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Abstract: This paper deals with the MHD peristaltic flow of Williamson fluids through a porous
medium between two joint cylinders. The fluid flow was considered to be that of a non-Newtonian
fluid, i.e., a Williamson fluid. The inner tube was uniform, while the flexible outer tube had a Sine
wave moving down its wall. The analytical solutions for velocity and temperature were obtained
as functions (Bessell functions of the first and second types). The solution for velocity profile,
temperature, and concentration distribution were obtained as functions of the physical parameters
of the problem (Darcy number, magnetic parameter, Grasoff thermal number, Reynolds number,
Prantl number, and Schmidt number) along with other physical parameters. The effect of the physical
parameters was discussed graphically. A comparison with previously published graphical results
was also carried out. The ambition of the present paper is to contribute to practical applications in
geographical and physiological fluid dynamics, such as on sandstone, in the human lungs, on beach
sand, on limestone, and in the bile duct. This study is based on theoretical research and can be helpful
in the fields of fluid mechanics and mathematics.

Keywords: non-Newtonian fluid; Williamson fluid; peristaltic flow; magnetohydrodynamic; porous
medium

1. Introduction

Research on non-Newtonian fluids is important for the development of fluids, lubri-
cants, and plastic products. In fact, there are numerous fluids whose flow is considered non
Newtonian, such as plasma, liquid metals, nuclear fuel slurries, Bingham fluids, blood, etc.
The flow of these fluids does not follow the Newtonian law of viscosity; therefore, it is more
appropriate to consider them non-Newtonian fluids. Various researchers have analyzed
different types of non-Newtonian fluids. These include Ellis fluids, nanofluids, Jaffery
fluids, and Williamson fluids [1–5]. Williamson fluid is non-Newtonian fluid with shear
thinning property. Several investigations have been made on the Williamson fluid model.
For instance, the peristaltic flow of a Williamson fluid in a curved channel under the influ-
ence of a magnetic field was studied by Rashid et al. [6]. They solved the coupled partial
differential equation by using the analytical technique known as Homotopy Perturbation
Method (HPM) under the assumption of long wavelength and low Reynolds number. After
obtaining the solution, they graphically analyzed the effects of pertinent parameters on ve-
locity, temperature profile, etc. In another study by Nadeem and Akram [7], the peristaltic
flow of a Williamson fluid in an asymmetric channel was discussed and it was concluded
that the pressure rise is not linear for large values of the Williamson parameter, whereas,
for small values of this parameter, the pressure rise behaves like that of a Newtonian fluid.

Symmetry 2022, 14, 953. https://doi.org/10.3390/sym14050953 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14050953
https://doi.org/10.3390/sym14050953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14050953
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14050953?type=check_update&version=2


Symmetry 2022, 14, 953 2 of 15

Abdulmajeed [8] discussed the Williamson fluid considering heat and mass transfer. I Their
examination concluded that the Williamson parameter can play an important role in mo-
mentum transport. The second law of MHD slip flow for Williamson fluids was analyzed
by Dadheech et al. [9]. The analysis discovered that rate of entropy generation increased
in relation to the magnetic field parameter, while chemical reactions and opposite effects
on the porosity parameter were observed. Asjad MI et al. [10] developed a mathematical
model of Williamson fluid in the presence of bioconvection. The mathematical model was
solved by using the Range–Kutta method with shooting, and it was found that the velocity
increased with mix convection. Shashikumar NS et al. [11] explored the steady flow of
a Williamson fluid in a micro-channel, in the presence of viscous dissipation, magnetic
effects, and Joule dissipation.

In recent years, due to the countless importance of physiological and engineering
applications, peristaltic transportation has attracted researchers’ interest. The term “peri-
staltic “ derives from the Greek word paristaltikos and indicates a sort of wave motion
that appears within tubular structures and compels the movement of an object or medium.
Some prominent examples of peristaltic motion are the movement of chyme in the gas-
trointestinal region, of fluid in the male reproductive system, the movement imparted by
roller and finger pumps, and that of blood in small vessels. Researchers carried out several
examinations on these types of motions. Particularly, Abbas et al. [12] discussed the peri-
staltic flow of blood using a nanofluid in the presance of magnetohydrodynamics (MHD)
by using the perturbation method and numerical integration and determined pressure and
friction force. They found that the magnetic parameter and the Brownian motion parameter
have an important effect on the velocity profile and pressure distribution. Such findings
are useful to control bleeding during surgery. In another study, the same authors [13]
examined the entropy generation of the peristaltic flow of blood within compliant walls
and found that the elastic parameters of the walls affected the temperature profile and can
be modified to minimize entropy generation as blood flows. Abbas et al. [14] investigated
the minimization of entropy generation of the peristaltic flow of a nanofluid with compliant
walls. Sinha et al. [15] discussed the MHD of peristaltic flow and heat transfer in an asym-
metrical channel. The peristaltic flow of a hybrid nanofluid along a curve was analyzed by
Saleem Akbar et al. [16]. A. Riaz et al. [17] developed a mathematical model of peristaltic
flow with an asymmetrical wavy motion with the influence of entropy generation. Abbas
et al. [18] used an Artificial Neural Network to predict and minimize entropy generation
by the peristaltic flow of a non-Newtonian nanofluid.

The flow of fluids through porous media is a significant area of research. It has great
applications in geophysical fluid dynamics. Flow on sandstone, in the human lungs, in the
gall bladder in the presence of stones, and that of blood in small vessels are well-known
examples of porous media flow. The first studies on peristaltic porous media made by
Afifi [19] and Bhatti et al. [20] analyzed the peristaltic flow of blood through a porous
medium under the effect of slip and MHD. They discussed different cases in which the
flow became that of a Newtonian fluid and found that the magnetic fields can be used for
the magnetic targeting of drugs in cancer treatment.

Noreen et al. [21] explored heat transfer on electroosmotic flow through a porous
medium. Pattnaik P. K. et al. [22] experimentally examined metallic nanoparticles (Cu,
Al2O3, and SWCNT) with effects of MHD. More recently, other interesting research works
related to porous media were carried. Harelip et al. [23] developed a continuous math-
ematical model with the time probability density function of a poly-dispersed fluid in a
porous medium. M. Yang et al. [24] considered MHD for an Eyring-Powell fluid in a porous
medium. They analyzed the effects of energy and viscosity on the flow. Nawaz M and M.
Adil Sadiq [25] created a mathematical model for non-Newtonian hybrid nanoparticles and
solved it by using the finite element method. Other more recent studies were conducted, as
reported in the Reference section [26–29].

In all the above-mentioned studies, no attention was paid to the MHD peristaltic flow
of Williamson fluids through a porous medium in two coaxial cylinders. Shaaban and Abou-



Symmetry 2022, 14, 953 3 of 15

zeid [30] considered the geometry of two coaxial cylinders for the MHD peristaltic flow
of a non-Newtonian fluid in a porous medium with the effects of heat and mass transfer.
Similarly, the MHD peristaltic flow of a micro polar bi-viscosity fluid thorough a porous
medium and two coaxial tubes was investigated by Nabil and Mohamed [31]. Among the
non-Newtonian fluids, the most used fluids are pseudoplastic fluids. The Williamson fluid
is also a type of pseudo plastic fluid and includes polish, paints, whipped cream, blood etc.
In the current study, the Williamson model was used in solving the governing equations.
The coupled partial differential equation was solved with the Bessel function subject to the
boundary condition of the flow through the coaxial cylinders. Temperature, concentration
force, and velocity profile are discussed in relation to various parameters using graphs. The
variation of streamline wave frames for some significance parameters is also displayed in
graphs. A comparison analysis with previously published graphical results [30] with the
same geometry was also carried out in the conclusion section. The findings of the present
analysis can help understand the flow mechanisms of many fluids with physiological and
geographical interest.

2. Mathematical Formulation

The analysis considered the peristaltic flow of an incompressible Williamson electri-
cally conducting fluid in coaxial cylinders. The cylindrical coordinate framework (R, Z)
were utilized, where R is along the span of the cylinder, and Z corresponds to the center
line of the cylinder, as shown in Figure 1. A uniform magnetic field B0 was applied and
acted along the axis. The details of geometry with dimension is given in Table 1.
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Figure 1. Geometry of the flow.

Table 1. Details of the flow geometry.

Parameters Dimensions Values

r1 Radius of the inner cylinder a2
2

r2 Radius of the outer cylinder H
(
Z, t

)
= a + bSin

[
2π
λ

(
Z− ct

)]
c = 2ε0 λ

ln
(

r2
r1

) 2
2
(
8.85× 10−2)(10× 10−2)

ln 4mm
2mm

Capacitance of the Cylinder

B0 Applied magnetic field
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Table 1. Cont.

Parameters Dimensions Values

a r1+r2
2 Average radius

R, Z (Cylindrical coordinates)
R is the radical direction, and Z lies

along the center line of
the inner and outer tubes

λ Length 10× 10−2m

b Amplitude of the peristaltic wave Assumed as a constant

C Wave propagation

t Time

The equations used were:

H
(
Z, t

)
= a + bSin

[
2π

λ

(
Z− ct

)]
(1)

where a is the average radius of the undisturbed tube, b is the amplitude of the peristaltic
wave, λ is the wavelength, c is the wave propagation speed, and t is time. In the fixed
coordinates (R, Z) the flow between the two tubes is unsteady. It becomes steady in a wave
frame (r, z) moving with the same speed as the wave in the Z-direction. The transformations
between the two frames is:

r = R , z = Z− ct,

u = U , w = W − c,

where (r, z) and (U, W) are the velocity components in the moving and fixed frames,
respectively.

The extra stress tensor S for a Williamson fluid is [32,33]:

S = µ0

[(
1 + Γ

.
γ
)]

A1 (2)

where
.
γ =

√
1
2 ∏ , and ∏ = tr(A1)

2. Here, A1 = ∇V + (∇V)
T represents the first Rivlin–

Ericksen tensors, Γ is the time constant, and µ0 is the zero-shear-rate viscosity. The stress
component can be obtained by using Equation (2) as follows:

Szr = µ0

[(
1 + Γ

.
γ
)][∂u

∂z
+

∂w
∂r

]
(3)

Srr = µ0

[(
1 + Γ

.
γ
)][

2
∂u
∂r

]
(4)

Szz = µ0

[(
1 + Γ

.
γ
)][

2
∂w
∂z

]
(5)

The governing equations of the flow can be written as [18]:

∂u
∂r

+
v
r
+

∂w
∂r

= 0, (6)

ρ f

(
u
[

∂u
∂r

]
+ w

∂u
∂z

)
= −∂p

∂r
+

1
r

∂

∂r
(
rSrr

)
+

∂

∂z
(
Szr
)
+

Sθθ

r
(7)

ρ f

(
u

∂w
∂r

+ w
∂w
∂z

)
= −∂p

∂z
+

1
r

∂

∂r
(
rSrz

)
+

∂

∂z
(
Szz
)
+ ρ f gβT(T − T0) + ρ f gβC(C− C2)− σB2

0Sin2(ξ)w− µ

k
w, (8)
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u
∂T
∂r

+ w
∂T
∂z

=
K

cpρ f

(
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2

)
+

16σ0TE
2

3k0cpρ f

1
r

(
r

∂T
∂r

)
− Q

cpρ f
T (9)

u
∂C
∂r

+ w
∂C
∂z

= Dm

(
∂2C
∂r2 +

1
r

∂C
∂r

+
∂2C
∂z2

)
+

DmkT
Tm

1
r

(
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2

)
(10)

The temperature equation is given by:

∂T
∂t

+ u
∂T
∂r

+ w
∂T
∂z

=
K

cpρ

(
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2

)
−

16σ0TE
2

3k0cpρ

1
r

∂

∂r

(
r

∂T
∂r

)
− Q

cpρ
T (11)

The concentration equation is given by:

∂C
∂t

+ u
∂C
∂R

+ w
∂C
∂Z

= Dm

(
∂2C

∂R2 +
1
R

∂C
∂R

+
∂2C

∂Z2

)
+

DmkT
Tm

(
∂2T

∂R2 +
1
R

∂T
∂R

+
∂2T

∂Z2

)
(12)

where the pressure is denoted by p, the viscosity is µ, the velocity in the r and z directions
is by u and w, respectively, the density id ρ. The appropriate boundary conditions are:

w = −1, u = 0, T = T1, C = C1 at r = r1 = ε
w = −1, u = 0, T = T0 , C = C0 at r = r2 = 1 +∅ Sin(2πz)

}
(13)

We introduced the dimensionless parameters as follows:

r = r
a2

, z = z
λ , δ = a2

λ , u = λu
a2c , w = w

c , p = a2
2 p

µ0λc , r1 = r1
a2

= ε < 1,

r2 = r2
a2

= 1 +∅. sin(2πz), ∅ = b
a2

, θ = T−T0
T1−T0

, Da = K
a2

2
, s = a2s

µ0c , We = cΓ
a2

Φ = C−C0
C1−C0

, Re = cpa2
µ ,

.
γ =

.
γ

Dm
, Sc = µcp

K , M2
1 =

σB2
0

µa2
2

sin2(α), Rn =
ρK0 Cpv

4T2
2 σ0

Gr = ρgβT h2(T−T0)
µU , Sr =

DKT(T1−T0)
UTmh(C1−C2)

, Gc = ρgβCh2(T−T0)
µU , Pr = µ0cp

k


(14)

where (Rn) the is the radiation parameter, (∅) is the amplitude ratio, (M2
1) is the magnetic

parameter, (Re) is the Reynolds number, (Da) is the Darcy number, (Sr) is the Soret number,
(Sc) is the Brandt number, and (δ) is the dimensionless wave number. (Gr) is the thermal
Grashof number, and (Gc) is by Solutol Grashof number.

Using Equation (14) in Equations (6)–(12), the dimensionless equations can be written
as: (

∂u
∂r

+
u
r
+

∂w
∂z

)
= 0, (15)

Re δ3
(

u
∂u
∂r

+ w
∂u
∂z

) = −∂p
∂r

+ δ2 ∂(Srz )

∂z
+

δ

r
∂(rSrr )

∂r
− δ

Sϑϑ

r
, (16)

Reδ

(
u

∂w
∂r

+ w
∂w
∂z

)
= −∂p

∂z
+

(Srz)

r
+

∂(Srz )

∂r
+ δ

∂(Szz )

∂z
−
(

M2
1 +

1
Da

)
w + Grϑ + Gcϕ, (17)

δ

(
u

∂ϑ

∂r
+ w

∂ϑ

∂z

)
=

1
pr

(
∂2ϑ

∂r2 +
1
r

∂ϑ

∂r
+ δ2 ∂2ϑ

∂z2

)
+

4
3Rn

1
r

∂

∂r

(
r

∂ϑ

∂r

)
−Ωϑ, (18)

δ

(
u

∂ϕ

∂r
+ w

∂ϕ

∂z

)
=

1
Sc

(
∂2 ϕ

∂r2 +
1
r

∂ϕ

∂r
+ δ2 ∂2 ϕ

∂z2

)
+ Sr

(
∂2ϑ

∂r2 +
1
r

∂ϑ

∂r
+ δ2 ∂2ϑ

∂z2

)
, (19)

By assuming a long wavelength (δ << 1) and a low Reynolds number (Re→ 0), one
obtains:

∂p
∂r

= 0, (20)

1
r

∂(rSrz )

∂r
−
(

M2
1 +

1
Da

)
w + Grθ + GcΦ =

∂p
∂z

(21)
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(
1

Re pr
+

4
3Rn

)(
∂2θ

∂r2 +
1
r

∂θ

∂r

)
−Ωθ = 0, (22)

1
Sc

(
∂2Φ
∂r2 +

1
r

∂Φ
∂r

)
= −Sr

(
∂2θ

∂r2 +
1
r

∂θ

∂r

)
, (23)

where

Srr = Sθθ = Szz = 0, and Srz =

[
1 + We

(
∂w
∂r

)](
∂w
∂r

)
By replacing (Srz) in Equation (21), we have:

∂

∂r

([(
∂w
∂r

)
We
(

∂w
∂r

)
+

(
∂w
∂r

)])
+

1
r

[(
∂w
∂r

)
+ We

(
∂w
∂r

)(
∂w
∂r

)]
−
(

M2
1 +

1
Da

)
w + Grθ + GcΦ =

∂p
∂z

, (24)

The dimensionless boundary conditions are the following:

w = −1, u = 0, ϑ = 1 at r = r1 = ε
w = −1, u = 0, ϑ = 0 at r = r2 = 1 +∅ Sin(2πz)

}
(25)

Considering the stream function ψ:

u = −1
r

(
∂ψ

∂z

)
and w =

1
r

(
∂ψ

∂r

)
, (26)

3. Solution of the Problem

The dimensionless partial differential equations were solved using the Bessel functions
of the first and second types, with the help of the software Mathematica (version-11). The
Bessel functions can be applied on the following type of equation to obtain an exact solution

x2 d2y
dx2 + x

dy
dx
−
(

x2 + p2
)

y = 0 (27)

Comparing Equation (27) with Equations (22)–(24), we obtained temperature, concen-
tration, and velocity profile, as shown here.

The solution of the temperature Equation (22) is:

θ = c1 I0

[√
Ar
]
+ c2B0

[√
Ar
]

(28)

The constant are

c1 =
B0

[
h
√

A
]

I0ε
[[√

A
]

B0

[
h
√

A
]
−
(

h
√

A
)

B0

(√
A
)] (29)

c2 =
I0

[
h
√

A
]

I0ε
[(

h
√

A
)

B0

(√
A
)
−
(√

A
)

B0

(
h
√

A
)] (30)

From the concentration Equation (23), we obtain

Φ = −ScSr + c3 ln(r) + c4 (31)

With c3 = 1+ScSr
Ln (r1(1/r2))

, and c4 = −c3 ln(r2).
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Equation (24) shows that p depends on z only. Equation (24) can be written as

∂2w
∂r2 +

1
r

∂w
∂r

+
1

r
(

∂w
∂r

)2 −
(

M2
1 +

1
Da

)
=

∂p
∂z
− Gcθ − Grφ

With H =
(

M2
1 +

1
Da

)
, and Y =

(
∂p
∂z − Grϑ− Gcϕ +

(
M2

1 +
1

Da

))
,

The general solution of Equation (25) is

w =
H
Y

+ k1 I0

[√
Fr
]
+ k2B0

[√
Fr
]

(32)

Considering the boundary conditions provided in Equation (25), we have

k1 = −
(H + Y)

(
B0

[
h
√

Y
]
− B0

[√
Yε
])

H
(

I0

[√
Yε
]

B0

[
h
√

Y
]
− I0

[
h
√

Y
]

B0

[√
Yε
]) (33)

k2 = −
(H + Y)

(
−I0

[
h
√

Y
]
+ I0

[√
Yε
])

Y
(

I0

[√
Zε
]

B0

[
h
√

Z
]
− I0

[
h
√

Y
]

B0

[√
Yε
]) (34)

The modified Bessel functions of the first and second kind of zero order are I0, B0.
The solution was obtained by using the boundary condition, which was provided in
Equation (25); with the help of (MATHEMATICA-11) software, we obtained the constants
c1, c2, c3, c4, k1 and k2.

4. Results and Discussion
4.1. Concentration Profile

Figure 2 shows the effects of the parameters Sc and Sr on the concentration profile
Φ. It was observed that Φ decreases with the increase on Sr with r in the range from 0 to
1.37622, beyond which, it increased with the increase of Sr. The curves of Φ were obtained
for Sr = 0.1, 0.2, and 0.3 when the other parameters were constant. Figure 2b shows the
effect of Sc on the concentration distribution, and it is clear that Φ decreased as Sc increased,
and also Sc affected the relation between Φ and r. This relation appeared approximately
inverse for small values of Sc, but, for large values of Sc, Φ increased with increasing, till a
finite value of r (minimum value), after which it decreased. These phenomena are due to
the fact that the solute diffusion in fluids is always proportional to the diffusion coefficient.
Therefore, a decrease in the concentration is due to a decrease of the diffusion coefficient.
The same behavior was shown for Sc in Figure 2b. It can be explained by Equation (22),
since both parameter are inversely proportional to the concentration. As a consequence for
it recuses for higher values of Sr and Sc.
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4.2. Temperature Profile

Figure 3 shows the effects of the parameters Pr, Re, and Rn on the temperature
profile. The graphs show that θ increased with the increase in any one of these parameters,
while the others were fixed. It should be noted that for higher values of the Prandtl
number, thermal conductivity was lower, which caused a reduction in conduction and
boundary layer thickness. Further, the temperature increased when the radiation parameter
increased. This was due to fact that the surface heat flux became large under the influence
of thermal radiation, which resulted in higher temperature inside the boundary layer
region. In Figure 3, the effect of Re, Rn, and Pr on the temperature distribution T is
displayed, and this figure shows that the temperature increased with the increasing of
these parameters. The relation between T and r was approximately linear for large values
of Pr, Re, and Rn > 9, but for large values of Pr (>0.7), T increased with increasing r till a
finite value of r (maximum value), after which T decreased with increasing r.
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4.3. Velocity Profile

The effect of Grashof number (Gc) is illustrated in Figure 4. It was observed that
the fluid velocity (W) decreased with the increase of (Gc), and started to increase when
r was 2.27. It is seen that with the increase of (Gr), the velocity (W) declined, but W
became larger for r > 2.1726. Figure 5 shows the variation of the velocity (W) with (r) for
various values of the Weissenberg number (We). This figure shows that the fluid velocity
increased with the increase of the Weissenberg number in the range of [0.1–0.32], whereas
the opposite was observed in the range of [0.32–0.60]. To examine a viscoelastic flow, the
Weissenberg number was used. We inspected the effect of forces from elastic to viscous. For
high values of the Weissenberg number, the flow of fluid particles encountered resistance,
and as a consequence, the velocity decreased. In Figure 5 we see that (W) decreased with
the increase of (ε). Figure 6 illustrates the velocity profile for various values of the magnetic
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and Darcy parameters. We concluded that the velocity decreased for increasing values
of the magnetic field parameter (M). The reason for this phenomenon is that, due to
the increase in magnetic the parameters, the Lorentz force was generated and created a
resistance force in the flow; as a result, the velocity profile decreased. Further, this figure
shows that the velocity decreased by increasing M in the range of 0.10 < r < 0.27; ad
after that, the velocity increased by increasing M. It is also clear that, in all curves in this
figure, the maximum value of (W) occurred at 0.23 < r < 0.25. In Figure 6, the effect of
Da on the velocity distribution is displayed. It is clear that (W) increased by increasing
Da in the range of 0.10 < r < 0.22, and (W) decreased by increasing Da in the range of
0.22 < r < 0.30. In this figure, we can also see that, although there was a big difference
between the values of Da, we observed small differences between the three curves of (W),
which were taken at Da = 0.1, 0.5, 0.9, when the other parameters were constant.
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The effects of Grashof number (Gc), Solutol Grashof number (Gr), Weissenberg
number (We), Darcy number (Da), magnetic field parameter (M), and (ε) on trapping can
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be seen in Figures 7–11. Trapping is basically the development of an interior circulating
bolus of fluid by closed streamlines that is pushed ahead along with the peristaltic wave.
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Figure 7 shows that the size of the trapped bolus increased with the increase in Gr,
and near the upper wall, it disappeared when Gr = 4.1. Figure 8 shows that a new region
of the trapped bolus vanished at Gc = 3.92 nearby the flat wall of the channel, while the
trapped bolus size increased for a large value of Gc.
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It is observed in Figure 9 that the size of the trapped bolus declined with the enhance-
ment of the magnetic parameter M, while at M = 4.82, a new trapped bolus appeared close
to the flat wall of the channel and increased in dimension with the increase of M. Figure 10
reveals that close to the upper wall at Da = 3.99, the trapped bolus vanished into a wave,
while the size of the trapped bolus increased with the increase of Da.

It appears in Figure 11 that the size of the trapped bolus became larger for larger
values of the parameter We, and at We = 3.9, the trapped bolus disappeared into wave
near the region of the upper wall.

Validation of the Model

The presented mathematical model was developed for non-Newtonian Williamson
fluids and can be reduced to non-Newtonian fluids as We → 0 . In that case, we used the
same model and mathematical equation previously described [30,31] for non-Newtonian
fluids. For this purpose, the velocity profile for different values of magnetic parameter
and Darcy number is presented in Figure 12. It can be seen from this comparison graph
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that the velocity decreased as M increased in the range of 0.5 < r < 1. The effect of Da on
velocity distribution was similar. It is clear that w decreased as Da increased in the range of
0.5 < r < 1, and w decreased as Da increased. Both results are similar to those obtained by
Shabaan [30].
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Figure 12. Graphical results of the Velocity Profile against Magnetic parameter and Darcy number
for a non-Newtonian fluid ( We → 0 ).

5. Conclusions

The magnetohydrodynamic peristaltic flow of a Williamson fluid for varying tempera-
ture, velocity, and concentration values through a porous medium was considered in this
study. It is important to mention that if the current Williamson model is used in rectangular
coordinates, we obtain the same results as those previously reported [23,24]. The following
graphical results that we obtained with the described model are the same those as obtained
by Shaban et al. [21].

1. The behavior of the velocity profile was the same as the values of magnetic parameter
and Da parameter increased.

2. The temperature distribution was same for higher values of the Prandtl and M param-
eters.

3. The dimensionless concentration ∅ was the same for different values of Sc and Sr

The essential features of this analysis are the following:
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• For higher values of boundary layer thickness and thermal conductivity, the temper-
ature θ increased; the relation between θ and r was approximately linear for large
values of Pr, Re, and Rn > 9.

• The velocity decreased by increasing M in the range of 0.10 < r < 0.27; after that, the
velocity increased by increasing M.

• The velocity decreased for higher values of the parameters Gr and Gc, but at r = 0.20,
it started to increase.

• The concentration force showed a dual behavior for various values of the parameters
Sc and Sr because solute diffusion in fluids is always proportional to the diffusion
coefficient. Therefore, a decrease in concentration field was due to a decrease in the
diffusion coefficient.

• Similar effects were observed in trapping for the parameter Gr, and the size of the
trapped bolus decreased with the increase of Gr. It is further concluded that a trapped
bolus developed in a new region near the flat wall of the channel and increased in size
with the increase of Gr.

• The performance of the parameters Da, M, Gc, and We was similar on the trap and it
was revealed that near the trap, the bolus increased with the increase of W.
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Nomenclature

Pr Prandtl number
ρ Density
p Pressure
T̃ Temperature
σ Electrical conductivity
B0 Magnetic field
Cp Specific heat
K Thermal conductivity
Gc Solutol Grashof number
U, W Expression of velocity in r and z directions, Respectively
Gr Thermal Grashof number
θ Dimensionless temperature of the model
Sr Soret number
δ Dimensionless wave number
Da Darcy Number
µo Zero share stress viscosity
φ Concentration force
M Dimensionless magnetic parameter
µ Fluid viscosity
Ω Stagnation speed
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Da Darcy number
λ1 The ratio of relaxation to retardation time
t Time
ϕ Amplitude rate
Rn Radiation parameter
ω Frequency of oscillation
Γ Time Constant Parameter
A1 Rivlin Ericksen Tensor
We Weissenberg number
Sc Suction/Injection parameter
ε Variation of viscosity with temperature
Re Reynolds number
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