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Abstract: Discrete integrable nonlinear differential difference equations (NDDEs) have various math-
ematical structures and properties, such as Lax pair, infinitely many conservation laws, Hamiltonian
structure, and different kinds of symmetries, including Lie point symmetry, generalized Lie bäcklund
symmetry, and master symmetry. Symmetry is one of the very effective methods used to study the
exact solutions and integrability of NDDEs. The Toda lattice equation is a famous example of NDDEs,
which may be used to simulate the motions of particles in lattices. In this paper, we investigated the
generalized Toda lattice equation related to 3× 3 matrix linear spectral problem. This discrete equa-
tion is related to continuous linear and nonlinear partial differential equations under the continuous
limit. Based on the known 3× 3 Lax pair of this equation, the discrete generalized (m, 3N −m)-fold
Darboux transformation was constructed for the first time and extended from the 2× 2 Lax pair to
the 3× 3 Lax pair to give its rational solutions. Furthermore, the limit states of such rational solutions
are discussed via the asymptotic analysis technique. Finally, the exponential–rational mixed solutions
of the generalized Toda lattice equation are obtained in the form of determinants.

Keywords: generalized Toda lattice equation; continuous limit; discrete generalized (m, 3N−m)-fold
Darboux transformation; rational solution; mixed solution; asymptotic analysis

1. Introduction

Nonlinear differential difference equations (NDDEs) may describe many physical
phenomena in nonlinear optics, biology, lattice dynamics, and electronics [1–3]. One of the
most famous integrable NDDEs is the Toda lattice system, which can describe the lattice
motions dependent on the distance between particles and their nearest neighbors [2,3].
For a better understanding of this phenomenon, the reader can refer to the first figure in
Reference [3]; in that figure, the N particles labeled from 1 to N are connected by springs,
which shows the interactions of the one-dimensional lattice at a fixed distance. Since the
Toda lattice was proposed [2,3], the properties related to this equation have been widely
studied, such as the related integrable hierarchy and Hamiltonian structures [4], rational
solutions [5], complexiton solutions [6], positon–negaton-type solutions [7], mixed soliton–
rational solutions [8], soliton solutions [9], and so on. Later, for the practical need of
scientific research, researchers proposed other discrete equations related to the Toda lattice
equation, such as the relativistic Toda lattice [10], modified Toda lattice equation [10,11],
and generalized Toda lattice equation [12,13], etc.

In this paper, we mainly investigate the following generalized Toda lattice equation [12,13]
given by 

un,t = wn+1 − wn + un(vn−1 − vn),
vn,t = un+1 − un,
wn,t = wn(vn−2 − vn),

(1)
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where un, vn, wn are potential functions of variables n and t. When wn = 0, Equation (1)
degenerates to the famous Toda lattice equation. In References [12,13], the 3× 3 Lax pair of
Equation (1) is given by

Eφn = Unφn =

 0 1 0
un λ + vn wn
1 0 0

φn, φn,t = Vnφn =

 −λ− vn−1 1 0
un 0 wn
1 0 −λ− vn−2

φn, (2)

in which λ represents the spectral parameter independent of time t, the shift operator E
meets the condition E f (n, t) = f (n + 1, t), E−1 f (n, t) = f (n− 1, t), and φn = (ϕn, ψn, γn)T

is an eigenfunction vector solution of Equation (1). The compatibility condition Un,t =
(EVn) Un − UnVn of Lax pair (2) yields Equation (1). In Reference [12], the Darboux
transformation (DT) and exact one-soliton solutions of Equation (1) are given.

Some methods for constructing the explicit exact solutions of the discrete integrable
NDDEs have been presented and developed, such as the inverse scattering method [14],
discrete Hirota method [15], classical Lie symmetry approach [16,17], and discrete DT
method [18,19]. Among them, the Lie symmetry approach is a very effective method used
to find the exact solutions of NDDEs and predict their integrability; its main idea is to
decrease the order of NDDEs by using symmetry so as to obtain their exact solutions [16,17].
Moreover, the discrete DT method is also regarded as an effective means to solve Lax
integrable NDDEs [18,19]. Recently, a discrete generalized (m, N −m)-fold DT related to
2× 2 Lax pair has been proposed [19], comparing with the usual DT, its main advantage is
that it can give not only usual soliton solutions, but also rational solutions, as well as mixed
solutions of usual soliton and rational solutions. In Reference [20], this generalized method
is extended to obtain exact solutions of the discrete coupled Ablowitz–Ladik equation from
a 2× 2 matrix spectral problem to 4× 4 matrix spectral problem. In Reference [21], this
method is once again extended to the discrete generalized (m, 2N −m)-fold DT to obtain
various exact solutions of a relativistic Toda lattice equation related to the 2× 2 matrix
spectral problem. However, this discrete generalized method has never been extended
to solve the discrete integrable NDDEs related to the 3× 3 Lax pair. Therefore, the main
goal of this paper is to extend this technique to solve the Lax integrable NDDEs with 3× 3
Lax pair, and we take Equation (1) as an example and construct its discrete generalized
(m, 3N −m)-fold DT to give some rational and mixed solutions.

This paper is structured as follows. Section 2 presents the continuous limit of Equation (1),
from which Equation (1) is converged to linear partial differential equations (PDEs) and
nonlinear partial differential equations (NPDEs). Section 3 shows the discrete generalized
(m, 3N−m)-fold DT of Equation (1) for the first time. In Section 4, we obtain the first-order
rational solutions and exponential–rational mixed solutions of Equation (1) by using the
discrete generalized (m, 3N − m)-fold DT, and we analyze the asymptotic states of the
first-order rational solutions. Finally, the conclusions are presented in the last section.

2. Continuous Limit

Continuous limit may be regarded as a bridge between discrete equations and contin-
uous equations. Through appropriate continuous limits, discrete NDDEs and continuous
NPDEs can be transformed to each other [22]. In this section, we will mainly investigate
the continuous limit of Equation (1). According to the appropriate approximation, we find
that Equation (1) can converge not only to a linear PDE, but also to an NPDE. Under the
continuous conditions

un = 2 + δu[(n + t)δ2, δ2t] + O(δ2), vn = δv[(n + t)δ2, δ2t] + O(δ2), wn = 1 + δw[(n + t)δ2, δ2t] + O(δ2), (3)

Equation (1) can be transformed to
(uτ + ux + 2vx − wx)δ3 + O(δ4) = 0,
(vτ − ux + vx)δ3 + O(δ4) = 0,
(wτ + 2vx + wx)δ3 + O(δ4) = 0,

(4)
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which is just the linear PDEs when the fourth order terms of the infinitesimal δ are neglected
and τ is written as time variable t. Here, δ is an arbitrary small parameter.

Moreover, under the limit conditions

un = 2 + u[(n + t)δ3, δ3t] + O(δ), vn = 1 + v[(n + t)δ3, δ3t] + O(δ), wn = 1 + w[(n + t)δ3, δ3t] + O(δ), (5)

Equation (1) is equivalent to
(uτ + ux + uvx + 2vx − wx)δ3 + O(δ4) = 0,
(vτ − ux + vx)δ3 + O(δ4) = 0,
(wτ + 2wvx + 2vx + wx)δ3 + O(δ4) = 0,

(6)

which is just the NPDEs if we also ignore the fourth order terms of δ and change τ into
time variable t.

For the linear PDE (4), we can easily discuss its properties, but the dynamical properties
of nonlinear Equation (6) have never been considered, which deserve further study.

3. Discrete Generalized (m, 3N − m)-Fold DT

In this section, the discrete generalized (m, 3N −m)-fold DT of Equation (1) related to
3× 3 Lax pair will be investigated. First of all, a special gauge transformation is considered
as follows

φ̃n = Tnφn, (7)

then the Lax pair (2) is transformed into the following forms

φ̃n+1 = Ũnφ̃n = Tn+1UnT−1
n φ̃n, φ̃n,t = Ṽnφ̃n = (Tn,t + VnTn)T−1

n φ̃n,

where the forms of Ũn, Ṽn are the same as Un, Vn, except that the old solutions un, vn, wn
are replaced by the new ones ũn, ṽn, w̃n, respectively. To this end, we define a particular
Darboux matrix Tn as

Tn =


(1− B(N−1)

n )λN + ∑N−1
j=0 A(j)

n λj ∑N−1
j=0 B(j)

n λj ∑N−1
j=0 C(j)

n λj

∑N−1
j=0 D(j)

n λj λN + ∑N−1
j=0 E(j)

n λj ∑N−1
j=0 F(j)

n λj

−H(N−1)
n λN + ∑N−1

j=0 G(j)
n λj ∑N−1

j=0 H(j)
n λj (1− B(N−1)

n−1 )λN + ∑N−1
j=0 I(j)

n λj

, (8)

in which N is an arbitrary positive integer, and A(j)
n , B(j)

n , C(j)
n , D(j)

n , E(j)
n , F(j)

n , G(j)
n , H(j)

n ,
and I(j)

n (j = 0, 1, ..., N − 1) are unknown functions of the variables n and t. If we choose
appropriate values of λi (λi 6= λj, i = 1, 2, . . . , m), the unknowns in Tn can be uniquely

determined by a linear algebraic system of 9N equations Σθi
j=0T(j)

n φ
(θi−j)
n = 0 (3N =

m + Σm
i=1θi, i = 1, 2, . . . , m). In this linear algebraic system, we use the Taylor expansion of

φn(λi) by expanding φn(λi + ε) = φ
(0)
n + φ

(1)
n ε + φ

(2)
n ε2 + · · · with φ

(j)
n = 1

j!
∂j

∂λ
j
i

φn(λi) and

the binomial expansion of Tn given by Tn(λi + ε) = T(0)
n + T(1)

n ε + · · ·+ T(θi)
n εθi , where the

nonnegative integer θi means the order number of the highest derivative used in the Taylor
expansion of φn(λi).

Therefore, from the analysis above, we have the following discrete generalized
DT theorem:

Theorem 1. Supposing Lax pair (2) has m different solutions φn(λi) = (ϕn(λi), ψn(λi), γn(λi))
T

with the spectral parameters λi (i = 1, 2,. . . ,m), the following transformations are generated from
the old solutions un, vn, wn to the new ones ũn, ṽn, w̃n

ũn = un−D(N−1)
n +H(N−1)

n w̃n

1−B(N−1)
n

, ṽn = E(N−1)
n+1 + vn − E(N−1)

n , w̃n = wn−F(N−1)
n

1−B(N−1)
n−1

, (9)



Symmetry 2022, 14, 920 4 of 9

with

B(N−1)
n = ∆B(N−1)

n
∆1

, D(N−1)
n = ∆D(N−1)

n
∆2

, E(N−1)
n = ∆E(N−1)

n
∆2

, F(N−1)
n = ∆F(N−1)

n
∆2

, H(N−1)
n = ∆H(N−1)

n
∆1

,

where

∆1 =

∣∣∣∣∣∣∣∣∣∣
∆(1)

1

∆(2)
1
...

∆(m)
1

∣∣∣∣∣∣∣∣∣∣
, ∆2 =

∣∣∣∣∣∣∣∣∣∣
∆(1)

2

∆(2)
2
...

∆(m)
2

∣∣∣∣∣∣∣∣∣∣
,

with ∆(i)
1 = (∆(i)

1,j,s)(θi+1)×3N , ∆(i)
2 = (∆(i)

2,j,s)(θi+1)×3N , in which ∆(i)
1,j,s, ∆(i)

2,j,s, (1 ≤ j ≤ θi +

1, 1 ≤ s ≤ 3N, 1 ≤ i ≤ m) are given by

∆(i)
1,j,s =


∑

j−1
k=0 Ck

N−sλN−s−k
i ϕ

(j−1−k)
n for 1 ≤ j ≤ θi + 1, 1 ≤ s ≤ N,

∑
j−1
k=0 Ck

2N−sλ2N−s−k
i ψ

(j−1−k)
n − C2s−N−2

N ∑
j−1
k=0 Ck

2N−s+1λ2N−s−k+1
i ϕ

(j−1−k)
n for 1 ≤ j ≤ θi + 1, N + 1 ≤ s ≤ 2N,

∑
j−1
k=0 Ck

3N−sλ3N−s−k
i γ

(j−1−k)
n for 1 ≤ j ≤ θi + 1, 2N + 1 ≤ s ≤ 3N,

∆(i)
2,j,s =


∑

j−1
k=0 Ck

N−sλN−s−k
i ϕ

(j−1−k)
n for 1 ≤ j ≤ θi + 1, 1 ≤ s ≤ N,

∑
j−1
k=0 Ck

2N−sλ2N−s−k
i ψ

(j−1−k)
n for 1 ≤ j ≤ θi + 1, N + 1 ≤ s ≤ 2N,

∑
j−1
k=0 Ck

3N−sλ3N−s−k
i γ

(j−1−k)
n for 1 ≤ j ≤ θi + 1, 2N + 1 ≤ s ≤ 3N,

and ∆B(N−1)
n is derived by replacing the (N + 1)th column of determinant ∆1 by the column

vector (b(1), · · · , b(m))T with b(i) = (b(i)j )(θi+1)×1 in which b(i)j = −∑
j−1
k=0 Ck

NλN−k
i ϕ

(j−1−k)
n ,

∆D(N−1)
n , ∆E(N−1)

n and ∆F(N−1)
n are obtained by replacing the first, (N + 1)th and (2N + 1)th

columns of determinant ∆2 by the column vector (d(1), · · · , d(m))T with d(i) = (d(i)j )(θi+1)×1 in

which d(i)j = −∑
j−1
k=0 Ck

NλN−k
i ψ

(j−1−k)
n , respectively, and ∆H(N−1)

n is given by replacing the first

column of determinant ∆1 by the column vector (h(1), · · · , h(m))T with h(i) = (h(i)j )(θi+1)×1 in

which h(i)j = −(1− B(N−1)
n−1 )∑

j−1
k=0 Ck

NλN−k
i γ

(j−1−k)
n , where B(N−1)

n−1 and E(N−1)
n+1 are derived from

B(N−1)
n and E(N−1)

n by changing n into n− 1 and n + 1, respectively.

Remark 1. Here, we refer to the transformations (7) and (9) using m spectral parameters λi
(i = 1, 2, · · · , m) as the discrete generalized (m, 3N −m)-fold DT of Equation (1), in this term, m
means the number of parameters λi we use, N represents the order number of DT, and (3N −m)
represents the sum of the highest derivative used in Taylor expansion. When m = 3N and θi = 0
(i = 1, 2, · · · , m), Theorem 1 degenerates to the discrete generalized (3N, 0)-fold DT, which
contains the usual DT [12], which can derive soliton solutions. When m = 1 and θi = 3N − 1
(i = 1, 2, · · · , m), Theorem 1 becomes the discrete generalized (1, 3N − 1)-fold DT, which can
give rational or semi-rational solutions as shown in the next part. When 2 ≤ m ≤ 3N − 1, we
can obtain mixed solutions, which will not be discussed in detail in this paper to save space. Here,
the detailed proof derivation process of Theorem 1 is omitted, and the readers can refer to the proof
process and steps in References [12,18,19] and references therein to complete the proof of Theorem 1;
therefore, we leave it as an exercise for the reader. Furthermore, in the next section, we can solve
Equation (1) by using Theorem 1, and then bring these solutions into Equation (1) with the help of
the symbolic calculation Maple, which can also verify the correctness of Theorem 1.

4. Explicit Exact Solutions and Their Asymptotic Analysis

In this section, we will use the discrete generalized (m, 3N − m)-fold DT to obtain
first-order rational solutions and mixed solutions, and utilize an asymptotic analysis to
investigate the properties of the obtained rational solution.
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4.1. Rational Solutions and Their Asymptotic Analyses

In this part, we will only discuss the rational solutions of Equation (1) when N = 1.
When m = N = 1, Theorem 1 reduces to the discrete generalized (1, 2)-fold DT. In order
to give the rational solutions of Equation (1) associated with 3× 3 Lax pair, the solution
process is more complex than 2× 2 Lax pair. Therefore, we choose the special trivial initial
solutions un = −3, vn = 2, wn = 1 of Equation (1) to substitute them into Equation (2),
which yields its exact solutions as below:

φn =

 ϕn
ψn
γn

 =

 C1τn+1
1 eρ1t + C2τn+1

2 eρ2t + C3τn+1
3 eρ3t

C1τn+2
1 eρ1t + C2τn+2

2 eρ2t + C3τn+2
3 eρ3t

C1τn
1 eρ1t + C2τn

2 eρ2t + C3τn
3 eρ3t

, (10)

with

α = (−12λ− 44 + 8λ3 + 48λ2 + 12
√

12λ3 + 45λ2 − 126λ + 69)
1
3 ,

τ1 = α
6 −

2(5−λ2−4λ)
3α + λ+2

3 , τ2 = − α
12 + 5−λ2−4λ

3α + λ+2
3 + i

√
3

2 [ α
6 + 2(5−λ2−4λ)

3α ],

τ3 = − α
12 + 5−λ2−4λ

3α + λ+2
3 −

i
√

3
2 [ α

6 + 2(5−λ2−4λ)
3α ], ρ1 = τ1 − λ, ρ2 = τ2 − λ, ρ3 = τ3 − λ,

where C1, C2, C3 represents arbitrary real constants, and i represents the imaginary unit.
Let λ = λ1 + ε3 with λ1 = 1, by using Taylor expansion, we expand φn at ε = 0 through
choosing C1 = C2 = C3 = 1 as

φn(ε
3) = φ

(0)
n + φ

(1)
n ε3 + φ

(2)
n ε6 + φ

(3)
n ε9 + φ

(4)
n ε12 + φ

(5)
n ε15 + · · · ,

with

φ
(0)
n =

 ϕ
(0)
n

ψ
(0)
n

γ
(0)
n

 =

 3
3
3

, φ
(1)
n =

 ϕ
(1)
n

ψ
(1)
n

γ
(1)
n

 =

 1
2 β3 + 2β2 + 1

2 (3t + 5)β− t
2 + 1

1
2 β3 + 7

2 β2 + 3
2 βt + 8β + t + 6

3
2 βt− 2t + 1

2 β3 + 1
2 β2

, φ
(2)
n =

 ϕ
(2)
n

ψ
(2)
n

γ
(2)
n

,

in which

ϕ
(2)
n = 1

240 β6 + 11
240 β5 + 1

16 (t + 3)β4 + 1
48 (2t + 17)β3 + 1

240 (45t2 − 85t + 74)β2 + 1
240 (−135t2 − 104t + 24)β + 1

16 t3

+ 1
8 t2 − 1

10 t,
ψ
(2)
n = 1

240 β6 + 17
240 β5 + 1

48 (3t + 23)β4 + 1
48 (14t + 79)β3 + 1

240 (45t2 + 35t + 724)β2 + 1
240 (−45t2 − 184t + 668)β

+ 1
16 t3 − 1

4 t2 − 47
60 t + 1,

γ
(2)
n = 1

240 β6 + 1
48 β5 + 1

48 (3t + 1)β4 + 1
48 (−10t− 1)β3 + 1

240 (45t2 − 25t− 6)β2 + 1
80 (−75t2 + 12t)β + 1

16 t3 + 7
8 t2,

where β = n + t, and the rest of φ
(j)
n (j = 3, 4, 5, · · · ) are omitted here.

When N = 1, from Equation (9), the first-order rational solutions of Equation (1) are
written as

ũn = −3−D(0)
n +H(0)

n w̃n

1−B(0)
n

, ṽn = E(0)
n+1 + 2− E(0)

n , w̃n = 1−F(0)
n

1−B(0)
n−1

, (11)

with

B(0)
n = ∆B(0)

n
∆1

, D(0)
n = ∆D(0)

n
∆2

, E(0)
n = ∆E(0)

n
∆2

, F(0)
n = ∆F(0)

n
∆2

, H(0)
n = (1− B(0)

n−1)
∆H(0)

n
∆1

,

in which
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∆1 =

∣∣∣∣∣∣∣
ϕ
(0)
n ψ

(0)
n − λ1 ϕ

(0)
n γ

(0)
n

ϕ
(1)
n ψ

(1)
n − λ1 ϕ

(1)
n − ϕ

(0)
n γ

(1)
n

ϕ
(2)
n ψ

(2)
n − λ1 ϕ

(2)
n − ϕ

(1)
n γ

(2)
n

∣∣∣∣∣∣∣, ∆2 =

∣∣∣∣∣∣∣
ϕ
(0)
n ψ

(0)
n γ

(0)
n

ϕ
(1)
n ψ

(1)
n γ

(1)
n

ϕ
(2)
n ψ

(2)
n γ

(2)
n

∣∣∣∣∣∣∣, ∆B(0)
n =

∣∣∣∣∣∣∣
ϕ
(0)
n −λ1 ϕ

(0)
n γ

(0)
n

ϕ
(1)
n −λ1 ϕ

(1)
n − ϕ

(0)
n γ

(1)
n

ϕ
(2)
n −λ1 ϕ

(2)
n − ϕ

(1)
n γ

(2)
n

∣∣∣∣∣∣∣,
∆D(0)

n =

∣∣∣∣∣∣∣
−λ1ψ

(0)
n ψ

(0)
n γ

(0)
n

−λ1ψ
(1)
n − ψ

(0)
n ψ

(1)
n γ

(1)
n

−λ1ψ
(2)
n − ψ

(1)
n ψ

(2)
n γ

(2)
n

∣∣∣∣∣∣∣, ∆E(0)
n =

∣∣∣∣∣∣∣
ϕ
(0)
n −λ1ψ

(0)
n γ

(0)
n

ϕ
(1)
n −λ1ψ

(1)
n − ψ

(0)
n γ

(1)
n

ϕ
(2)
n −λ1ψ

(2)
n − ψ

(1)
n γ

(2)
n

∣∣∣∣∣∣∣,
∆F(0)

n =

∣∣∣∣∣∣∣
ϕ
(0)
n ψ

(0)
n −λ1ψ

(0)
n

ϕ
(1)
n ψ

(1)
n −λ1ψ

(1)
n − ψ

(0)
n

ϕ
(2)
n ψ

(2)
n −λ1ψ

(2)
n − ψ

(1)
n

∣∣∣∣∣∣∣, ∆H(0)
n =

∣∣∣∣∣∣∣
ϕ
(0)
n −λ1γ

(0)
n γ

(0)
n

ϕ
(1)
n −λ1γ

(1)
n − γ

(0)
n γ

(1)
n

ϕ
(2)
n −λ1γ

(2)
n − γ

(1)
n γ

(2)
n

∣∣∣∣∣∣∣,
where B(0)

n−1 and E(0)
n+1 are given from B(0)

n and E(0)
n by changing n into n − 1 and n + 1,

respectively. For the convenience of analysis, we rewrite solutions (11) as

ũn = −3 + M1
N2

1
, ṽn = 2 + M2

N1 N2
, w̃n = 1 + M3

N1 N3
, (12)

with

M1 = 4374β10 + 85050β9 + (21870t + 716040)β8 + (340200t + 3418740)β7 + (43740t2 + 2282580t + 10185102)β6

+(549180t2 + 8694648t + 19627290)β5 − (72900t3 − 2616300t2 − 20632230t− 24525060)β4 − (243000t3

−6330420t2 − 31115040t− 19343160)β3 − (182250t4 + 332100t3 − 8530560t2 − 28818360t− 9007824)β2

+(−449550t4 − 520560t3 + 6208200t2 + 14768352t + 2136960)β− 36450t5 − 170100t4 − 340920t3 + 1971024t2

+3162240t + 172800,
M2 = 4374β10 + 99630β9 + (21870t + 997920)β8 + (398520t + 5780700)β7 + (43740t2 + 3157380t + 21414942)β6

+(578340t2 + 14228568t + 52920270)β5 − (72900t3 − 3005100t2 − 39905910t− 88158780)β4 − (534600t3

−7934220t2 − 71286000t− 97497000)β3 − (182250t4 + 1790100t3 − 11256480t2 − 79123320t− 68271984)β2

−(668250t4 + 3144960t3 − 8042040t2 − 49834272t− 27216000)β− 36450t5 − 607500t4 − 2185560t3 + 2162544t2

+13622400t + 4665600,
M3 = −8748β10 − 97200β9 − (43740t + 416340)β8 − (388800t + 820800)β7 − (87480t2 + 1415880t + 596484)β6

−(427680t2 + 2627856t− 236880)β5 + (145800t3 − 226800t2 − 2082060t + 356340)β4 + (777600t3 + 1481760t2

+717360t− 180000)β3 + (364500t4 + 2413800t3 + 3032280t2 + 2173680t− 141168)β2 + (680400t4 + 2887920t3

+2412000t2 + 809376t + 54720)β + 72900t5 + 558900t4 + 1411920t3 + 915792t2 − 54720t,
N1 = 27β6 + 135tβ4 + 261β5 + 135t2β2 + 810tβ3 + 1005β4 + 135t3 + 495t2β + 1635tβ2 + 1975β3 + 600t2 + 1272tβ

+2088β2 + 316t + 1124β + 240,
N2 = 27β6 + 135tβ4 + 423β5 + 135t2β2 + 1350tβ3 + 2715β4 + 135t3 + 765t2β + 4875tβ2 + 9145β3 + 1230t2 + 7512tβ

+17058β2 + 4168t + 16712β + 6720,
N3 = 27β6 + 99β5 + 135β4t + 105β4 + 270β3t + 135β2t2 + 25β3 + 15β2t + 225βt2 + 135t3 − 12β2 − 108βt + 240t2

−4β + 4t.
with the help of the symbolic calculation Maple, we can easily verify the correctness of
solutions (12) by substituting them into Equation (1). By drawing their structure figures as
shown in Figure 1a–c, from which we can see that the solutions of these rational solutions
are singular. However, it is very difficult to solve these singular curves directly from the
denominator of these solutions. To better understand the positions of these singular curves
and dynamical properties of solutions (12), we investigate their limit states via asymptotic

analysis technique. Let ξ = β− [−( (80+30
√

6)
1
3

3 + 10

3(80+30
√

6)
1
3
+ 5

3 )t]
1
2 , where t < 0, we can

obtain the limit states of solutions un, vn, wn as t→ −∞, which are listed as follows:

ũn → u−1 = −3 + M4
CN2

5
, ṽn → v−1 = 2 + M4

CN5 N6
, w̃n → w−1 = 1 + M5

CN5 N7
, (13)
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with

C = 1
900 [2583

√
6(80 + 30

√
6)

2
3 + 18136

√
6(80 + 30

√
6)

1
3 + 84130

√
6 + 6328(80 + 30

√
6)

2
3 + 44426(80 + 30

√
6)

1
3

+206080],
M4 = (652896

√
6 + 1599336)(80 + 30

√
6)

1
3 + (92988

√
6 + 227808)(80 + 30

√
6)

2
3 + 3028680

√
6 + 7418880,

M5 = (−1305792
√

6− 3198672)(80 + 30
√

6)
1
3 + (−185976

√
6− 455616)(80 + 30

√
6)

2
3 − 6057360

√
6− 14837760,

N5 = 3
√

6(80 + 30
√

6)
2
3 − 8(80 + 30

√
6)

2
3 − 10(80 + 30

√
6)

1
3 − 180ξ − 290,

N6 = 3(80 + 30
√

6)
2
3
√

6− 8(80 + 30
√

6)
2
3 − 10(80 + 30

√
6)

1
3 − 180ξ − 470,

N7 = 3
√

6(80 + 30
√

6)
2
3 − 8(80 + 30

√
6)

2
3 − 10(80 + 30

√
6)

1
3 − 180ξ − 110,

where C is just a constant, and u−1 , v−1 , w−1 represent the limit state expressions of ũn, ṽn, w̃n
as t→ −∞ respectively.

It should be noted here that the first-order rational solutions (12) of Equation (1) are
significantly different from those of the equations with 2× 2 Lax pairs in References [19,21].
The solutions of Equation (1) are obviously more complex than those of the equations with
2× 2 Lax pairs in References [19,21] or even the 4× 4 Lax pair in Reference [20], and the
structures of the solutions (12) are not as symmetrical as those in References [19–21].

Figure 1. (Color online) first-order rational solutions (12): (a) the three-dimensional plot of ũn; (d) the
singular trajectory plot of ũn in (13); (b) the three-dimensional plot of ṽn; (e) the singular trajectory
plot of ṽn in (13); (c) the three-dimensional plot of w̃n; (f) the singular trajectory plot of w̃n in (13).

Remark 2. From the above discussion, we know that Equation (13) are the limit states of Equation (12)
when t→ −∞, while for the case of t→ +∞, the solutions ũn, ṽn and w̃n tend to their backgrounds
respectively, so we do not discuss the case of t > 0 here. The interaction structures of solutions are
complex in the area n2 + t2 ≤ 100, and we do not discuss the states of solutions in this part, so we
only draw the singular trajectory plots of the solutions (12) when |t| is relatively large. Therefore, it can
be easily found that the solution ũn becomes singular at one curve N5 = 0 (i.e., 3

√
6(80+ 30

√
6)

2
3 −

8(80+ 30
√

6)
2
3 − 10(80+ 30

√
6)

1
3 − 180ξ − 290 = 0), ṽn possess singularities along two curves

N5 = 0 and N6 = 0 (i.e., 3
√

6(80+30
√

6)
2
3 −8(80+30

√
6)

2
3 −10(80+30

√
6)

1
3 −180ξ−290 =

0 and 3(80 + 30
√

6)
2
3
√

6− 8(80 + 30
√

6)
2
3 − 10(80 + 30

√
6)

1
3 − 180ξ − 470 = 0), and w̃n has

singularities at two curves N5 = 0 and N7 = 0 (i.e., 3
√

6(80+ 30
√

6)
2
3 − 8(80+ 30

√
6)

2
3 − 10(80+

30
√

6)
1
3 −180ξ−290 = 0 and 3(80+30

√
6)

2
3
√

6−8(80+30
√

6)
2
3 −10(80+30

√
6)

1
3 −180ξ−
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110 = 0). To show the correctness of our above analysis of solutions (12), we draw the figures of
the above singular trajectory analysis results, as displayed in Figure 1d–f. By comparing them with
Figure 1a–c, it is easily found that the singularities of first-order rational solutions correspond with our
asymptotic analysis results when time t is beyond the range circled by the dash dot, which also shows
that what we analyze above is correct.

4.2. Exponential-and-Rational Mixed Solutions

In this section, we will take N = 1 as an example to obtain the exponential–rational
mixed solutions of Equation (1) by using Theorem 1. When N = 1, if we take two different
spectral parameters λ1 and λ2, Theorem 1 degenerates to the discrete generalized (2, 1)-fold
DT. Similarly, we choose λ1 = λ1 + ε3, λ1 = 1, λ2 = 2 and make the Taylor expansion of φn
around ε = 0 for λ1 as in (11), but do not expand for φn(λ2). Therefore, the exponential
and rational mixed solutions of Equation (1) are given by

ũn = −3−D(0)
n +H(0)

n w̃n

1−B(0)
n

, ṽn = E(0)
n+1 + 2− E(0)

n , w̃n = 1−F(0)
n

1−B(0)
n−1

, (14)

with

B(0)
n = ∆B(0)

n
∆1

, D(0)
n = ∆D(0)

n
∆2

, E(0)
n = ∆E(0)

n
∆2

, F(0)
n = ∆F(0)

n
∆2

, H(0)
n = (1− B(0)

n−1)
∆H(0)

n
∆1

,

in which

∆1 =

∣∣∣∣∣∣∣
ϕ
(0)
n (λ1) ψ

(0)
n (λ1)− λ1 ϕ

(0)
n (λ1) γ

(0)
n (λ1)

ϕ
(1)
n (λ1) ψ

(1)
n (λ1)− λ1 ϕ

(1)
n (λ1)− ϕ

(0)
n (λ1) γ

(1)
n (λ1)

ϕn(λ2) ψn(λ2)− λ2 ϕn(λ2) γn(λ2)

∣∣∣∣∣∣∣, ∆2 =

∣∣∣∣∣∣∣
ϕ
(0)
n (λ1) ψ

(0)
n (λ1) γ

(0)
n (λ1)

ϕ
(1)
n (λ1) ψ

(1)
n (λ1) γ

(1)
n (λ1)

ϕn(λ2) ψn(λ2) γn(λ2)

∣∣∣∣∣∣∣,
∆B(0)

n =

∣∣∣∣∣∣∣
ϕ
(0)
n (λ1) −λ1 ϕ

(0)
n (λ1) γ

(0)
n (λ1)

ϕ
(1)
n (λ1) −λ1 ϕ

(1)
n (λ1)− ϕ

(0)
n (λ1) γ

(1)
n (λ1)

ϕn(λ2) −λ2 ϕn(λ2) γn(λ2)

∣∣∣∣∣∣∣, ∆D(0)
n =

∣∣∣∣∣∣∣
−λ1ψ

(0)
n (λ1) ψ

(0)
n (λ1) γ

(0)
n (λ1)

−λ1ψ
(1)
n (λ1)− ψ

(0)
n (λ1) ψ

(1)
n (λ1) γ

(1)
n (λ1)

−λ2ψn(λ2) ψn(λ2) γn(λ2)

∣∣∣∣∣∣∣,
∆E(0)

n =

∣∣∣∣∣∣∣
ϕ
(0)
n (λ1) −λ1ψ

(0)
n (λ1) γ

(0)
n (λ1)

ϕ
(1)
n (λ1) −λ1ψ

(1)
n (λ1)− ψ

(0)
n (λ1) γ

(1)
n (λ1)

ϕn(λ2) −λ2ψn(λ2) γn(λ2)

∣∣∣∣∣∣∣, ∆F(0)
n =

∣∣∣∣∣∣∣
ϕ
(0)
n (λ1) ψ

(0)
n (λ1) −λ1ψ

(0)
n (λ1)

ϕ
(1)
n (λ1) ψ

(1)
n (λ1) −λ1ψ

(1)
n (λ1)− ψ

(0)
n (λ1)

ϕn(λ2) ψn(λ2) −λ2ψn(λ2)

∣∣∣∣∣∣∣,
∆H(0)

n =

∣∣∣∣∣∣∣
ϕ
(0)
n (λ1) −λ1γ

(0)
n (λ1) γ

(0)
n (λ1)

ϕ
(1)
n (λ1) −λ1γ

(1)
n (λ1)− γ

(0)
n (λ1) γ

(1)
n (λ1)

ϕn(λ2) −λ2γn(λ2) γn(λ2)

∣∣∣∣∣∣∣,
where B(0)

n−1 and E(0)
n+1 are given from B(0)

n and E(0)
n by changing n into n − 1 and n + 1,

respectively. Because of the complexity of solutions (14), we only use determinants to
express them here.

When N and m are greater than or equal to 2, we can also discuss higher-order rational
formal solutions or mixed solutions, which we will not discuss here.

5. Conclusions

In this paper, we investigated the generalized Toda lattice Equation (1) associated with
a 3× 3 Lax pair, which might model the motions of particles in lattices. The main achieve-
ments of this paper are as follows. Firstly, we corresponded Equation (1) to continuous
linear PDE (4) and NPDE (6) by using the continuous limit technique. Secondly, the discrete
generalized (m, 3N −m)-fold DT of Equation (1) was constructed for the first time, from
which the rational solutions and exponential–rational mixed interaction solutions were
obtained. Thirdly, the rational solutions of Equation (1)were given by using the discrete
generalized (1, 2)-fold DT, and their limit states were discussed by using an asymptotic
analysis. In order to better understand their dynamical properties, the three-dimensional
and singular trajectory plots of rational solutions were also drawn in Figure 1. Finally, the
mixed solutions in the form of determinants of Equation (1) were derived by use of the
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discrete generalized (2, 1)-fold DT. The results and properties of Equation (1) given above
are first reported, and we hope these results in this paper might be helpful to understand
the dynamics of particles in lattices.
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