiple heads to achieve parallelism and improve the
efficiency of operations. The self-attention mechanism is shown in Figure 5a, and the MSA
mechanism is shown in Figure 5b.

Figure 5. (a) Structure of the self-attention mechanism; (b) Structure of the MSA mechanism.
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The final attention factor obtained can be expressed by the following Equation (5):

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (5)

The attention of multi-head parallel computing can be expressed by the following
Equations (6) and (7).

Multihead(Q, K, V) = Concat(head1 · · · headn)WO (6)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (7)

The input and output of MSA are two-dimensional matrix vectors. To apply this
to the segmentation task, the feature map needs to be flattened into a two-dimensional
feature matrix. The specific approach involved keeping the channel dimensions of the final
8 × 8 × 512 feature map, flattening it into a 512 × 64 2D matrix (after performing feature
reconstruction by layer normalization and MSA, the output is still a 512 × 64 2D matrix),
and then reshaping it back to the original feature map size. The overall structure is shown
in Figure 6.

Figure 6. The structure of MSA appling to image features rebuilding.

2.4. Feature Fusion Based on Attention Enhancement

In the decoding stage, the decoder restores the feature map to the original size and
finally obtains the segmentation result. The original UNet decoder consists of bilinear
interpolation, feature fusion and two 3 × 3 convolution layers, and after repeated up-
sampling and convolution operations, the number of channels is finally reduced to a specific
value by 1 × 1 convolution to obtain the resulting segmentation map. We used transposed
convolution, instead of bilinear interpolation, for up-sampling, and an attention module
was used to enhance the fused features during the feature fusion stage. We argue that the
simple concatenation of high dimensional features after up-sampling can easily confuse
the features of targets at different scales, especially when their boundaries are adjacent and
their contours are blurred and irregular. Therefore, we designed an attention enhancement
module to enhance recognition ability and strengthen the distinctions between targets of
different scales, while refining the features between different classes of targets.

Due to the relatively large resolution of the shallow level feature map, the spatial
feature distribution has a greater impact on feature fusion, so the three largest scale feature
maps use a spatial attention module (SAM) to integrate the fused features. Specifically,
the fused features are first further extracted by convolution operations, and the convolved
feature maps are average pooled and max pooled in the channel dimension. Then, the
spatial weight coefficients are obtained, after convolution and sigmoid activation, and,
finally, the spatial weight coefficients are multiplied by the original feature map to obtain
an enhanced feature map. High-dimensional features are often compressed in terms of
their channels, so the fused features are integrated by using a channel attention module
(CAM) for the latter two smaller scale feature maps. Specifically, the fused features were
first further extracted by a convolution operation. After linear mapping and summation,
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the channel weight coefficients were obtained through the activation function, and finally,
the channel weight coefficients were multiplied by the original feature map to obtain the
enhanced feature map. The structures of the SAM and CAM are shown in Figure 7.

Figure 7. Feature enhancement based on SAM and CAM.

2.5. Improved Loss Function

For the segmentation task, the total number of pixel points in each category is the
sample size, and when the number of categories is large, there are often unbalanced sample
sizes in different categories, which makes the model more biased toward predicting the
categories with more samples; thus, yielding a lower prediction loss. Such prediction results
make the segmentation effect for a category with fewer samples less accurate, and when the
pixels of the category with fewer samples are misclassified into other categories, this also
deceptively reduces the accuracies of other categories. For the problem of unbalanced target
categories, we used weighted cross-entropy loss (WCE loss) to make the misclassification
losses of different categories different by adjusting the weight gains of different categories,
assigning larger weights to categories with smaller sample sizes and smaller weights to
categories with larger sample sizes, so that the model focused more on categories with
smaller sample sizes. The improved cross-entropy loss Equation (8) is as follows:

loss = − 1
m∑m

j=1 ∑n
i=1 kiyji log(y∗ji) (8)

where m is the number of sample points, n is the number of categories, ki is the weight
corresponding to the current category, yji is the category number of the current sample
point, and y∗ji is the classification probability of the current sample point predicted by
the network.

3. Experiments and Results

To verify the effectiveness of our method, we conducted comparison experiments on
the publicly available WHDLD datasets and DLRSD datasets with MA-UNet and some
classic segmentation algorithms. In this section, we present the utilized datasets, evaluation
metrics, experimental procedures and experimental results.
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3.1. Datasets

The WHDLD datasets [35] is an open-source dataset for remote sensing image seg-
mentation, published by Wuhan University, with an image resolution of 256 × 256 × 3;
the categories are divided into 6 classes containing bare soil, buildings, pavement, roads,
vehicles, and water, with a total of 4940 images. We randomly divided the training sets and
validation sets at a ratio of 0.8:0.2 for each category, among which 3952 images were used
for training and 988 were used for testing. The images and labels of the WHDLD datasets
are shown in Figure 8.

Figure 8. Some images and labels in WHDLD datasets.

The DLRSD dataset [36] is a multicategory segmentation task dataset for remote sens-
ing images, produced by Wuhan University. It contains 2100 images with
256 × 256 × 3 resolution, covering 17 commonly used target classes for remote sens-
ing images, with 100 images in each class. We randomly divided the training sets and
validation sets at a ratio of 0.8:0.2 for each category, with 1680 images for training and
420 images for testing. The images and labels of the DLRSD datasets are shown in Figure 9.

As seen from the above figures, the WHDLD datasets and DLRSD datasets have
complex scenes [37] and many categories, such as cities, lakes, grasslands, farms, docks,
airports, etc. The target scales of different categories vary greatly, with small targets, such
as cars and trees, having resolutions less than 20 × 20, and buildings, lakes, roads, etc.
having resolutions greater than 200 × 200. Moreover, the distribution of different target
categories is chaotic, and the boundaries are blurred, making it difficult to classify pixels
between neighboring targets.
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Figure 9. Some images and labels in DLRSD datasets.

3.2. Evaluation Metrics

To evaluate the accuracy of model segmentation, we used the mean intersection over
union (mIOU), mean pixel accuracy (mPA), precision (P), and recall (R) for the segmentation
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performance. The mIOU is defined as the ratio of the intersection of the model’s predicted
outcomes and the true values for each category in the merged set, which were summed
and then averaged, as shown in Equation (9).

mIOU =
1

k + 1∑k
i=0

TP
FN + FP + TP

(9)

The mPA is defined by separately calculating the proportion of pixels that are cor-
rectly classified for each class and then summing and averaging the values, as shown in
Equation (10).

mPA =
1

k + 1∑k
i=0

TP + TN
FN + FP + TP + TN

(10)

Precision represents the proportion of the predicted results that are correctly predicted,
and recall represents the probability that the true value is correctly predicted, as shown in
Equations (11) and (12).

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

where TP stands for true positives, FP stands for false positives, TN stands for true negatives,
and FN stands for false negatives.

3.3. Experimental Design

We trained Unet [18], UNet++ [26], Attention UNet (AttUNet) [27], SegNet [38],
PSPNet [19], DeepLab [20], and MA-UNet on the WHDLD datasets and DLRSD datasets,
and the experimental environment included Ubuntu 18.04, CUDA 10.1, PyTorch 1.8.0,
and Python 3.7. To ensure the fairness of the experiments, the raw data were uniformly
augmented [39], including via random cropping, rotation, scaling, and flipping. The final
input size was 256 × 256 × 3, and all experiments were performed on four NVDIA GTX
2080Ti. We used the Adam optimizer [40] for optimization with a learning rate of 0.0001,
and we used WCE loss to calculate the loss values, where the weights of each category
were equal. Our experiments were divided into three steps. First, the detailed test results
of MA-UNet on the WHDLD datasets and DLRSD datasets for each category were given;
then, to visualize the performance improvement yielded by MA-UNet over UNet, we
qualitatively compared the prediction effects of MA-UNet and UNet on some images and
then gave the segmentation results of different models. Finally, the gain brought by each
attention modification to MA-UNet was evaluated via ablation experiments. The final
experimental results are shown in the next section.

3.4. Results and Analysis
3.4.1. Experimental Results of MA-UNet

MA-UNet achieved good segmentation performance on both the WHDLD datasets
and the DLRSD datasets, and the IOU, PA, precision and recall for each category in the
WHDLD datasets are shown in Figure 10. The IOU, PA, precision and recall for each
category in the DLRSD datasets are shown in Figure 11.
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Figure 10. Results obtained on the WHDLD datasets. (a) mIOU; (b) mPA; (c) Precision; (d) Recall.

Figure 11. Results obtained on the DLRSD datasets. (a) mIOU; (b) mPA; (c) Precision; (d) Recall.

3.4.2. Results of the Comparison Experiment

To further verify the performance of our method in comparison with that of the original
UNet, we qualitatively compared the segmentation results obtained for different scenes
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and classes of images in the DLRSD datasets and the WHDLD datasets, and we found
that both the MA-UNet and UNet had certain degrees of misclassification, but, overall,
the segmentation results of MA-UNet were better. The segmentation results obtained on
DLRSD are shown in Figure 12. In the black box area in the second row of Figure 12, UNet
incorrectly divided the large area of grass into trees, while MA-UNet accurately segmented
the larger scale grass class. Furthermore, as in the third row of Figure 12 for the car class
with a relatively small red area, the accuracy of MA-UNet was higher than that of UNet,
which showed that the overall segmentation effect of MA-UNet was also better than that of
UNet for targets with different size scales.

Figure 12. Images of the segmentation results obtained on the DLRSD datasets. (a) Image; (b) Label;
(c) Result of UNet; (d) Result of MA-UNet.

The segmentation results obtained on the WHDLD datasets are shown in Figure 13. In
the first row of Figure 13, for pool segmentation, the results of UNet had misclassifications
for a small portion of pixels (e.g., classifying the water within the white box as vegetation),
while MA-UNet accurately segmented each water region. In the third row of Figure 13,
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the large chunk of bare soil in the white box is classified as a road, and, compared with
the original image, we found that the misclassified region is white overall and has similar
features to roads, leading to the inability of UNet to effectively distinguish similar features
between different categories. In contrast, MA-UNet enhanced the semantic representations
of features between different categories by attention in different dimensions to achieve a
finer segmentation result.

Figure 13. Images of the segmentation results obtained on the WHDLD datasets. (a) Image; (b) Label;
(c) Result of UNet; (d) Result of MA-UNet.

To further verify the effectiveness of our method, we trained UNet, UNet++, AttUNet,
SegNet, PSPNet, DeepLabv3+, and MA-UNet on the WHDLD datasets and DLRSD datasets
and tested them on the test sets. The mIOU, mPA, precision (P) and recall (R) of each
model were calculated. The test results of each model on the WHDLD datasets are shown
in Table 1.

UNet, as a baseline, benefits from the feature fusion ability provided by skip con-
nections and has slightly higher segmentation performance than SegNet and PSPNet. Its
mIOU, mPA, P, and R are 59.67%, 72.52%, 74.00% and 71.92%, respectively, and its mIOU is
higher than PSPNet and SegNet by 1.36% and 3.99% respectively. It can be seen that for the
segmentation of multi-class targets of remote sensing images, the multiscale feature design
of PSPNet and SegNet models needs to be improved, and it is even less effective than the
baseline UNet. The mIOU and mPA of DeepLabv3+ 1.69% and 1.97% higher than those of
UNet, due to its stronger ResNet50 encoder and dilation convolution-based [41] multiscale
design, respectively. The improved AttUNet and UNet++, based on UNet, have higher
precision and recall values, while their mIOUs are also higher than that of the original UNet,
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reaching 61.54% and 62.07%, respectively. Compared with the above models, MA-UNet
had higher segmentation performance, and its precision and recall were 3.11% and 3.83%
higher than those of the original UNet, while its mIOU and mPA were also significantly
higher than those of the other models, reaching 63.94% and 75.71%, respectively.

Table 1. Comparison among the results obtained by different methods on the WHDLD datasets.

Method mIOU (%) mPA (%) P (%) R (%)

UNet 59.67 72.52 74.00 71.92
UNet++ 62.07 75.16 76.32 74.83
AttUNet 61.54 74.35 75.18 73.39
SegNet 55.68 67.92 69.71 67.26
PSPNet 58.31 72.32 73.12 70.67

DeepLabv3+ 61.36 74.49 74.87 73.04
MA-UNet(ours) 63.94 75.71 77.11 75.75

On the DLRSD datasets, our model also achieved the best performance, with mIOU
and mPA values reaching 61.90% and 76.72%, respectively; these values were higher than
the 56.17% and 71.11% of the original UNet, as shown in Table 2. The test results of all
models on the DLRSD datasets were slightly lower than those obtained on the WHDLD
datasets, due to the presence of more categories and greater scale differences in the DLRSD
datasets. By comparing the results of each model, we found that for datasets with more
categories, such as DLRSD, enhanced feature fusion [42–44] could achieve higher mIOU
and mPA values; for example, the mIOU and mPA of UNet++ with enhanced feature fusion,
via multilayer nesting, reached 60.29% and 75.80%, respectively, and the mIOU and mPA
of DeepLabv3+, with a multiscale design based on dilation convolution, were 59.36% and
74.96%, respectively. AttUNet, with the advantage of attention, was more accurate in terms
of fine-grained segmentation for different target classes, producing precision and mPA
results of 74.84% and 76.13%, respectively, which were only lower than those of our method.

Table 2. Comparison among the results obtained by different methods on the DLSRD datasets.

Method mIOU (%) mPA (%) P (%) R (%)

UNet 56.17 71.11 68.46 72.52
UNet++ 60.29 75.80 73.27 72.93
AttUNet 59.62 76.13 74.84 72.29
SegNet 53.73 70.71 66.32 68.90
PSPNet 55.81 71.28 69.54 68.49

DeepLabv3+ 59.36 74.96 72.35 72.14
MA-UNet(ours) 61.90 76.72 75.47 74.96

The comparison experiments on the two datasets show that multiscale feature design
is very important for the segmentation of multi-category targets, and the UNet-based
models both showed high segmentation performance. In addition to the multiscale feature
design, feature fusion between different scales also affects the performance of the model.
It can be seen that UNet++, based on the fusion of multi-layer nested structural features,
as well as attention-based AttUNet segmentation metrics, were better with UNet, and
MA-UNet not only enhanced its feature extraction ability through residuals and attention
in the encoder but also enhanced its feature enhancement ability through SAM and CAM
in the feature fusion stage, which resulted in MA-UNet achieving the highest scores on the
two datasets.

3.4.3. Ablation Experiments

In order to verify the performance improvement and parameters change of each
attention module on MA-UNet, we performed ablation experiments on WHDLD datasets
by adding each attention module, step by step, on the basis of the original UNet, as
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shown in Table 3. The training period, learning rate, optimizer and other hyperparameters
are guaranteed to be constant. Experiment 1 denotes the results of the original UNet.
Experiment 2 represents the results obtained after adding the residual structure, based
on simAM, to the encoder of UNet, The mIOU improved by 1.47% over that of UNet.
Experiment 3 shows the results obtained after increasing the feature map scale of one down-
sampling operation and adding MSA to improve the feature map, based on Experiment
2. Due to the MSA, the mIOU improved by 0.68% to 61.82%. Experiment 4 contains the
results yielded after adding spatial attention to the upper feature map on the basis of
Experiment 3, and the mIOU improved significantly from 61.82% to 63.58%, because the
features enhanced by SAM directly affected the output results. Experiment 5 denotes the
results obtained after adding CAM to the lower feature map on the basis of Experiment 4.
The final mIOU reached 63.94% after adding channel attention for feature enhancement.
The ablation experiments showed that feature enhancement, through multiple types of
visual attention, can significantly improve the segmentation performance of the proposed
approach.I Its parameters are not significantly improved; only from the original 13.32 M to
14.57 M. According to our actual tests, the frame rate of MA-UNet was 38 fps on an NVDIA
GTX 2080Ti, which is only 4 fps down from the 42 fps of UNet.

Table 3. Ablation experiments on the WHDLD datasets.

Exp1 Exp2 Exp3 Exp4 Exp5

Residual + simAM
√ √ √ √

MSA
√ √ √

SAM
√ √

CAM
√

mIOU (%) 59.67 61.14 61.82 63.58 63.94
Param (M) 13.32 13.49 14.536 14.537 14.57

In addition, the WHDLD datasets have extremely unbalanced data, which makes it
difficult to improve the accuracy of the segmentation results for vegetation and pavement
categories. We experimented with them by adjusting the weights of the weighted cross-
entropy loss, setting higher weights for vegetation and pavement, so that the loss gains of
these two categories was higher than the loss gains of the other categories; thus, making
the model pay more attention to the data of these two categories. Experiment 1 set equal
weights for all categories, while experiment 2 set the weights for vegetation and pavement
to twice the weights of the other categories, and experiment 3 set the weights for vegetation
and pavement to three times the weights of the other categories. The final segmentation
results are shown in Table 4.

Table 4. Comparison among the results obtained with different weights for the categories of the
WHDLD datasets.

Classes Exp1 Exp2 Exp3

Bare soil 60.64 59.84 57.31
Building 61.82 62.37 60.87

Pavement 46.35 50.08 48.62
Road 81.61 80.44 80.22

Vegetation 38.55 43.02 40.36
Water 94.67 93.49 94.04

mIOU (%) 63.94 64.87 63.57

The results show that, although increasing the weight for a category with a small
sample size can improve the segmentation accuracy for this category, there are slight
accuracy losses for the other categories, and setting the weight for a category with a small
sample size as large as possible is not a good method. When the weights of the vehicle
and pavement categories were set to three times the weights of the other categories, their
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segmentation accuracies were not as good as those achieved when they were set to twice
the weights of the other categories. The accuracies of the other categories were significantly
reduced, compared to those produced by the baseline; for example, the accuracy of the
bare soil category was reduced by 3.33% (from 60.64% to 57.31%), and the accuracy of the
road category was reduced from 81.61% to 80.22%. When the weights of the vegetation and
pavement categories were set to twice the weights of other categories, the segmentation
accuracies of these two categories improved significantly, from the original values of 38.55%
and 46.35% to 43.02% and 50.08%, respectively, and the mIOU of the total category increased
by 0.93%, from 63.94% to 64.87%, thus demonstrating the effectiveness of weighted cross-
entropy loss.

4. Conclusions

Recently, with the development of satellite imaging technology and deep learning
technology, remote sensing image segmentation has gradually become a hot issue, gaining
many researchers’ attention. However, there are still many difficulties regarding the
segmentation of multicategory targets in remote sensing images. In this paper, we propose
UNet, based on multiple attentions, to address the problems of low segmentation accuracy
and multiple scales in different categories. First, we built a residual encoder, based on
simAM, to enhance the generalization performance of the backbone; then, we increased
the multiplicity of the down-sampling layer from the original 16-time down-sampling
operation of UNet to 32-time down-sampling for larger-scale targets, and we utilized
MSA to rebuild the feature map to enhance the semantic representation and relevance of
each feature point. Finally, we introduced a SAM and a CAM at different feature fusion
stages to enhance the fused feature representation. Our proposed method achieved high
segmentation performance on the WHDLD datasets and DLRSD datasets. On the WHDLD
datasets, our method achieved the highest mIOU of 63.94%, which is much higher than the
59.67% of UNet, and it outperformed advanced methods, such as AttUNet, UNet++, and
DeepLab. On the DLRSD datasets, the mIOU of our algorithm also exceeded those other
classical algorithms, reaching 61.90%, which is 5.73% higher than the 56.17% of UNet.

In general, our method not only solves the problems presented in this paper to a
large extent but also has a strong generalization ability and high segmentation accuracy.
However, our method also has limitations. In the experimental design, the image resolution
of our chosen datasets is relatively low. However, in remote sensing images, high-resolution
images are also widely used, and the application of our model on high-resolution images is
yet to be validated. Besides this, the segmentation results obtained for some remote sensing
images with high noise are still poor, and blurred images, and images with high noise, are
still major challenges with regards to remote sensing image segmentation. Further research
will be carried out in subsequent work.
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