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Abstract: Various real systems are being replicated in cyberspace to solve complex and difficult
problems, as exemplified by the digital twin. Once such a software system is implemented, an
effective computational method should be applied to the system so that the corresponding real
system, connected by networks or sensors, can be indirectly controlled. Considering that all behaviors
in real systems occur in space−time, the behavior-related computation in the corresponding software
system should adopt both time and space as essential elements to ensure a valid representation
of the real system and to effectively perform subsequent computations. Therefore, applying a
spatiotemporal computation consisting of time-dependent variables and temporal statements that
use such variables is a natural approach to solving problems encountered in the target real system. In
this study, the ST-DEVS (spatiotemporal computation DEVS) formalism is proposed to define time-
dependent variables and an execution algorithm on temporal logic statements whose arguments are
the time-dependent variables; the ST-DEVS is an extension of the discrete event system specification
(DEVS). To control real systems with a certain level of autonomy, at least two basic capabilities must
be ensured: monitoring and action execution. In this study, action-type temporal logic with time-
dependent variables and an action execution algorithm are proposed to illustrate the effectiveness of
the spatiotemporal computation process. The previously defined monitoring capability is integrated
into ST-DEVS so that monitoring and action execution can be processed uniformly. The proposed
approach is designed considering the symmetry between the real world and the cyber world, in that
both worlds are influenced by time and space.

Keywords: ST-DEVS; DEVS; spatiotemporal computation; time-dependent variable; simulation
model; temporal logic; digital twin

1. Introduction

Many problems, such as performance analysis and the design of real systems, can
be solved by replicating the systems in software. Modeling and simulation [1–3] are a
representative field of study that utilizes this approach. The approach needs to consider
both time and space to generate a valid representation of real systems. In addition to
simple replication for performance analysis and design, software models are constructed
for real-time control through monitoring and action execution on the corresponding real
systems, as exemplified by the digital twin. Digital twins solve a variety of problems
associated with huge and complex real systems; they handle a sophisticated control task
by monitoring and executing actions, evaluating alternative strategies, understanding the
characteristics, and measuring the performance of real systems. In addition to these tasks,
there are various pure offline applications of digital twins [4,5].

The control of real systems can be achieved through digital twins, which are composed
of simulation models as an essential element, and they are connected to the real systems
via networks or sensors. These simulation models should monitor and provide adequate
actions to the models. The BM-DEVS [6] formalism has been proposed to monitor the
simulation models; however, it lacks the ability to provide appropriate actions to the models.
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The execution of an action in a simulation model is more complex than monitoring because
the former must generate a state trajectory or model behavior under control, whereas the
latter simply monitors the occurrences of the state trajectories without tampering with
the model behavior. The proposed ST-DEVS (spatiotemporal computation DEVS) for
performing actions integrates the monitoring capability of BM-DEVS so that both action
execution and monitoring can be applied within ST-DEVS in a uniform manner. For
example, once an action is executed, it can be monitored, and when anomalous behavior is
identified, a corrective action can be applied for normal processing. Most of the tasks being
performed on software systems to control real systems can be classified into monitoring
and action execution on the real systems, which are the main functions of ST-DEVS.

Object-oriented programming [7,8] effectively represents the target system for the
design and implementation of software by implementing objects as a basic data type with
respect to programing elements. Object-oriented programming is effective at expressing
the structure of the system; however, it is limited in terms of expressing the dynamics or
the behaviors, especially when the purpose of constructing the software is related to the
replication of the real system. Because the activity of a real system occurs in space−time,
replicating a real system requires the use of both temporal and spatial values to accurately
express the behavior of the system. However, time values are not essential in object-oriented
programming. The ST-DEVS shows how the behavior-related problems of target real
systems can be well-represented by utilizing the simulation models as statement variables.
Because the values for the simulation model are determined over time, the variable type
defined by the simulation model becomes a time-dependent variable (TDV). The target
system behavior and structure can be effectively expressed by the TDV for monitoring
and action execution, as demonstrated in this study. The TDVs are simulation models
defined by the ST-DEVS. Because ST-DEVS is a formalism extended from the discrete event
system specification (DEVS) formalism [1,2], which defines hierarchical modular models as
representing both the structure and the behavior of the target system, ST-DEVS inherits the
hierarchical modular aspect of the modeling capabilities of DEVS.

Statements or programs that make use of TDVs form a spatiotemporal computation
that requires both time and space values as indispensable elements. ST-DEVS demonstrates
spatiotemporal computation by defining a simulation-based TDV and an algorithm for
executing action-type temporal logic (TL) statements that use TDVs as arguments.

In short, software models are constructed to achieve real-time control through moni-
toring and action execution on the corresponding real systems, as exemplified by the digital
twin. Considering that all behaviors in real systems occur in space−time, the behavior-
related computation in the corresponding software system should adopt both time and
space as essential elements of variables to ensure a valid representation of the real system
and to effectively perform subsequent computations. However, there have been no studies
up to now that formally define such variables for representing behavior as well as structure
and use them to solve problems, as discussed in Section 2. The proposed ST-DEVS for-
malism shows how target real systems can be well-represented by utilizing the simulation
models as statement variables whose values are determined over time. Therefore, the
variable defined by the simulation model becomes a time-dependent variable (TDV). The
target system behavior and structure are effectively expressed by the TDV, and it is used in
the monitoring and action execution example shown in this article.

The organization of the remainder of this paper is described below. Section 2 highlights
related work regarding the available spatiotemporal data types or TDVs and the devel-
opment of other spatiotemporal problem solvers. The background information regarding
simulation formalisms and TL, on which the proposed formalism is based, is also presented
in Section 2, followed by a description of the proposed ST-DEVS formalism and an action
execution algorithm design in Section 3. The first two equations introduced in Section 3
describe formalisms M and N, which define basic and coupled model types, respectively.
Equation (3) regarding the Büchi automata (BA) formalism is used to convert the state
trajectory of a simulation model, represented by action rules, into state transition graphs;
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thus, action executions on component models can be performed. Equation (4) describes the
BM-DEVS. Equations (5) and (6) in Section 3 define the basic model type of the proposed
formalism (MST-DEVS) and coupled model type (NST-DEVS), respectively. In Section 4, an
example of an action execution on a simple transportation system is presented. The desired
goal is presented by a TL rule, and the execution process is demonstrated until the goal
is achieved. In Section 5, various issues and important design considerations related to
ST-DEVS are discussed. The final section concludes this paper with a summary of the
motivations and contributions of the proposed methodology, as well as future research
directions.

2. Related Work and Background

Considering that the spatiotemporal computation proposed in ST-DEVS is defined
based on TDVs and an execution algorithm on TL statements that use TDVs as arguments,
we review related work on these issues. The use of TDVs or temporal variables is frequently
suggested in the medical research field [9–13] for the storage of critical health-related data
that vary with time. However, these variables have not been proposed to represent the
structure and behavior of software problem solvers; rather, their application is dedicated to
how certain time-dependent values can be used to improve the health conditions of patients.

Other related works attempting to utilize spatiotemporal data are in areas such as
databases, data mining, neural nets, and clustering [14–17]. These studies focus on storing
diverse spatiotemporal data in a database to solve problems that are not restricted to
a specific area. However, their findings are not suitable for the implementation of the
general data structures to be used as TDVs for storing and processing behavioral and
structural data.

Spatiotemporal problem solvers found in planning [18,19], fuzzy [20,21], cloud com-
puting [22], and TL [23] areas perform calculations considering the time and space values
to solve problems that are general and domain-independent to a certain extent. However,
the main focus of such problem solvers is not addressing how spatiotemporal compound
data structures are defined based on TDVs that can efficiently express and store both the
behavior and structure of the target real system, nor are they focused on solving problems
based on the data structure.

The study proposed in [24] describes how the problems represented by DEVS can
be expressed in TLA logical semantics for researchers and practitioners familiar with the
TLA specification. ST-DEVS, on the other hand, is intended to express and solve problems
that are difficult to achieve with DEVS alone by exploiting TL to help solve the problems
associated with monitoring and action execution tasks.

The DEVS formalism [1,2], BM-DEVS [6], and TL [23,25] are the main background
theories for ST-DEVS development. The following subsections briefly review these topics.

2.1. DEVS Formalism

The DEVS [1,2] expresses hierarchical modular discrete event simulation models to
describe the behavioral and structural specifications of the target system being modeled.
The formalism is a theoretically sound means of representing two types of models: basic
models and coupled models.

The basic models are defined by the structure

M = (X, S, Y, δint, δext, λ, ta), (1)

where X is the set of input values, S is a set of states, Y is the set of output values, δint is
the internal transition function expressing state transitions due to internal events, δext is
the external transition function expressing state transitions due to external events, λ is the
output function generating external events at the output, and ta is a time advance function.

Coupled models are larger models formed by the coupling of basic models. The
coupled models describe how to combine the basic models to build larger models. These
larger coupled models become the basic models when building an even larger coupled
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model, and a hierarchical and modular model is constructed using these coupled models.
When a coupled model is implemented, the structural specification below (2) guides how
to program the model. The behavioral specification (1) is later derived from the coupled
model when simulations are performed to generate the desired behavior. These coupled
models are defined by the structure

N = (X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select), (2)

where X is the set of input ports and values, Y is the set of output ports and values, and D
is the set of the component names. The components are DEVS models for each d in D, Md
is the component, EIC is the set of external input coupling that connects external inputs to
component model inputs, EOC is the set of external output coupling that connects external
outputs to component model outputs, IC is the set of internal coupling that connects
component outputs to component inputs, and Select is the tie-breaking function [1,2].

2.2. TL and BM-DEVS

TL [23,25] is a knowledge-representation scheme proven to be effective for the formal
specification and verification of large and complex systems, as often seen in concurrent
and reactive systems, in which the passage of time and the temporal relationship between
the arguments of the TL formulae are incorporated in the conventional logic. The major
temporal operators used in TL formulae, in addition to the conventional logic connectives,
are: # for the next moment, 3 for some future moment, � for all future times, ∪ for the
continuation until some future moment, and W for the continuation excepting some future
moment [26].

Temporal formulae can also be represented by Büchi automata (BA) [27,28] with the
structure

BA = (A, S, δ, I, F), (3)

where A represents finite propositional symbols used as inputs, S is a set of sequential
states, δ ⊆ SxAxS is a state transition relation, I ⊆ S is a set of initial states, and F ⊆ S is a
set of final states.

BM-DEVS [6] was proposed to monitor the behavior of DEVS simulation models by
tracing the state transition trajectories occurring in the models. The monitored behavior is
expressed as a set of TL production rules, called TLBM-DEVS rules, within a coupled model
that consists of multiple component models. The structure for the basic models is the same
as that of DEVS, and the coupled models are defined by the structure

NBM-DEVS = (N, P, B, Zf,p), (4)

where: N is a classic DEVS-coupled model [2]; P is a set of sequential phases determined
by ×Pd ×P, where Pd is a set of sequential phases of component models; and d∈D, where
D is a set of component names. The phase is a symbolic name representing the state of
a model.

B is a set of the BA, translated from the TLBM-DEVS rules describing the trajectories
for monitoring. A TLBM-DEVS rule is a TL implication formula whose arguments are BM-
DEVS models.

Zf,p is a set defined by Zf,p = {(fb, p)|fb∈Fb, b∈B, p∈P} ⊆ (∪b∈B Fb) × P, where Fb is the
set of final states of b. That is, Z is a translator function that maps the final state of b into a
phase of the NBM-DEVS model.

2.3. Automata, Set Theory, and Logic

In addition to the background presented in the previous two sections, an introductory
understanding of finite automata, set theory, and logic is required. A finite automaton
is formally denoted as a 5-tuple (Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a
finite input alphabet, q0 in Q is the initial state, F⊆Q is the set of final states, and δ is the
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transition function mapping Q × Σ→ Q [29,30]. In the formalisms described in this study,
basic concepts and notations of set theory are used, such as: union ∪; member ∈; subset⊆;
cartesian product ×; and logical operators, such as implication => and ∧ [31].

3. ST-DEVS Formalism and Action Execution Algorithm

Software systems, such as digital twins [4,5], that replicate the architecture of a real
system in specific contexts require some form of automated control for a long period of
time without human intervention. To achieve such control, software systems should be
able to monitor and track the occurrence of important behaviors and apply appropriate
actions to the software systems; thus, the real system counterpart, connected by networks
or sensors, can be controlled indirectly.

ST-DEVS is a formalism that defines simulation models for TDVs that are used as
arguments of a TL rule (TLST-DEVS), which is executed by the proposed execution algorithm
to monitor and execute actions in the software systems that control the real systems.
The monitoring capability is provided by integrating BM-DEVS [6], a previously defined
formalism for monitoring the behaviors of models. Therefore, this article mainly describes
how action rules are interpreted and executed to achieve their goals.

3.1. ST-DEVS Structure

Similar to DEVS, there are two types of models in ST-DEVS [1,2] from which the
proposed formalism is extended: basic and coupled models. The action rules (TLST-DEVS)
are embedded in coupled models because they involve building larger models from compo-
nents, and the components’ information required to execute the actions on the components
is available.

The basic models are defined by the structure

MST-DEVS = (M, G, δ*), (5)

where:

M is a DEVS basic model [1],
G is a set of goals that can be achieved by this model, and
δ* is a state transition function that maps δ*: S × G→ S, where S is a sequential state set.
That is, the function is executed on receipt of a *-message to achieve a goal, or one of the
subgoals in the parent’s action rule, TLST-DEVS.

The coupled models specifying monitoring and action rules are defined by the structure

NST-DEVS = (NBM-DEVS, G, Ba, GA, DG) (6)

where: NBM-DEVS is a coupled model defined by BM-DEVS [6],
G is a set of goals that can be achieved by this model,
Ba is a set of Büchi automata [27,28] translated from action rules (TLST-DEVS) describing

the trajectories or goals to be achieved. A TLST-DEVS rule is a TL implication formula whose
arguments are ST-DEVS models.

GA is a goal−to−action rules translation function that maps GA: G → Ba; that is,
the GA function determines the action rule to be executed once a goal is received from
the parent.

DG is a done−to−goal translation function that maps DG: Ba × DONE→ D × Gs,
where DONE is a set of done messages received from components whenever a state
transition in the components is completed. Gs is a set of subgoals that can be achieved
through component models. Gs is described in Ba or TLST-DEVS rules. D is a set of component
names for each d in D, where d∈ D. That is, the DG function determines the next subgoal
once a done message is received.
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3.2. Execution of the Action Rule, TLST-DEVS

There are two types of TL-type [23,25] rules embedded into ST-DEVS coupled models:
action rules and monitoring rules. The definition and use of the monitoring rules are
described in detail in [6]. This study focuses on explaining how action rules are composed
and executed. The action rule, TLST-DEVS, is similar to a TL implication formula. The
difference is that the rule arguments are ST-DEVS models, the types of which are either
atomic or coupled models. Figure 1 shows an action rule example (upper area) and its
corresponding Büchi automaton (lower area) [27,28]. The action CM.θ ∧ ♦(P1.α ∧ ♦P2.β)
=> CM.ω states that if the current moment CM is at state θ, and sometime in the future P1
is at state α, and later in the future P2 is at state β, then make the CM transition to stateω.
The structure of the CM is shown in Figure 2. The goal (CM.ω) appears in the consequent
of the rule, where the CM is a model and ω is a state of the model indicating the goal
or goal state of the model, which is achieved by executing the action rule. P1 and P2 are
component models of the CM, and α and β are subgoals to be achieved for the antecedent
of the action rule to be true. That is, for the action rule to be triggered, the components P1
and P2 must arrive at their goal states α and β, respectively.
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Figure 2 describes how the action rule ra, after being translated into the Büchi automa-
ton [27,28] ba, causes the state transitions to reach the subgoals P1.α and P2.β, expressed in
the rule condition. State s2, shown in the BA, is the final state, and reaching it indicates the
subgoals are completed. Completing the subgoals renders the condition of the rule true
and thereafter, the goal of the rule (CM.ω) is reached. Here, P1 and P2 are atomic models.

The BA indicates how and when the component models should have state transitions;
that is, it describes that if the current state of the BA is CM.θ, then it transitions to s0, and
it transitions to s1 when state α is reached in the P1 model. Likewise, once the BA is at
s1, it transitions to s2 when the P2 model reaches state β. Notably, the states in the BA are
different from the states of the models. The time taken to reach a subgoal (i.e., how long it
takes to transit from one state to the next in the BA) is determined by the corresponding
component model appearing in the arc between the two states. The timing diagrams in
the lower part of Figure 2 show the instance in which P1 and P2 transition to the next
state. There can be more than one subgoal to be achieved by multiple component models
associated with the arc. If the component model is an atomic model, the time to reach a
subgoal is determined by the model’s selected operation time. Otherwise, if it is a coupled
model, the subgoal becomes the goal of an action rule that belongs to the coupled model,
which is again recursively regressed to achieve the subgoals of the rule, as explained above.
The regression continues until an atomic model, which is located at the bottom level of a
hierarchy, is reached.

3.3. Action Execution Algorithm of an Action Rule, TLST-DEVS

For each model, a corresponding abstract simulator is created according to the DEVS
formalism [1,2]. The abstract simulator is an algorithmic description that indicates how
the instructions in a model should be conducted to process the simulation. The ST-DEVS
requires a model to be paired with a corresponding abstract simulator because it is ex-
tended from DEVS. The action execution algorithm of action rules becomes part of the
DEVS abstract simulator, together with the monitoring algorithm of BM-DEVS [6] that is
integrated into ST-DEVS.

Figure 3 describes how the action execution algorithm operates when executing an
action rule through the corresponding automaton ba, translated from the action rule ra.
The execution algorithm is invoked upon receipt of a *-message [1] from the parent, which
delivers a goal in the message to the abstract simulator. If the abstract simulator that
receives the message is a coordinator (i.e., an abstract simulator for a coupled model [2]),
then the manner in which the goal can be reached is described in ba. Otherwise, if the
abstract simulator is for an atomic model, the goal is achieved by δ* of the model. To
trigger the action rule through ba, the final state of the automaton must be reached. This
requires all the preceding states leading to the final state to be reached first, which in turn
requires the subgoals associated with the arcs in ba to be achieved (Figure 2). The subgoals
are achieved by issuing *-messages to the corresponding component models. After a *-
message is sent to a component, the sender coordinator waits for a done message from the
component. The done message [1] is received from a component whenever a *-message is
sent to the component. If the received done message is from one of the components that
appear in the invoked action rule, namely the rule currently being executed, and it indicates
the achievement of the subgoal sent along with the *-message, then the coordinator also
checks whether the message is the last done message needed to reach the final state of the
automaton ba. If the final state of ba is reached, then the corresponding coupled model
transitions to the state described in the consequent of action rule ra. If the done message
belongs to the action rule but is not the last done message, then the next *-message is issued
to the corresponding component model. If the done message does not belong to the action
rule, it is ignored by the action processor or action execution algorithm.
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The working of the action execution algorithm is elaborated on by a sequence of
procedures that occur during the execution of action rule ra, CM.θ ∧ ♦ (P1.α ∧ ♦ P2.β) =>
CM.ω, as shown in Figure 4. The top of the figure shows the arrival of a *-message, *(ω),
indicating that the goal of the CM isω. Because the consequent of the rule is CM.ω, this
particular rule is invoked to trigger the antecedent; that is, the goal CM.ω is regressed to
cause the antecedent of the rule CM.θ ∧ ♦(P1.α ∧ ♦P2.β) to be true. While triggering the
rule, ba is used until the condition becomes true. If the current state of the CM is θ, then the
action execution algorithm sends a *(α) message down to the P1 model, indicating that P1
should achieve the subgoal α. Upon receipt of the message, P1 executes δ* to transition
to the +α state; the state name +α describes that it is the state that performs operations
necessary to reach the goal state α. Immediately after completing the state transition to +α,
done(+α) is returned to the CM from P1 with the current state value of P1, +α. Because
P1.+α makes a state transition from s0 to itself, there is no state transition to s1 in ba. Later,
when P1 transits to α, done(α) is sent to the CM, which triggers a state transition from s0
to s1 in ba. Simultaneously, when P1 transits to α, the output function λ of P1 is executed
to deliver its output to the P2 model for subsequent processing. P2 executes its external
transition function δext to transition to state s’ after receiving the input sent from P1. Once
ba is in s1, the next message, * (β), is sent to P2. The rest of the procedure is similar to the
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case when *(α) was sent. Later, when done(β) arrives at the CM, ba transitions to its final
state s2, which indicates that the condition of the rule ra is true. Once it becomes true, the
CM transitions to theω state and done(ω) is sent to the parent, indicating that the goalω
is achieved.
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The *-message is sent downward from a coupled model and processed at the com-
ponents recursively until the bottom level is reached, as described previously. The done
message is sent upward and processed recursively until the top level is reached within the
hierarchy. Notably, because the state transition diagrams of P1 and P2 are not suitable to
describe the time-related procedures, the time-valued input of the external-transition func-
tion δext and that of the done message are not shown in Figure 4 for the sake of simplicity.
The internal transition function δint is executed when an atomic model must make a state
transition other than those that are due to an input and *-message without a goal, as shown
in P1 and P2.

The sequence diagram in Figure 5 describes how action rule ra is processed over time
until the goal of the CM is achieved. The top part of the figure shows four rectangles corre-
sponding to the CM model, C:CM (CM’s abstract simulator), S:P1 (P1’s abstract simulator),
and S:P2 (P2’s abstract simulator). The execution of the state transition functions of the
models and the necessary processing occurs within the abstract simulator counterparts.
The models store state transition functions, state variables, and other information regarding
the models. Therefore, when explaining the activities related to a certain model, the abstract
simulator and model are not usually distinguished, as shown in the explanation regarding
Figure 4. The activities shown in Figure 5 are self-explanatory because the order of the
activities is already described in Figure 4. The GA is a goal−to−action rule translation
function that determines the action rule to be invoked when a *-message arrives. For
example, in Figure 5, the action rule ra or ba is invoked when *(ω) arrives. The DG is a
done−to−goal translation function that determines the subgoals to be achieved next or
where to send the next *-message upon receiving a done message if it is not the last done
message. If it is the last message, then DG returns a null value, indicating that the rule is



Symmetry 2022, 14, 912 10 of 17

triggered or the final state of ba is reached. In Figure 5, when done(α, t2) is received from
P1, *(β) is sent to P2 as the next message in response to done(α, t2).

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. Sequence diagram of action rule execution, CM.θ ˄ ◊(P1.α ˄ ◊P2.β) => CM.ω. 

4. Example Application of an Action Rule 
This section describes a simple transportation system with two stations (A and B) 

and a single transporter (trp), as shown in Figure 6. Each station has a crane that can load 
and unload an item. The transporter carries an item between the two stations. Initially, 
both item x and the transporter are in station A. This initial state is expressed by the ex-
pression trp(-, A) ∧ ins(x, A) ∧ ins(-, B), where trp(-, A) indicates that the transporter is at 
A with no item. The ins(x, A) and ins(-, B) predicates indicate that item x is in A and no 
item is in B, respectively. The goal state to reach is expressed by the expression trp(-, B) ∧ 
ins(-, A) ∧ ins(x, B), indicating that item x is in B and the transporter is at B with no item. 
The transitions from ins(x, A) to ins(-, A) and from ins(-, B) to ins(x, B) are performed by 
the load(x) and unload(x) operations of the crane, respectively. The transition from trp(x, 
A) to trp(x, B) occurs by the convey(x, A, B) operation of the transporter. The initial state 
and the goal state are illustrated in black and gray, respectively. 

Figure 5. Sequence diagram of action rule execution, CM.θ ∧ ♦(P1.α ∧ ♦P2.β) => CM.ω.

4. Example Application of an Action Rule

This section describes a simple transportation system with two stations (A and B) and
a single transporter (trp), as shown in Figure 6. Each station has a crane that can load and
unload an item. The transporter carries an item between the two stations. Initially, both
item x and the transporter are in station A. This initial state is expressed by the expression
trp(-, A) ∧ ins(x, A) ∧ ins(-, B), where trp(-, A) indicates that the transporter is at A with
no item. The ins(x, A) and ins(-, B) predicates indicate that item x is in A and no item is in
B, respectively. The goal state to reach is expressed by the expression trp(-, B) ∧ ins(-, A)
∧ ins(x, B), indicating that item x is in B and the transporter is at B with no item. The
transitions from ins(x, A) to ins(-, A) and from ins(-, B) to ins(x, B) are performed by the
load(x) and unload(x) operations of the crane, respectively. The transition from trp(x, A) to
trp(x, B) occurs by the convey(x, A, B) operation of the transporter. The initial state and the
goal state are illustrated in black and gray, respectively.

The action rule to be executed for the transportation system is MV.ins(x, A)∧♦{ins(-, A)
∧ ♦(trp(x, B) ∧ ♦ins(x, B))} => MV.ins(x, B). The rule is defined in the MV or mover model
so that the model can execute the action rule to reach the goal state described in Figure 6.
The MV, not explicitly shown in the figure, is a coupled model whose component models
are the transporter, station-A, and station-B. During the action rule execution, the control re-
garding when and how operations, namely load, unload, and convey, should be performed
are determined and applied to the corresponding physical transporter system, as shown in
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Figure 6. The action rule states that if MV.ins(x, A) is true and the rest of the antecedent of
the rule becomes true, then MV.ins(x, B) becomes true, indicating that the goal of the action
rule is achieved. As a result of achieving the goal MV.ins(x, B) of the rule, the transportation
system goal state trp(-, B) ∧ ins(-, A) ∧ ins(x, B) is reached, as shown in Figure 6.
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For the antecedent to become true, MV.ins(x, A) should be true at the current time-
instant, and the subgoal ins(-, A) should be achieved in some future; afterward, the subgoal
trp(x, B) should be achieved in some future, after which the subgoal ins(x, B) should be
achieved in some future. To achieve the subgoal ins(-, A), item x in station-A is removed by
the load(x) operation of the crane in station-A after a certain loading time. Consequently,
the transporter at A holds item x, which is expressed by trp(x, A). Likewise, the transporter
moves to station-B to achieve the subgoal trp(x, B) via the convey(x, A, B) operation after a
certain moving time. Finally, the last subgoal ins(x, B) is achieved by the unload(x) operation
of the crane in station-B after a certain unloading time. Figure 7 shows the action rule,
corresponding BA, sequence of subgoals, and timing diagrams for the three component
models of the MV model. Everything down to the timing diagrams belongs to ST-DEVS
models, and the corresponding real transportation system that physically performs the load,
unload, and convey operations according to the action rule is shown at the bottom. The
timing diagrams indicate when and what operations and state transitions are performed
in the component models of the MV. The action rule can also be used for monitoring to
ensure that the sequence of operations to achieve the subgoals is performed correctly in
the physical system. The information flow regarding the action execution is depicted as
downward arrows, whereas that of monitoring [6] is depicted as upward arrows.
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5. Discussions

Considering that all behaviors in real systems occur in space−time, the behavior-
related computation should adopt both time and space as essential elements to ensure a
valid representation of the real systems and perform subsequent computations effectively.
Therefore, applying a spatiotemporal computation consisting of time-dependent variables
and temporal statements that use such variables is a natural approach to solving problems
encountered in the target real systems. Because the primary purpose of simulation models
is to replicate the dynamics of real systems considering two elements (i.e., time and space),
the models are exploited as computation variables in this research. These model-based
variables are treated as time-dependent variables because their values are determined
according to the passage of time.

5.1. Time-Dependent Variable

When problems are solved using software programs, the most basic and essential
activity involves defining data structures or compound variable types to declare variables
to represent and solve the problems. If the target problems are related to real systems, then
the variables should be able to represent the behavior as well as the structure of these real
systems. Thus, the variables should be time-dependent because the behavior occurs within
space−time. This study illustrates how ST-DEVS models are exploited in the definition of
the TDVs to be used as arguments of the action rules (TLST-DEVS) and an action execution
algorithm that executes the rules.

The proposed time-dependent variable is a function, such as a fuzzy variable [32] or a
random variable [33]. A membership function defined for a fuzzy variable determines the
return value to be stored in the fuzzy variable, which is necessary for a fuzzy computation.
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A density function defined for a random variable determines the return value to be stored
in the random variable, which is necessary for a random process. Likewise, an action rule
TLST-DEVS defined for a time-dependent variable of ST-DEVS determines the return value
to be stored in the time-dependent variable, which is necessary for an action execution. If
it is a monitoring rule, then the return value necessary for monitoring is stored. Action
and monitoring rules express the state trajectories of models, where the trajectories are
time−to−state mapping functions. Therefore, the time-dependent variables of ST-DEVS
are general-purpose variables that can be used depending on the type of rule in which the
time-dependent variable is an argument.

The ST-DEVS defines the time-dependent variables to be used by the TLST-DEVS rules.
Note that the rules are stored within the variable, variables are used as arguments of the
rules, rules are stored within the variables, and so on, which continues until the bottom
level variable is reached. That is, the structure of the variable or model is recursively
defined to construct a hierarchical modular model or a compound temporal data structure,
which is necessary to represent and store the behaviors of complex and large real systems.
The hierarchical modular model construction is possible because the proposed formalism
is extended from the DEVS [1,2] formalism.

5.2. Important Considerations of ST-DEVS Implementation

ST-DEVS models can also monitor component models to detect important behaviors
occurring in the corresponding real system, such as in BM-DEVS [6], which is integrated
into ST-DEVS. The integration is performed by embedding the monitoring and action
execution algorithms into the abstract simulator [1] and making them cooperate so that
identical TLST-DEVS rules can be used for both monitoring and action execution. Otherwise,
the rules can be separately defined, and monitoring results can be used for initiation of the
action execution, or vice versa.

In the BA diagram (Figure 7) of the action rule, there is only one subgoal attached to
each arc; however, there can be multiple subgoals attached to an arc to express that the
operations for achieving subgoals should be performed in parallel until all the subgoals are
met. This scheme is a convenient way of expressing how and when components should act
to collaborate in the accomplishment of a complex task or goal. In addition, multiple action
rules can be invoked at any moment if conflicts occurring during the execution of rules can
be resolved with appropriate strategies. The conflict resolution strategy is straightforward
because a model needs to consider its own context only, irrespective of the time constraint
being imposed, without considering how other models are performing. At the end of the
operation, whether the goal is achieved is only reported as the result to the parent model.
It is at the parent model’s discretion to determine how to utilize the result report obtained
from the component regarding the action execution that only considers its own context.

In MST-DEVS (5) and NST-DEVS (6), G, which is a set of goals, is one of the constituent
elements of the formalism. G is included in the formalism, even if a model knows what its
available goals are, because G is needed for a parent model to define action rules whose
arguments are formed by component models and their goals, such as P1.α or P2.β, where
α and β are the goals of the P1 and P2 models, respectively. When the goal itself can clearly
indicate what the model is, then the argument can be defined by the goal alone (e.g., trp(x,
B)), meaning the transporter should be at station-B with item x in it.

The moment # is incremented when a done message is received from the component
model if the model appears in the invoked action rules or monitoring rules; multiple rules
of different types can be invoked at any instant. Both types of rules attempt to achieve
their own goals through action execution and monitoring algorithms. The receipt of a
done message [1] indicates that a state (or phase) change has occurred, which means that
a subgoal has been achieved. If the state change at the component does not achieve one
of the subgoals of the rules, incrementing the moment value is unnecessary because the
moment value only marks the time-instant related to achieving goals in ST-DEVS, namely
the occurrence of important events defined by the modeler. The principle is identical to
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the definition of important events in an atomic model. The difference is that as we go up
along the hierarchy of the model structure, both time and space are abstracted in defining
important events.

To achieve a goal (e.g., MV.ins(x. B)) for a coupled model, the subgoals (e.g., ins(-, A),
trp(x, B), and ins(x, B)) described in an action rule should be achieved first, as shown in
Figure 7. If a component model of the coupled model is an atomic model type, then the
subgoal, which is the goal in view of the component, is achieved by performing one of the
operations (load(x), convey(x, A, B), or unload(x)) defined in the corresponding component.
Otherwise, if a component is a coupled model type, then the subgoal becomes the goal, and
a similar process is repeated as in the one described above. If multiple goals are available
for an atomic model, then multiple operations are usually required. However, the number
of goals does not need to match the number of operations because different goals can be
achieved by different combinations of operations.

5.3. Added Functionalities to Classic DEVS

The purpose of the proposed ST-DEVS is to extend the classic DEVS to provide new
functionalities that are difficult to obtain by applying DEVS alone. ST-DEVS is not intended
to replace any existing functionality of DEVS. As an example, an action rule CM.θ ∧ ♦(P1.α
∧ ♦P2.β) => CM.ωwritten in a coupled model achieves the goal state (CM.ω) by executing
the sequence of sub-actions described in the antecedent of the rule, as shown in Figure 4.
The sequence of the sub-actions is carried out by the component models (children models)
of the coupled model in which the action rule is written. Therefore, the execution of the
action rule involves the coupled model and component models, just as a port coupling
information of the coupled model involves these models. Neither the coupling information
nor the action rule can be written in an atomic model to effectively achieve the purpose
for which they were written. Unlike an atomic model, in which various activities can
be written as a transition function and an output function, there is no room to provide
activities in a coupled model. This clearly shows the need to extend classic DEVS in order
to accommodate the functionality of action executions that this article is proposing. In the
action rule, the component models are used as arguments that change their values over
time, which makes the argument become a time-dependent variable (TDV). The formal
definition of a TDV is described in Section 3 and the necessity and properties of TDVs are
elaborated on in Section 5.1

This article shows how an action rule and its execution module are designed to
achieve a goal of the rule. The rule and execution module are designed in such a way that
when an action rule is executed, it should be able to coordinate with the monitoring rule,
defined according to the BM-DEVS [6], so that the proper execution of the action can be
monitored. During the monitoring activity, if a certain malfunction or desired behavior
is detected, an appropriate action rule should be applied to control the target system.
This explains the necessity to include BM-DEVS in ST-DEVS. The former provides the
monitoring functionality, and the latter provides the action functionality and coordinates
these two types of functionalities.

6. Conclusions and Future Research

The ST in ST-DEVS is an acronym for “spatiotemporal computation,” suggesting that
it is a formalism proposed to show how a spatiotemporal computation can be accomplished
by an approach in which TDVs are defined, and action rules composed of TDVs are
executed. Under this formalism, the statements for monitoring can also be inserted and
used to detect occurrences of certain behaviors, as shown in a previous article [6]. Together
with the two types of rules, they constitute most of the functions required to operate the
software system, such as the digital twin, for online control of the corresponding physical
system. In addition to controlling tasks, simulations can be performed using the model to
evaluate the performance of the corresponding real system as it is or after applying various
new strategies or structural modifications. The proposed approach to solve these problems
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is designed while considering the symmetry between the real world and the cyberworld,
in that both worlds are influenced by time and space.

The main contribution of the proposed methodology is, first, to define ST-DEVS
models as TDVs in the representation and storage of temporal as well as spatial data, which
is necessary to correctly express problems related to large and complex physical systems
that operate in space−time. Second, the composition of an action execution algorithm
that illustrates how an action rule (TLST-DEVS) can be executed to achieve a goal in the
consequent of the rule. The action rule uses the time-dependent variables of the ST-DEVS
models as arguments. The action execution algorithm invokes the necessary process
to achieve subgoals through a goal regression on the rule, as described in Figures 3–5.
Notably, the necessary process to achieve the subgoals is given within the arguments,
namely the time-dependent variables defined by the ST-DEVS models. This property
enables the construction of hierarchical models or compound data structures to store
behavioral and structural data required for the monitoring and action-executing. The
process of achieving the subgoals is expressed by operations in the component atomic
models or action rules in the component coupled models. The spatiotemporal computation
proposed is accomplished by time-dependent variables and an execution algorithm that
executes action rules (TLST-DEVS).

The contributions can be restated in view of DEVS formalism. The direct contribution
of the proposed study is to provide the action execution capability to DEVS. In this case,
DEVS needs to be extended because it is difficult to achieve such capability with DEVS
alone, as explained in Section 5.3. Another contribution is how the extension is done
(i.e., on what principle). It is done by defining TDVs, the action rule that uses TDVs as
arguments, and the execution module (Section 3). The principle that explains why time-
dependent variables should be defined is based on the observation that since all behaviors
in real systems occur in space−time, the behavior-related computation should adopt time-
dependent variables. These variables store both time and space values as essential elements
to ensure a valid representation of the real system and to perform subsequent computations
effectively.

In summary, because the purpose of this paper involves solving real world problems
through software systems, such as digital twins, more accurate representation of real world
problems in these software systems will improve their problem solving capabilities. In other
words, since problems in the real world are expressed as values of time and space, it is a very
logical result that if variables can express values of time and space as essential properties,
the possibility of solving more complex and difficult problems increases. Therefore, the
contribution of this study depends on how TDVs are defined and whether it is possible
to make use of the TDV in solving useful problems. This article shows problem solving
with action executions on simulation models (or digital twins) in such a way that the action
can be readily monitored by the previously proposed method shown in BM-DEVS [6]. The
definition of TDVs, action instructions using TDVs as input arguments, and a detailed
design of the action execution module are described in Section 3. An application example
and the problem solving process are described in Section 4.

Future research will include generalizing the application of spatiotemporal compu-
tation beyond monitoring and action execution to utilize simulation model-based time-
dependent variables in a broader context. Currently, it is not specified how the action
rules are initially composed. We assume that the action rules are generated via intelligent
planning. By applying the approach suggested in this study, a groundwork for solving
intelligent planning problems with time constraints and various conflicts can be formed.
Based on this groundwork, future work will involve implementing an intelligent planning
agent to compose action rules. In addition, applying the proposed methodology to complex
practical applications will be a focus of future research.
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