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Abstract

:

Traditional statistical, physical, and correlation models for chaotic time series prediction have problems, such as low forecasting accuracy, computational time, and difficulty determining the neural network’s topologies. Over a decade, various researchers have been working with these issues; however, it remains a challenge. Therefore, this review paper presents a comprehensive review of significant research conducted on various approaches for chaotic time series forecasting, using machine learning techniques such as convolutional neural network (CNN), wavelet neural network (WNN), fuzzy neural network (FNN), and long short-term memory (LSTM) in the nonlinear systems aforementioned above. The paper also aims to provide issues of individual forecasting approaches for better understanding and up-to-date knowledge for chaotic time series forecasting. The comprehensive review table summarizes the works closely associated with the mentioned issues. It includes published year, research country, forecasting approach, application, forecasting parameters, performance measures, and collected data area in this sector. Future improvements and current studies in this field are broadly examined. In addition, possible future scopes and limitations are closely discussed.
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1. Introduction


The first section of this paper provides a brief description of the chaos and the properties of chaotic systems. In addition, the importance of chaotic time series forecasting in significant areas is addressed. Finally, this section covers the previous and current literature surveys on chaotic time series forecasting.



1.1. Chaotic Systems


The behavior of a nonlinear dynamical system that may be extremely sensitive to small changes in initial conditions is known as chaos. This sensitivity to initial conditions means that a slight change in the starting point can lead to different outcomes. For example, the butterfly effect shows how a small change in one state of a deterministic nonlinear system may result in enormous deviations in a subsequent state [1]. The other characteristic of a chaotic system is no periodic behavior. The symmetric property of these nonlinear dynamic systems can play a vital role in producing the systems’ chaotic behavior. Due to this fact, various researchers have recently shown much interest in the symmetric properties of chaotic systems. In [2], the authors have proposed a chaotic oscillator with both odd and even symmetries. Similarly, some of the other applications of symmetric properties of chaotic systems lie in image processing, security, and communications [3]. The symmetric and asymmetric behavior has been observed in many natural phenomena. Due to these characteristics, the chaotic motion is difficult to forecast. For instance, predicting the butterfly effect for the long term is impossible [1]. This is because these systems are deterministic, i.e., the future behavior of these systems is entirely defined by their initial conditions. Hence, these systems are wholly deterministic and unpredictable.



On the other hand, a chaotic time series is generated when the variable changes with time in a chaotic system. This chaotic time series provides extensive information about the nonlinear system and helps evaluate and analyze the chaotic system’s behavior. The phase space reconstruction technique reveals this dynamic information hidden in the chaotic time series and transforms the existing data into a more describable framework [4]. As a result, it is essential to have approaches that can forecast chaotic time series and differentiate chaotic data from stochastic data [5,6,7]. The traditional prediction methods for this purpose have failed to produce satisfactory performance. Thus, many advanced techniques using machine learning-based approaches have been proposed recently. Therefore, this paper presents a comprehensive review of the performance of traditional and machine learning-based methods for chaotic time series forecasting and their implementation on nonlinear dynamical systems, such as photovoltaic systems, wind farms, communication signals and systems, oil and gas, hydrological systems, weather, and other systems.




1.2. Importance of Chaotic Time Series Forecasting


Forecasting is an approach for creating predictions to determine the direction of future trends using historical data and current trend analysis as inputs [8]. Forecasting is the most significant optimization concept related to energy savings, material savings, increasing efficiency, making appropriate and suitable accurate decisions [8,9]. On the other hand, chaos theory is an essential part of nonlinear science, developed in the 1970s [10]. Chaos is a long-term non-periodic behavior in a predictable system with a high sensitivity to initial conditions. It shows the order and regularity hidden behind disorganized and complex occurrences. This tendency permeates and promotes many subjects. As a result, chaos research has access to a solution. In the meantime, chaos theory applications are becoming increasingly popular. They are significantly used in diverse scientific applications such as wind farms [11], PV systems, oil and gas [12,13], hydrological systems [14], etc. A brief description of the need for chaotic time series forecasting in each of these applications is explained below.



1.2.1. Chaotic Time Series Forecasting in Power and Energy


Electricity demand and market price predictions have played a significant role in the electric power industry for over a century [15]. Moreover, due to the worldwide energy crisis and alarmingly rising air, water, and soil pollution levels, renewable energy has become increasingly popular for power generation in recent years. This popularity is because renewable energy is a pure and limitless energy source [11]. As a result, a rising number of nations are becoming involved, and investors are committing to developing renewable energy plants. However, the lack of consistent energy sources due to intermittent nature represents renewable energies’ main problem. Thus, forecasting renewable generation is the key to integrating these intermittent energies into the electricity grid for several reasons [9,16]. The main advantage of predicting the intermittent nature of renewable energy resources is that the number of backup systems can be reduced, thus, reducing the investments and need for electricity to meet the demand. Many forecasting approaches have been proposed using ANN, fuzzy, etc. These approaches are based entirely on time series analysis in which the chaotic time series data of renewable energy are one of the most challenging dynamics to be forecast.




1.2.2. Chaotic Time Series Forecasting in Oil and Gas


It is well known that the intake flow of a gasoline engine directly impacts the accuracy of the air–fuel ratio management under transient situations [12]. As a result, precise control becomes extremely difficult because the air ratio is far from stoichiometry for various reasons. Thus, forecasting the engine’s intake flow with greater accuracy in less time can improve the convergence rate. Additionally, it will be able to overcome the shortcomings of the airflow sensor’s lag. This is because it allows an accurate forecast of the future airflow. Similarly, it is also well known that there are abnormal fluctuations in the ventilation air in the nonlinear coal mines’ ventilation systems [17]. These fluctuations in the air are due to the mining depth and intensity gradually increasing and equipment aging. The abnormalities, as mentioned earlier, can affect the entire system, resulting in various underground accidents and lost coal mines’ ventilation system stability. Therefore, timely air quality prediction in coal mines’ ventilation systems can help adequately manage systems, which directly influences the safety and output of the coal mine.




1.2.3. Chaotic Time Series Forecasting in Hydrological Systems


Hydrological forecasting plays a critical role in reducing future flood impacts, also helps produce more benefits for hydropower production, and enhances water resource management [18]. It is worth noting that predicting the destiny of a river inflow is an essential concern for water quality management [19].




1.2.4. Chaotic Time Series Forecasting in Other Systems


The distributed control system and information technology, which comprises supervisory information technology and management information systems, are commonly used technologies in thermal power plants [20]. The real-time data collected from power plant equipment and personnel controls using these technologies are a chaotic time series. Further, the instantaneous generator output power is critical to indicate the adjusting and controlling equipment’s status. As a result, predicting the immediate generator power time series could provide decision-making, maintenance, and incident-handling information. Further, it positively impacts plant production, optimal operation, and problem detection and maintenance technology.



Natural hazards, such as earthquakes, severe floods, fires, and volcanic eruptions, and the destruction they create are worldwide issues that impose a high cost in terms of human lives and financial damages [21]. The wireless sensor networks monitor the urban river levels and other natural environmental conditions for predicting the floods before they occur so that the people at risk evacuate in time.



Similarly, the nonlinear spacecraft system contains various fields with advanced technology, and it has a significant impact on national economies, research, and technology. Faults in the spacecraft system are challenging to detect and rectify. As a result, studying the trend of spacecraft telemetry metrics and the variation law is essential for the early prediction of spacecraft problems.





1.3. Previous and Current Literature Survey


Few reviews have focused on applying chaos theory in multiple applications. For instance, in [14,22,23], a study on the application of the chaos concept in hydrology was reported. The study also reveals some critical issues raised while applying the chaos concept in hydrology. Similarly, a review of the application of chaos theory in traffic flow patterns was reported in [24]. In both works, some of the reviewed methods reported for the short-term forecasting are correlation dimension, Lyapunov exponent, Kolmogorov entropy, SVM, ANN, nonlinear prediction, and dynamic neural network. These reviews overlapped with elements of this field, though none have brought together all material related to chaotic time series forecasting approaches using machine learning techniques for various applications.



Considering the above research scope, the authors in this paper reviewed chaotic time series forecasting approaches using machine learning techniques in various applications. At first, the importance of chaotic time series forecasting is identified in multiple applications, including all the recently published methods, and addresses issues of individual techniques. The review of these chaotic time series forecasting approaches in the past three decades is summarized in Section 2. Section 3 gives a comprehensive review of machine-learning-based chaotic time series forecasting approaches developed using ANN, FNN, WNN, and optimization algorithms. The study on forecasting various chaotic parameters in multiple applications is detailed in Section 4. Section 5 discusses the various performance measures used for chaotic time series forecasting approaches. Finally, Section 6 concludes the current works, highlighting the shortcomings and suggesting possible future research perspectives.





2. Review on Chaotic Time Series Forecasting


In the past three decades, many researchers have rigorously researched forecasting of chaos in various areas, such as wind farms, photovoltaic systems, hydrological systems, communication systems, and oil and gas fields, using ANN. Thus, there is a scope for a critical review of chaotic time series forecasting in various areas using machine learning techniques. This manuscript critically reviews various works published from 1992 to 2021. The decade-wise research contributions to chaotic time series forecasting during this period are shown in Figure 1.



According to the literature review collected from Table 1, 43% of works have employed the ANN-based approaches in the literature for chaotic time series forecasting. The additional techniques are based on the following: FNN 24%, optimization algorithms 15%, WNN 6%, and other approaches 4%. In the 15% of optimization-algorithm-based techniques, the various algorithms used are GA, PSO, SSA, SA, SOM, CGO, GWO, CBAS, etc. The objective of these techniques is to improve accuracy, computational efficiency, and concerns due to the presence of uncertainties in various applications. Some novel techniques reported in Table 1 focused on efficiently tackling multiple objectives. Table 1 also shows that these articles have dealt with several forecasting parameters, such as load, power, speed, traffic flow, signals, etc. In some of these works, real-time data were also collected from various countries, including Australia, Belgium, Canada, China, Iran, Laos, Morocco, Thailand, and the USA, as shown in Figure 2. In the first decade, research on chaotic time series forecasting relied on statistical data to forecast the system’s future behavior. The rest of the decades used artificial intelligence and other novel models for chaotic time series forecasting in various applications. The detailed analysis of various forecasting approaches in different applications is explained in the following sections.




3. Neural Network-Based Forecasting Approaches


As mentioned in Section 2, various researchers have developed ANN, FNN, WNN, and optimization-based approaches for chaotic time series forecasting. The multiple techniques developed using these approaches are shown in Figure 3. A detailed explanation of these techniques, including the objectives and performance analysis, is presented underneath. The future scope of the method is also highlighted.



3.1. ANN-Based Forecasting Approaches


ANN has multiple perceptrons’ or nodes at each layer. For example, the network with two input nodes, two hidden layers with four nodes in each, and one output node is shown in Figure 4. This network can be called FFNN when its inputs are processed forward (refer to the red dotted line in Figure 4). The FFNN is one of the most straightforward neural networks, and it passes information in one direction through various input nodes until the output node [178]. This type of neural network may or may not have hidden layers, making its functioning more understandable. Some advantages of FFNN include storing information on the entire network, working with incomplete knowledge, offering tolerance, and having distributed memory. However, the disadvantages of FFNN include having hardware dependency and unexplained behavior that can leave us tormented with results. No particular rule for deciding the network’s structure and the appropriate network structure is achieved through experience and trial and error.



BPNN is an essential mathematical tool for improving the accuracy of predictions in data mining and machine learning. In FFNN, the network propagates forward to obtain the output and compares it with real value to obtain the error. However, to minimize the error, the BPNN will propagate backward by finding the error derivative for each weight and then subtracting this value from the weight value. The architecture of a BPNN is also shown in Figure 4, and the direction of propagation is shown in the green dotted line. On the other hand, RNN is more complex than FFNN and BPNN. Here, the RNN’s every node acts as a memory cell and continues the operations computation [4]. The RNN saves the output of processing nodes and feeds them back into the network, and hence, they do not pass the information in one direction only (refer to the blue dotted line in Figure 4). If the network’s prediction is incorrect, the system self-learns and continually works toward correcting the forecast during backpropagation.



Researchers have utilized ANNs in numerous applications to predict or forecast various chaotic systems’ behavior. For instance, in [25], the researchers developed the complex weighted neural network method for high-resolution adaptive bearing prediction. It is observed that this concept is especially effective in circumstances where the hermit matrix progressively changes over time due to adaptive tracking. Jae-Gyan Choi et al. proposed the application of ANN in power systems for predicting the one-day-ahead daily peak load based on chaotic time series data using absolute error as a performance measure [26]. It is to be noted that the proposed technique can also be used for other forecasting applications, such as predicting the special days, hourly load, temperature, etc. In [27], the researchers have presented the RNN model for Mackey–Glass chaotic time series. The proposed model’s experimental results are more practicable and effective in making short-term predictions for chaotic time series than the multi-dimension embedding phase space method.



Guichao Yang et al. developed a multilayer neural network adaptive control algorithm for disturbance compensation in nonlinear systems. The work remarks that this developed algorithm can also be used simultaneously for nonlinear systems with mismatched uncertainties. Additionally, an extended state observer was employed to estimate the exogenous disturbance and predict the system’s state [179]. In extension, the authors presented the integration of a full-state feedback control algorithm, adaptive neural network, and extended state observer to handle the unknown nonlinear dynamics and external disturbances. In addition, the output feedback control algorithm was combined with an adaptive neural network, extended state observer, and nonlinear disturbance observer to estimate the unknown nonlinear dynamics, unmeasured states, and external disturbances [180]. In both works, a double-rod hydraulic servo system was chosen to validate the two control schemes’ high-performance control effect. The authors also introduced a neuroadaptive learning method for disturbance rejection in constrained nonlinear systems. Moreover, the neural network adaptive control and the extended state observer to estimate endogenous uncertainties and external disturbances in real time and correct them feed-forwardly were presented in [181]. Further, the filtering problems and nonlinearity of the input were accounted for by adding an auxiliary system. Finally, the overall closed-loop stability was precisely ensured, and the accomplished control performance was validated by real-time nonlinear systems application results.



Another forecasting method known as delay-based ANN for predicting the turbulent flow temporal signals was proposed in [32]. These signals are obtained from a hot wire anemometer at a single point inside the cylinder to detect coherent structures. In [34], the authors presented the RBFNN model for forecasting the time series of the logistic map, Henon map, Mackey–Glass, and Duffing’s systems. In [36], the researchers developed the recurrent predictor neural network model for predicting the annual and monthly sunspot time series. The experimental results of the proposed model are better than the Kalman filter and universal learning network in terms of accuracy and RMSE. The authors of [39] developed the KIII-chaotic neural network for forecasting the multistep time series data on a benchmark system. In [40], the researchers presented the RNN for predicting the electricity price of the power system. The work highlights that this approach is equally relevant to Chinese electrical market data. In [43], the authors presented the RBFNN model for forecasting the Henon map, Lorenz map, four real-time series discharge data, and sea-surface temperature anomaly data collected from various rivers. The work remarks that this presented model can also be used for geological time series. In [48], the authors raised the time delay neural network method for predicting the future behavior of the solar activity. In [51], the researchers demonstrated the BPNN to forecast the multistep nonlinear time series of the diode resonator circuit. From the presented work, it is to be noted that the approach can also be used in other chaotic time series.



Qian-Li Ma et al. presented the evolving RNN model for the Lorenz series, logistic, Mackey–Glass, and real-world sunspots series [53]. The experimental results of the proposed model showed to be better than the boosted RNN. Bao Rong Chang and Hsiu Fen Tsai proposed an optimal BPNN model for time series of signal deviation in the stock market [55]. The proposed method is based on SVM and AR models. The experimental results of the proposed model showed better performance than the ARMA, RBFNN, and other models in terms of MAD. In [57], the authors developed the NARX neural network model for empirically predicting chaotic laser, variable bit rate, and video traffic time series of real-world datasets. The simulation results of the developed model reliably performed better than the Elman architectures. Further, the work highlights that this model can also be used for electric load forecasting, financial time series, and signal processing tasks.



Yagang Zhang et al. developed an ANN model for predicting the stochastic generating sequences in a chaotic unimodal dynamical system [58]. It is observed that the presented strategy can also be further applicable for applications such as DNA-based groupings, protein structure arrangement, and financial market time series. The authors of [61] proposed an ensemble ANN model for forecasting the turning points in the Mackey–Glass system. An expectation–maximization parameter learning algorithm for the developed model was used for probability threshold prediction during the out-of-sample validation. The experimental result from the system proves the viability of the proposed technique and shows better results than the ANN model alone. In [68], the work presented the RBFNN model to predict the Shanghai Composite index that is chaotic according to the phase diagram analysis. The proposed technique’s experimental results are better than the BPNN. In [78], the hybrid Elman–NARX neural network model is presented to chaotic systems, such as Mackey–Glass, Lorenz equations, and the real-life sunspot time series, for predicting the chaotic time series. The proposed method has performed more effectively and accurately than the AR model, GA, and fuzzy methods. Gao Shuang et al. presented the rough set neural network model for long-term wind power prediction [80]. The experimental results show that the rough set method has the least NMAE compared to the other three methods, the chaos neural network model, persistence model, and rough set neural network model. Another forecasting method for gas emission rate prediction, known as the global method based on the BPNN, was proposed in [83]. The proposed model showed good accuracy and stability predictions than the first-order weighted local prediction method. In [84], the researchers developed the chaotic RBFNN method for predicting the power systems’ short-term load. The results of the proposed method showed promising results better than conventional RBFNN. In [12], a chaos RBFNN method was presented for forecasting the gasoline engine intake flow’s transient condition. The simulation results showed more accuracy compared to conventional RBFNN.



In [101], the application of ANN in a chaotic dynamical system for forecasting embedded dimension and robust location was presented. In [103], the selecting and combining models with the SOM neural network model for long-term chaotic time series prediction from the Mackey–Glass equation, NN5 tournament, AR model, and sine function were presented. It is to be noted that this model can be used to assess the selected outcomes of the modeling techniques by considering the best-predicted SMAPE. In [21], the MLP model for enhancing the accuracy of a flood prediction through machine learning and chaos theory was presented. The experimental results of the proposed method performed better than the Elman-RNN method. It is to be noted that this concept is also applicable to sensors, allowing for more individual action in severe conditions. Further, the idea can also lower the system’s total operational costs and ensure next-generation power grids’ effective and reliable functioning. In [182], the authors developed a hybrid machine learning technique for forecasting the time series of NN5 using the nearest trajectory model, one-year-cycle model, and neural network. In [128], the self-adaptive chaotic BPNN algorithm was proposed based on Chebyshev’s chaotic map for predicting the electrical power system’s load. The presented algorithm results showed better global optimization performance than conventional BPNN, RBFNN, and Elman networks. The work highlights that the chaotic neural network regression using the probability density forecast method can predict the electricity demand. In [131], the deep CNN model was proposed for forecasting Lyapunov exponents from observed time series in discrete dynamical systems. In [157], the authors presented the RNN-based LSTM model to predict the mutation rate in a human body affected by COVID-19. The proposed approach can be extended further by inserting and deleting mutation rates in the model.



The authors of [162] presented the Deep CNN model using meteorological data to forecast flight delays. The results of Deep CNN showed to be better than the CNN, which is proven in terms of weight gradient error and hidden layer error. The authors of [168] presented the LSTM neural network model to forecast the delay time in a chaotic optical system and compared the model with the delayed mutual information method and autocorrelation function method. It is worth noting that the proposed model can also enhance the security and maturity of optical chaos secure communications. In [183], the authors presented a LSTM-based forecasting model by integrating ensemble and reinforcement learning techniques. Further, an adaptive gradient algorithm was used to train the network and validated on the Lorenz, Duffing, and Rössler systems. The authors of [184] developed a FFNN-based prediction model to estimate the change in future state values of a Rössler system. In [169], the authors presented a gate recurrent unit-based Deep RNN model to forecast time series of three chaotic systems, (i) Lorenz, (ii) Rabinovich–Fabrikant, and (iii) Rössler, which showed better performance than the LSTM-based Deep RNN model. This model can also be used for real-time applications to predict the hyper-turbulent frameworks to control the turbulence or synchronize the framework model.




3.2. Fuzzy with ANN-Based Forecasting Approaches


FNN is a hybrid network developed using ANN’s learning ability and fuzzy logic’s noise handling capability. The architecture of the FNN is also shown in Figure 4. The figure shows that the network has four layers: the input layer, fuzzification layer, inference layer, and defuzzification layer (refer to the yellow dotted lines in Figure 4). FNN uses two approaches, namely (i) Mamdani and (ii) Takagi and Sugeno. Fuzzy logic is represented using the neural network’s structure and trained using either a BP or an optimization algorithm. The FNN is implemented in the following three ways:




	
Real inputs with fuzzy weights;



	
Fuzzy inputs with real weights;



	
Fuzzy inputs and fuzzy weights.








In [50], the authors developed the self-organizing Takagi and Sugeno-type FNN model for predicting the short-term traffic flow. The experimental results of the developed model showed to be feasible and more effective than RBFNN. In [54], the researchers developed the distributed chaotic fuzzy RBFNN method applied to fault section estimation in the distribution network. The simulation results of the developed strategy achieved better efficiency, learning ability, fault-tolerance, and low convergence rates than the BPNN model. On the other hand, in [66], the work presented a subtractive clustering-based FNN for forecasting the traffic flow and used the GA for deciding the clustering radius. Ding Guan-bin and Ding Jia-Feng introduced an adaptive neural network-based fuzzy inference system for predicting the monthly average flow in a hydrological station, which showed better results than the AR model [67]. The authors of [69] developed the fuzzy descriptor model integrated with singular spectrum analysis for predicting the various time series, including Mackey–Glass, Lorenz, Darwin sea level pressure, and the disturbance storm time index. The presented model results showed to be better than the MLP and RBFNN models. Another forecasting method known as the FNN model based on chaos theory for predicting the hydraulic pumps’ vibration signal was proposed in [75]. It is to be noted that this model can also be used to improve prediction accuracy by readjusting the minimal embedding dimension optimally. The dynamic recurrent FNN model used to predict the power systems’ short-term load was developed in [76]. It was proved that the developed model’s convergence rate and forecasting accuracy are enhanced compared to the conventional FNN model. In [97], the researchers presented the interval type-2 fuzzy cerebellar model articulation controller for forecasting the Henon system of chaotic time series and the chaos synchronization of the Duffing–Holmes system. The proposed model of simulation results showed to be better than the FNN and interval type-2 FNN.



In [104], the researchers proposed the saliency back-emf-based wavelet FNN model for a torque observer, using a new maximum torque per ampere control for forecasting the speed of a sensorless interior permanent magnet synchronous motor. In [110], the authors presented the embedding theorem-repetitive fuzzy method for predicting the time series data of Mackey–Glass, Lorenz, and sunspot numbers. The proposed model’s experimental results provided better forecasting than the simple fuzzy, adaptive neuro-fuzzy inference and other models in terms of error indices. Qinghai Li and Rui-Chang Lin presented the self-constructing recurrent FNN model for forecasting the logistic and Henon time series [112]. The proposed model had a worthier performance in convergence rate and forecasting accuracy than the self-constructing FNN. The authors of [117] presented the interactively recurrent fuzzy functions model for predicting the time series data of Lorenz, Mackey–Glass, and real-time lung sound signal modeling. The benchmark and real-time models’ results showed to be better than the recurrent networks, such as fuzzy WNN, self-evolving FNN, ESN, and LS. Luo Chao and Wang Haiyue presented the application of



	
Generalized zonary time-variant fuzzy information granule;



	
LSTM mechanism with FNN model.






For Zurich monthly sunspot numbers, Mackey–Glass time series, and daily maximum temperatures in Melbourne were used for predicting the granules [141]. The results of the proposed methods showed better performance than the AR and nonlinear AR neural network models. In [176], the researchers presented the adaptive RBFNN model for forecasting the online vehicle velocity, showing better prediction accuracy and computational efficiency than the LSTM, NARX, and deep neural network models.




3.3. Optimization Algorithms with ANN-Based Forecasting Approaches


The authors of [29] developed the temporal difference GA-based reinforcement learning neural network model to predict and control two chaotic systems, i.e., the Henon map and the logistic map. The advantage of the proposed concept is that it can apply directly to control chaotic physical systems in real-world models. Mohammad Farzad et al. proposed the GA for forecasting the Mackey–Glass chaotic time series, and the model showed better performance than the ANN and polynomials methods [47]. The proposed model may also be used to forecast any other chaotic systems. In [71], a modified bee evolution using a PSO-based chaotic neural network model was presented to predict the load in the power system. The proposed model’s simulation results showed better outcomes than the PSO algorithm used to develop the power system’s proper planning and has good prospects. In [96], a hybrid approach using the chaotic self-adaptive PSO algorithm and BPNN was presented to forecast the polymers’ gas solubility. The proposed model is reliable, accurate, and practicable for analyzing and designing polymer processing technology, compared to PSO-tuned BPNN models. It is to be noted that the proposed approach can also be further extended to tackle actual difficulties. The chaotic PSO tuned ANN model was presented in [102] to forecast air quality by predicting the particulate concentration. It is to be noted that this model can also be used to prove the meteorological condition of wind speed, which has a significant effect at urban intersections for specific matter concentrations. In [107], the researchers developed the improved GA for forecasting the synchronous parameters of chaotic time series to achieve higher accuracy and efficiency than GA alone.



The authors of [115] proposed the modified BPNN based on chaotically optimized GA and simulated annealing algorithms to forecast electrical energy demand in a smart grid. It is to be noted that this concept can also be relevant to lowering the system’s total operational costs and ensuring the effective and reliable functioning of next-generation power grids. Akhmad Faqih et al. developed the extreme learning mechanism using RBFNN and SOM models to predict the multistep ahead time series of Lorenz’s chaotic system [133]. It is to be noted that this proposed model can also combine with several behaviors to provide the best behavior. In [135], the researcher presented the GA and LS-based SVM method to control fractional-order systems, which achieved better effectiveness and feasibility than the conventional LS-based SVM. The authors of [139] proposed the principal component analysis using the chaotic immune PSO tuned GRNN for forecasting the corrosion of circulating cooling water in a petrochemical enterprise. The approach achieved better forecasting accuracy and convergence speed than the traditional PSO-tuned GRNN model. The advantage of the proposed model is that it can also be employed to forecast other nonlinear systems. In [147], the authors proposed the chaotic PSO algorithm for predicting the mobile location and achieved better location accuracy and faster convergence rate than such algorithms as those of Chan, Taylor, and PSO. Ji Jin et al. developed the fractal dimension-based EMD method and GA tuned BPNN model for predicting the wind speed in wind farms by considering the atmospheric motions’ fractal feature [152]. The proposed models showed better performance than LSTM, GA tuned BPNN, and ensemble EMD-GA-BPNN. It is to be observed that this model can also require further study to optimize the computational time. It is also necessary to analyze the model on various time scales to decide the proposed models’ suitability to wind speed series on any timescale. Happy Aprillia et al. proposed the SSA tuned CNN for predicting the short-term power of PV systems [158]. The presented algorithm’s results showed better accuracy than the SSA tuned SVM and LSTM methods. Further, the work highlights that this proposed model can also address uncertainty, particularly for wet weather, heavy overcast weather, peak time, and forecasting on typhoon days. Shuzhi Gao et al. developed the soft sensor model using the CBAS algorithm and Elman neural networks to forecast the conversion rate of vinyl chloride monomer [171]. The developed model’s performance can be extended by utilizing the deep neural network approaches.




3.4. Wavelet NN-Based Forecasting Approaches


The merits of wavelet and neural networks are hybridized to form a new WNN to achieve better forecasting ability. WNNs have been used with great success in a wide range of applications. In some applications, it was proven that if the combination of a neural network and wavelet is used, the proposed model’s efficiency is increased. The WNN architecture also follows the same fashion as the network shown in Figure 4. However, in the hidden layer, wavelet basis functions are used as activation functions instead of the conventional function of the FFNN.



Antonis K. Alexandridis et al. proposed machine learning algorithms, namely wavelet network and genetic programming, for forecasting the average temperature precisely when it comes to weather derivative pricing, compared to SVM and RBF [185]. Wei Wu et al. developed a WNN model for electricity-based chaotic time series data to predict the spot market prices [38]. In [45], the researchers proposed the WNN model and compared it with the BPNN model for single-step forecasting of Lorenz and Mackey–Glass chaotic time series. It is to be noted that this approach can be extended further to be used for real-world chaotic data. In [74,81], the authors proposed the forecasting models for wind farms. The wavelet decomposition method and ITSM in [74] showed an improved accuracy compared to ANN in predicting wind speed and power. Similarly, the developed hybrid algorithm using wavelet transform, chaotic theory, and grey model in [81] showed better prediction than the direct prediction method. The models in [74,81] can be further optimized and applied in various countries’ wind farms, such as the Dongtai wind farm in China. Bo Zhou and Aiguo Shi presented the phase space reconstruction-based WNN method to predict Henon and Lorenz’s chaotic time series [95]. The significant benefit of this proposed method over a WNN is the improvement in SMAPE. It is to be noted that this concept can also help optimize the process parameters and the execution time during the simulation. Tian Zhongda et al. presented the wavelet transform and multiple model fusion for forecasting the Lorenz and Mackey–Glass time series and achieved more effective performance in terms of SMAPE [120]. The models can be applied to real-world chaotic systems, such as geomagnetic series, network traffic series, etc. In [130], the ANN-discrete wavelet transform method was presented for forecasting the photovoltaic system’s power based on chaos theory. The significant benefit of this method over the ANN and ANN-phase space reconstruction is the improvement in the Theil index.




3.5. Other Approaches


The authors of [56] developed the generalized EKF for forecasting the Lorenz time series with various Bernoulli distribution probabilities, which achieved an acceptable prediction precision and good robustness. Xue-dong Wu et al. proposed the GPF and compared it with UKF and EKF to forecast the Mackey–Glass time series [73]. In [106], the researchers proposed the EKF-based MPSV method to estimate the transmitted signal in power line communications and confirmed the better efficiency than the inverse filter-based MPSV method. However, the real-time validation of the proposed approach is the research gap. In [129], the authors developed the equivalent model using EKF to predict the state of charge in power Li-ion batteries. Yijun Xu et al. proposed the polynomial chaos-based Kalman filter to predict the nonlinear system dynamics [146]. In [160], the authors presented the UKF for forecasting the parameters of the gray-box model for dynamic EEG system modeling and achieved the lowest RMSE compared to the particle filter and EKF.





4. Forecasting of Chaotic Time Series in Various Applications


As mentioned in Table 1, various parameters have been forecast in multiple applications using the machine learning-based approaches detailed in Section 3. The list of these forecasting parameters categorized into the different applications is given in Figure 5. The detailed description of these forecasting parameters using various approaches in various fields is explained underneath.



4.1. Power and Energy


This section describes power and energy forecasting techniques, using various chaotic time series approaches applied in wind farms, solar, photovoltaic systems, etc.



4.1.1. Wind Farms


Many applications of wind power and speed forecasting approaches have been developed based on chaotic characteristics or chaotic time series and applied on various wind farms. For instance, the statistical type of forecasting approaches for predicting wind power, speed, and load for short-term and long-term wind power, speed, and load prediction in Beijing in China are as follows:




	
ITSM with wavelet decomposition method [74];



	
SVM [16];



	
Rough set neural network [80];



	
BFA tuned double-reservoir ESN [166].








The approaches, as mentioned earlier, showed good short-term and long-term performance, but the computational complexity is high to complete the task. Similarly, many other works have been attempted to predict weather conditions for wind farms whose operations are more complex.



Various researchers have proposed hybrid prediction methods to enhance accuracy. These approaches were made by integrating the following:




	
Wavelet transforms with chaotic time series and grey model [81];



	
Hilbert–Huang transforms with Hurst analysis [108];



	
Hybrid neuro evolutionary [175].








The hybrid approaches mentioned above with multistep chaotic characteristics were validated for short-term forecasting of wind power at the Dongtai wind farm and Hebei province in the east of China. The work highlights that EMD-based combined forecasting methods can improve short-term forecasting accuracy based on their characteristics. The surrogate data technique and spectral analysis methods are applied to forecast wind wave height, period, and direction for three-hourly chaotic time series from three stations in the Caspian’s southern, central, and northern parts of the sea [109]. The hybrid approach developed using ensemble EMD-sample entropy and the full parameters continued fraction model were developed for predicting the wind power of farm location at Xinjiang, China [119]. Moreover, the Markov chain switching regime model developed in [144] used hourly, short-term, and long-term chaotic time series data for predicting wind speed and direction of the farm located at Bonneville Power Administration control area in the Northwest USA. It is to be noted that these proposed approaches can also be used for the proper planning and scheduling of wind power. The self-adaptive and artificial intelligence type forecasting techniques for predicting the wind speed are as follows:




	
Fractal dimension-Lorenz stenflo-Ensemble EMD;



	
GA tuned BPNN model;



	
Empirical dynamical model [152,165].








For short-term prediction of wind speed considers the atmospheric motion and fractal feature at Abbotsford in Canada, and Kansas and Missouri in the USA. It is to be noted that better results can be generated using exogenous variables in the ANN approach.




4.1.2. Solar and Photovoltaic Systems


The recurrent predictor neural network model presented in [36] is based on an extended algorithm of self-adaptive BP through a time learning algorithm for predicting the annual sunspot time series in Skylab. Similarly, the time-delay neural network model [48] and the multi-layered neural network-based co-evolutionary algorithm [52] are used for predicting the annual sunspot time series of the space laboratory launched by the USA in 1973 and the sunspot index data center in Belgium, respectively. The ANN-based discrete transform using chaos theory [130], ensemble EMD based on optimized chaotic phase space reconstruction [155], SSA tuned CNN [158], and CGO [172] are used for predicting the power, voltage, and current of PV system in Beni Mellal, Morocco, St Lucia campus PV station, Australia. The k-fold cross-validation with GRNN reported in [134] is used for predicting the accuracy of sunspot under different embedding dimensions for phase space reconstruction of chaotic time series according to the Takens theorem in the Solar Influences Data Analysis Center, Belgium.




4.1.3. Other Power Systems


Under certain circumstances, chaos in an electrical power system can show abnormal oscillations, threatening the electrical grid’s reliability and stability. Because of the nonlinearities of electricity networks, chaos theory is a high priority. Hence, the application of chaos theory and several forecasting approaches to improve the accuracy and reliability of load forecasting. The proposed forecasting approaches for predicting the electrical daily peak load of the power systems, such as South Korea Electric Power Corporation, Daqing oilfield company in China, New South Wales in Australia, and North China city, are as follows:




	
ANN [26];



	
Bee evolution modifying PSO tuned chaotic neural network [71];



	
Adding-weighted LLE [72];



	
Dynamic recurrent FNN [76];



	
Chaotic RBFNN [84];



	
Chaotic local weighted linear forecast algorithm based on angle cosine [88].








The self-adaptive chaotic BPNN and parallel chaos algorithm reported in [128], and [118], respectively, are used for forecasting the short-term electrical power load in the China network. The limitations of the proposed approaches are eliminated with the application of hybridized chaotic RBFNN-quantile regression model for forecasting the weather, seasons, wind power, and electricity price. The hybrid forecasting approaches developed for predicting the dynamic characteristics of electricity are the wavelet decomposition methodology [120], variational mode decomposition-maximum relevance minimum redundancy based BPNN-LS-SVM [156], and short- and medium-term load in the Xi’an power grid corporation, China.



Short-term electricity price forecasting has become crucial in the power markets, as it allows for the foundation for market participants’ profit maximization. The proposed methods for forecasting the short-term electricity spot market prices and the marginal price at the New England and California electricity markets in the USA are as follows:




	
Nonlinear auto-correlated chaotic model-based WNN [38];



	
RNN [40];



	
LS-SVM algorithm [60];



	
Add-weighted one-rank multi-steps prediction model [63].








The generation companies can decide on scheduling generators and provide high-quality power services to customers. Thus, the validation algorithm presented in [93] is based on the voltage sensor applied to a DC zonal shipboard electric power system, using decentralized polynomial chaos theory for the sensor validation decentralized state prediction. In addition, it is to be reported that the presented conventional algorithms were improved using artificial intelligence techniques. The independent component analysis method reported in [94] for predicting the amplitude and frequency of highly chaotic distorted power system signals is presented based on duffing oscillator solutions. The proposed approach can be used for the real-time control and measurement of the fundamental frequency of a power system while focusing mainly on chaotic disturbances. The maximum velocity criterion method, sinusoidal wave frequency modulation, and chaotic control algorithm are for forecasting the chaos and suppressing the predicted chaos to increase the security for cyber–physical power systems [112]. The modified BPNN, chaos-search GA, and SA algorithms are applied to predict a smart grid’s short-term electrical energy demand in New South Wales, Australian grid [115]. The proposed approach can also lower the system’s total operational costs and ensure the next-generation power grids’ effective and reliable functioning. The polynomial chaos expansion-based Langevin Markov chain Monte Carlo and multi fidelity-surrogate-based Bayesian inference via adaptive importance sampling predict decentralized dynamic parameters, such as inertia, exciter gains, damping ratio, and the droop of the synchronous generator in New England, USA [138,151].





4.2. Hydrological Systems


The RBFNN model is developed to estimate the Mekong River’s nonlinear hydrological time series in Thailand and Laos, the Chao Phraya River in Thailand, and sea-surface temperature anomaly data [43]. In addition, the presented approach can also be applied to other geological time series. In [67], an adaptive fuzzy inference-based neural network model is developed to predict the medium- and long-term hydrological residual time series. The data are collected from the Guantai hydrological station, Zhang River, China. An empirical, statistical, and chaotic nonlinear dynamic model in [19] was applied to forecast the stream water temperature from the available solar radiation and air temperature in the Lake Tahoe basin, California, Nevada, USA. The chaotic FNN for predicting the hydraulic pump’s vibration signal was presented in [75]. It is to be reported that the proposed approach can be extended further to improve prediction accuracy by readjusting the minimal embedding dimension optimally. The coupled quantity–pattern similarity model reported in [18] predicts the monthly precipitation of hydrological systems in the Danjiangkou reservoir basin, China. The proposed approach can also be applied to time series with various lead time scales.




4.3. Communication Signals and Systems


The complex weighted neural network algorithm in [25] solves the principal component analysis problem and high-resolution adaptive bearing prediction. The proposed approach is especially effective in circumstances where the hermit matrix progressively changes over time due to adaptive tracking. The BPNN tuned SVM grey model in [55] is used for forecasting the signal deviation time series. The anchor selection method is based on polynomial chaos expansions [86] for angle-of-arrival prediction-based positioning systems. The chaos algorithm in [92] is proposed for forecasting the radio wave propagation in the ionosphere. The proposed algorithm can also forecast a set of radio transmission signals at a fading amplitude time series location. The phase space reconstruction-LS-SVM in [98] is developed to predict FM radio’s band occupancy rate in German Rohde, Schwarz company, and fixed radio monitoring station of Xihua University, USA. The proposed approach can be extended further to improve multistep time series prediction. The minimum phase-space volume-EKF equalization method presented in [106] is for forecasting the chaos in power line communications. The LLE, Higuchi’s fractal dimension, and sample entropy techniques are used for predicting the fractals, chaos, and parametric entropy features of surface electromyography signals during dynamic contraction of biceps muscles under a varying load [127]. The proposed process can also be helpful in physiotherapy and athletic biomechanics for testing muscular fitness. A deterministic chaotic sequences method is developed to forecast quadrature baseband signals and orthogonal frequency division multiplexing-based cognitive radio channel [137]. The proposed approach can also be applicable to bit error rate performance, which is projected to improve if an appropriate power management method is used.




4.4. Oil and Gas


The global prediction method uses a BPNN model for forecasting the gas emission rate in the Hegang Nanshan mine located in China [83]. The proposed model showed better step, accuracy, and stability predictions. The improved Duffing oscillator chaotic traffic prediction model in [85] was developed for coal gas’ traffic flow prediction for a coal mine. The proposed approach can also increase signal detection accuracy. The chaos RBFNN method in [12] predicts the intake airflow of the gasoline engine. The coal mine ventilation systems’ management technology reported in [17] can predict the gas concentration in Jining, Shandong, China. As a result, the system can provide reliable assurance for mine safety production.




4.5. Other Systems


The multistep time series prediction in diode resonator circuits is made by integrating the nonlinear signal prediction method with a BPNN [51]. The proposed approach can be extended further to be used in other chaotic time series. The integration of nonlinear time series analysis and backpropagation MLP for multistep nonlinear time series forecasting of chaotic diode resonator circuits was reported in [59]. The distributed chaotic fuzzy RBFNN is exploited for distributed network fault section prediction [54]. The global prediction of chaos method forecasts the chaotic instantaneous generator output power in Liaoning province in China [20]. The chaotic adding-weight dynamic local predict model predicts the pseudo-random number generator of the initial sequence number in the transmission control protocol stack [62]. The chaos-based Rivest Shamir Adleman algorithm and chaos-based random number generator forecast the security vulnerabilities of the cryptosystem [142].





5. Performance Measures


This section discusses the various performance measures used for chaotic time series forecasting approaches. According to the literature review summary in Table 1, it can be concluded that there are many approaches for chaotic time series forecasting. However, it is challenging to choose one proposed method that performs better based on the performance measures. Table 1 also shows that the researchers have evaluated the performance of the forecasting approach using various statistical errors. The different classifications of statistical performance measures used for chaotic time series forecasting are mean, relative, percentage, prediction, and coefficients. The classification and its subcategories are shown in Figure 6. The formula for computing these performance measures is demonstrated in Figure 7. In Figure 7, n denotes the number of samples, and   Y  a , i    and   Y  p , i    are the actual and predicted outputs by the chaotic time series forecasting model. Further,    Y ¯  a  , and    Y ¯  p   are the averages of   Y  a , i    and   Y  p , i   .



As shown in Figure 6 and Figure 7, most of the performance measures used for chaotic time series forecasting are mean errors. Further, the review summary in Table 1 shows that MSE and its variants are the most widely used performance measures for chaotic time series forecasting. The MSE and its variants measure the error between   Y a   and   Y p  , and the closest value to zero indicates a better estimation of the forecasting approach [186,187]. After mean errors, the percentage errors are the second most used performance measure for chaotic time series forecasting. The percentage errors measure the percentage error between   Y a   and   Y p  . The closer values of percentage error to zero also indicate a better estimation of the forecasting approach. On the other hand, the coefficient of determination R   2   is most widely used to indicate the forecasting approach’s predictive ability in fitting the actual data   Y a   [188,189]. Thus, the values of R   2   range from zero to one, and the value equal to 1.0 indicates a perfect fit. The summary in Table 1 also shows that most of the researchers used a combination of different performance measures for evaluating the forecasting approach. The combinations are MAE, MAPE, and RMSE; MSE, MAPE, and RMSE; MAE and RMSE; MSE and RMSE; R   2   and MSE; R and MSE, etc.




6. Conclusions


This article reviewed various approaches for chaotic time series forecasting based on machine learning in multiple areas, such as wind farms, PV systems, hydrological systems, communication signals and systems, oil and gas, and other systems. At the beginning of this paper, the chaotic system/time series and the importance of chaos forecasting were introduced. Next, the various machine learning-based chaotic time series forecasting approaches were presented. These approaches use WNN, FNN, CNN, LSTM, and Markov chain models. Then, a review of the prediction of various parameters in multiple applications using machine learning-based techniques is presented. This review concludes that traditional prediction methods can hardly obtain satisfactory results. Hence, many chaotic time series prediction methods were developed using machine learning-based approaches, which enhanced their efficiency and accuracy.



6.1. Findings


This review summarizes the findings of various approaches developed for multiple applications as follows:




	
The wavelet decomposition method predicted wind speed and power accurately and effectively using improved time series, chaotic time series, and grey models [74,81]. The false nearest neighbor analysis method forecast the chaotic behavior of the wind–wave characteristics, including wave period and height [109].



	
Hilbert–Huang transform and Hurst analysis is a proper choice to forecast the multi-scale chaotic characteristics of wind power [108]. In contrast, ensemble EMD and full parameters continued fraction is appropriate for predicting wind power’s nonlinear chaotic time series [119].



	
The empirical dynamic model presented in [165] forecast the wind speed for various height levels. At the same time, the fractal dimensional-based self-adaptive model for wind speed predicted atmospheric motion and fractal features [152].



	
The approaches such as the ordinary least square method [28], recurrent predictor neural network [36], hybrid Elman–NARX neural network [78], and embedding theorem-repetitive fuzzy [21] forecast the sunspot number (chaotic time series) effectively. In all these cases, the sunspot data were collected from the world data center for Belgium’s sunspot index.



	
The combination of chaos theory and techniques, such as ensemble EMD and CNN-SSA, effectively forecast the PV system’s output power under certain conditions, such as rainy, heavy cloudy, lightly cloudy, and sunny conditions [155,158]. The data were collected from the St Lucia campus PV station, Australia, in all these cases.



	
The integration of the BPNN with GA, SA algorithms [115], parallel chaos [118], wavelet decomposition-based methods [120,157] was successfully used to forecast the deregulated power system’s short-term electrical energy demand. These methods help in proper economic power dispatching with an enhanced demand response that assists in efficient spot price-fixing in the deregulated power market.



	
The regression analysis models using ANN and chaotic nonlinear dynamic [73] and coupled quantity-pattern similarity [18] were validated to predict the stream water temperature and monthly precipitation.



	
The minimum phase space-based EKF method was used to forecast the blind equalization in power line communication systems to overcome channel noise [106].



	
The response surface-based Bayesian inference [149] and PCE-based hybrid MCMC [163] approaches were used to predict the generator’s dynamic parameters, such as inertia, exciter gains, damping ratio, and droop.



	
The independent component analysis method in [94] adequately estimated the amplitude and frequency of power systems’ highly distorted signals to avoid the ferroresonance effect.



	
The Markov chain switching regime model enhanced the precision accuracy and is helpful for wind power forecasting during scheduling and planning [144].









6.2. Future Directions


This comprehensive review helped open up new scopes in the field of chaotic time series forecasting approaches in various applications and is highlighted underneath.



	
Chaotic time series analysis and SVM can estimate short-term wind speeds while considering weather conditions and more complex scenarios of wind farm operations [16].



	
To the dispersed power resource system, the wind power generation unit can be connected to the grid of this system through high-quality forecasting of the parameters using the Jacobian matrix estimate method and weather data optimal points using deterministic chaos [104].



	
EMD-based forecasting approaches can increase short-term wind power prediction accuracy based on their behavior characteristics. Furthermore, the relationship between different scale subsequences and numerical weather forecasting can improve the accuracy of this short-term wind power forecasting [108].



	
The hybrid neuro evolutionary approach, i.e., adaptive variational mode decomposition-AOA-LSTM proposed for wind farms, has employed multiple outlier identification methods with optimization and decomposition procedures to improve forecasting outcomes [175]. This method can also be adaptable to other geographies.



	
The independent component analysis method can be extended for real-time monitoring and controlling the power system’s fundamental frequency with an appropriate time delay between observed data frames [94].



	
The precision accuracy of the response surface-based Bayesian inference method proposed for the power systems to predict the dynamic parameters has to be improved when there is a substantial outrageous deviation in the boundaries [149].



	
The coupled quantity pattern similarity model proposed for the prediction of monthly precipitation can also be applied to the time series with different lead time scales [18].



	
The hybrid algorithms proposed using CNN and wavelet transforms for predicting the chaotic time series of Chen, Lorenz, Mackey–Glass, and sunspot numbers can also be used for real-time series, such as geomagnetic, network traffic, and weather systems [13,170].



	
The forecasting accuracy of an online vehicle velocity prediction approach proposed using adaptive RBFNN can be enhanced using additional data, such as driving time, climate, gas, and brake pedals [176].
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Abbreviations


The following abbreviations are used in this manuscript:



	ACF
	Auto correlation function



	ANN
	Artificial neural networks



	AOA
	Arithmetic optimization algorithm



	APE
	Absolute percentage error



	APSK
	Amplitude phase shift keying



	AR
	Autoregressive



	ARE
	Average relative error



	ARIMA
	Autoregressive integrated moving average



	ARMA
	Autoregressive moving average



	ARMSE
	Average root mean square error



	BFA
	Bacterial foraging algorithm



	BP
	Backpropagation



	BPNN
	Backpropagation neural network



	CBAM
	Convolutional block attention module



	CBAS
	Chaos beetle antennae search algorithm



	CCO
	Cluster chaotic optimization



	CGO
	Chaos game optimization



	CMSE
	Cumulative mean square error



	CVRMSE
	Coefficient of variance of the root mean square error



	DCSK
	Differential chaos shift keying



	DMI
	Delayed mutual information



	EKF
	Extended Kalman filter



	EMD
	Empirical mode decomposition



	ESN
	Echo state network



	FFNN
	Feed-forward neural network



	GA
	Genetic algorithm



	GPF
	Gaussian particle filtering



	GRNN
	Generalized regression neural network



	GWO
	Grey wolf optimization



	HBO
	Honey bee optimization



	HEA
	Hybrid evolutionary adaptive



	HFD
	Higuchi’s fractal dimension



	IGWO
	Improved grey wolf optimizer



	ITSM
	Improved time series method



	LLE
	Largest Lyapunov exponent



	LLNF
	Locally linear neuro-fuzzy



	LS
	Least square



	MAD
	Mean absolute deviation



	MAE
	Mean absolute error



	MAPE
	Mean absolute percentage error



	MARE
	Mean absolute relative error



	MCMC
	Monte Carlo Markov chain



	MLE
	Machine learning ensembles



	MLP
	Multilayer perceptron



	MMSE
	Minimum mean square error



	MPSV
	Minimum phase space volume



	MRE
	Mean relative error



	MRFO
	Manta ray foraging optimization



	MRPE
	Maximal relative percentage error



	MSD
	Mean squared deviation



	MSE
	Mean squared error



	MSLE
	Mean squared logarithmic error



	MSP   d  E
	Mean squared prediction error



	NARX
	Nonlinear autoregressive exogenous model



	NMAE
	Normalized mean absolute error



	NMAPE
	Normalized mean absolute percentage error



	NMSE
	Normalized mean square error



	NRMSE
	Normalized root mean square error



	NWP
	Numerical weather prediction



	PCR
	Principal component regression



	PCS
	Polynomial chaos surrogates



	P   d  E
	Prediction error



	PE
	Percentage error



	PID
	Proportional–integral–derivative



	PLS
	Partial least square



	PRE
	Percentage relative error



	PSO
	Particle swarm optimization



	PV
	Photovoltaic



	QAM
	Quadrature amplitude modulation



	R
	Coefficient of correlation



	R   2  
	Coefficient of determination



	RBF
	Radial basis function



	RBFNN
	Radial basis function neural network



	RE
	Relative error



	RMSE
	Root mean squared error



	RNN
	Recurrent neural network



	RR
	Ridge regression



	RRMSE
	Relative root mean squared error



	SA
	Simulated annealing



	SMAPE
	Symmetric mean absolute percentage error



	SOM
	Self-organizing map



	SSA
	Salp swarm algorithm



	SVM
	Support vector machine



	TCN
	Temporal convolutional network



	TLBO
	Teaching–learning-based optimization



	TTLS
	Truncated total least squares



	UKF
	Unscented Kalman filter



	ULN
	Universal learning network



	YCO
	Yield-constrained optimization
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Figure 1. Decade-wise research contributions to chaotic time series forecasting from 1992 to 2021. 
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Figure 2. Locations of real-time data collected from various parts of the world. 
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Figure 3. Summary of multiple techniques developed using ANN, FNN, WNN, and optimization-based approaches for chaotic time series forecasting. 
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Figure 4. Architecture of various neural networks. 
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Figure 5. List of forecasting parameters categorized into the different applications. 
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Figure 6. Classification of various performance measures used for chaotic time series forecasting. 
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Figure 7. Formula for computing the various performance measures. 
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Table 1. Summary of works focused on chaos forecasting using machine-learning-based approaches.
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	Ref., Year
	Country
	Journal/ Conference
	Forecasting Approach
	Application
	Forecasting Parameter(s)
	Comparison Techniques
	Performance Measures
	Data





	[25], 1992
	China
	IEEE Conference
	Complex weighted neural network
	Music formula
	Arrival direction
	–
	–
	–



	[26], 1996
	South Korea
	IEEE Conference
	ANN
	Power system
	Daily peak load
	–
	MAPE
	South Korea electric power corporation



	[27], 1998
	China
	IEEE Conference
	Embedding phase space using RNN
	Mackey-Glass model
	Time series
	–
	MSE
	–



	[28], 1998
	Norway
	Physica D: Nonlinear Phenomena
	Ordinary least square method
	Sunspot, R-R intervals of human ECG signals
	Time series
	PCR, PLS, TTLS, RR
	NRMSE
	–



	[29], 1999
	China
	IEEE Transactions on Neural Networks
	Temporal difference GA based reinforcement learning neural network
	Henon map, Logistic map
	External reinforcement signal
	–
	Prediction error
	–



	[30], 2000
	China
	IEEE Conference
	Novel noise reduction
	Chaotic interference
	Frequency
	–
	Residual error
	–



	[31], 2001
	Australia
	IEEE Conference
	Standard Gaussian approximation
	Asynchronous DS-CDMA systems
	Accuracy
	Improved GA
	–
	–



	[32], 2001
	Spain
	IEEE Conference
	ANN
	Hot wire anemometer
	Turbulent flow temporal signals
	–
	MSE
	–



	[33], 2002
	UK
	IEEE Conference
	Gaussian processes
	Henon map
	Time series
	SVM
	NMSE
	Far infrared-laser



	[34], 2004
	Iran
	Chaos, Solitons and Fractals
	RBFNN
	Logistic map, Henon map, Mackey-Glass model
	Time series
	-
	MSE, NMSE
	–



	[35], 2004
	Canada
	IEEE Transactions on Biomedical Engineering
	ANN
	Silico model
	Onset of state transitions
	–
	–
	–



	[36], 2004
	China
	IEEE Transactions on Signal Processing
	Recurrent predictor neural network
	Sunspot number
	Time series
	Kalman filter, ULN
	RMSE, PE
	–



	[37], 2004
	China
	Chemical Engineering Science
	Chaotic forecasting
	Evaporator with two-phase flow
	Heat-transfer coefficient
	–
	ARE
	–



	[38], 2004
	China
	IEEE Conference
	WNN
	Electricity
	Spot market prices
	–
	MSE, APE
	South china



	[39], 2004
	China
	IEEE Conference
	KIII-chaotic neural network
	IJCNN CATS benchmark test data
	Time series
	N-based method
	MSE
	IJCNN’O4 CATS benchmark set



	[40], 2005
	China
	IEEE Conference
	RNN
	Power system
	Price
	–
	Mean and maximum percentage errors
	New England electricity market, USA 1



	[41], 2005
	China
	IEEE Conference
	SVM
	Market price
	Exchange rate
	ANN
	MSE
	–



	[42], 2005
	Japan
	IEEE Transactions on Circuits and Systems
	Master–slave synchronization scheme
	FitzHugh–Nagumo model, Chua’s oscillator
	Chaotic behavior
	–
	Prediction error
	–



	[43], 2006
	Italy
	Hydrological Sciences
	RBFs
	Henon map, Lorenz map, Sea-surface temperature
	Time series
	–
	CMSE
	Mekong river in Thailand and Laos, Chao phraya river in Thailand



	[44], 2006
	China
	IEEE Conference
	Sigmoid and wavelet hybrid transfer function
	ESN
	Memory capacity
	ESN predictor
	NRMSE
	–



	[45], 2006
	Mexico
	IEEE Conference
	WNN
	Lorenz system, Mackey–Glass model
	Time series
	BPNN
	MSE
	–



	[46], 2006
	Spain
	Physica D: Nonlinear Phenomena
	Discrete-time recursive update
	Lorenz system
	On-line parameter
	Maybhate’s technique, d’Anjou’s technique
	NMAE
	–



	[47], 2006
	Iran
	IEEE Conference
	GA
	Mackey-Glass model
	Time series
	ANN
	NMSE
	–



	[48], 2006
	Canada
	IEEE Conference
	Time delay neural network
	Solar system
	Number of dark spots
	Weight elimination FFNN, Dynamical RNN, Hybrid clustering
	NMSE
	Skylab, Solar influences data analysis center, Belgium 2



	[49], 2007
	South Korea
	IEEE Conference
	Terminal sliding mode controller
	Duffing, Lorenz systems
	Tracking error
	Classical sliding mode control
	MSE
	–



	[50], 2007
	China
	IEEE Conference
	Self-organizing Takagi and Sugeno-type FNN
	Traffic system
	Traffic flow
	RBFNN
	RMSE
	Zizhu Bridge in Beijing



	[51], 2007
	Greece
	IEEE Conference
	BPNN
	Diode resonator circuits
	Time series
	–
	RMSE
	–



	[52], 2007
	Iran
	IEEE Conference
	Co-evolutionary
	Solar system
	Sunspot number time series
	AR, Threshold AR model
	NMSE
	Solar influences data analysis center, Belgium 1



	[53], 2007
	China
	IEEE Conference
	Evolving RNN
	Lorenz, Logistic, Mackey–Glass, Real-world sun spots series
	Time series
	LLNF, Bidirectional RNN
	NMSE, RMSE
	Solar influences data analysis center, Belgium 1



	[54], 2008
	China
	IEEE Conference
	Distributed chaotic fuzzy RBFNN
	Distribution network
	Fault section
	BPNN
	–
	–



	[55], 2008
	China
	Expert Systems with Applications
	Optimal BPNN
	Signal deviation
	Time series
	Grey model, ARMA, RBFNN
	MAD, MAPE, MSE
	



	[56], 2008
	China
	IEEE Conference
	Generalized EKF
	Lorenz system
	Time series
	MLP network
	MSE
	–



	[57], 2008
	Brazil
	Neurocomputing
	NARX neural network
	Chaotic laser, Real-world video traffic
	Time series
	Time delay neural network, Elman RNN
	NMSE
	Chaotic laser, Variable bit rate video traffic time series



	[58], 2008
	China
	IEEE Conference
	ANN
	Unimodal surjective map system
	Generating sequences
	–
	PRE
	–



	[59], 2008
	Greece
	Engineering Applications of Artificial Intelligence
	Nonlinear time series analysis, BP-MLP
	Chaotic diode resonator circuits
	Time series
	–
	NMSE
	–



	[60], 2008
	China
	IEEE Conference
	LS-SVM
	Power system
	Marginal price
	BPNN
	APE, MAPE
	California electricity market, USA



	[61], 2008
	China
	IEEE Conference
	Ensemble ANN
	Mackey–Glass model
	Turning points
	Single ANN
	–
	–



	[62], 2008
	China
	IEEE Conference
	Chaotic adding-weight dynamic local predict model
	Pseudo random number generator
	ISN value
	–
	Scope error, Margin error
	–



	[63], 2008
	China
	IEEE Conference
	Add-weighted one-rank multi-steps prediction
	Electricity
	Price
	Mutual information, False neighbors methods
	Maximum percentage error, Average error
	–



	[64], 2008
	China
	IEEE Conference
	Hybrid accelerating GA
	River flow model
	Roughness parameter
	Standard binary-encoded and real-valued accelerating GA
	ARE
	Yangtse river upstream flow, China



	[65], 2008
	Greece
	Chaos, Solitons and Fractals
	Nearest neighbor
	Single transistor chaotic circuit
	Time series cross
	–
	–
	–



	[66], 2008
	China
	IEEE Conference
	Subtractive clustering based FNN modeling
	Traffic system
	Traffic flow
	BPNN, FNN
	MAE, MAPE, MSE, MSP   d  E
	–



	[67], 2009
	China
	IEEE Conference
	Adaptive neural network fuzzy inference system
	Hydrological stations
	Average monthly flow
	AR method
	PRE
	Guantai hydrological station of zhang river, China



	[68], 2009
	China
	IEEE Conference
	RBFNN
	Shanghai composite index
	Economic time series
	BPNN
	MAPE
	Shanghai composite index, China



	[69], 2009
	Iran
	Neural Computing and Applications
	Fuzzy descriptor singular spectral analysis
	Mackey–Glass, Lorenz, Darwin sea level pressure, Disturbance storm models
	Time series
	MLP, LLNF, RBFNN
	NMSE
	Darwin sea level pressure in Australia, Solar influences data analysis center, Belgium, US national oceanic and atmospheric administration 1



	[70], 2009
	Iran
	Chaos, Solitons and Fractals
	Levenberg–Marquardt learning
	Mackey–Glass model
	Time series
	–
	MSE, NMSE
	–



	[71], 2009
	China
	IEEE Conference
	Bee evolution modifying PSO chaotic network
	Power system
	Load
	PSO
	RMSE
	Daqing oil field company, China



	[72], 2009
	China
	IEEE Conference
	Adding-weighted LLE
	Grid
	Load
	Adding-weighted one-rank local
	Maximum and minimal relative errors, ARE
	Grid of New South Wales, Australia



	[19], 2009
	USA
	Journal of Hydrology
	Regression analysis, ANN, Chaotic nonlinear dynamic models
	Hydrological systems
	Temperature
	–
	R   2  , RMSE, MSE
	Lake Tahoe basin, California and Nevada, USA



	[73], 2010
	China
	IEEE Conference
	Gaussian particle filtering
	Mackey–Glass model
	Time series
	EKF, UKF
	Prediction error
	–



	[74], 2010
	China
	Renewable Energy
	Wavelet decomposition method, ITSM
	Wind farm
	Power, Speed
	BPNN
	MAE, MSE, MAPE
	–



	[75], 2010
	China
	IEEE Conference
	Chaos theory, FNN
	Hydraulic pump
	Vibration signal
	–
	APE, MSE
	–



	[76], 2010
	China
	IEEE Conference
	Dynamic recurrent FNN
	Power system
	Load
	FNN
	MSE
	North china city



	[77], 2010
	China
	IEEE Conference
	Parallel RBFNN
	Lorenz system, Hydraulic pump
	Time series
	RBFNN
	APE
	–



	[78], 2010
	China
	Neurocomputing
	Hybrid Elman–NARX neural network
	Mackey–Glass, Lorenz, Real life sunspot models
	Time series
	AR model, GA, Fuzzy
	MSE, RMSE, NMSE
	Solar influences data analysis center, Belgium 1



	[79], 2010
	China
	IEEE Conference
	Nonlinear AR
	Chaotic system
	Exchange rate
	BPNN, SVM model
	APE
	FX data of USD



	[16], 2010
	China
	IEEE Conference
	SVM
	Wind farm
	Speed
	ANN
	RRMSE
	–



	[80], 2011
	China
	IEEE Conference
	Rough set neural network
	Wind farm
	Power
	Chaos neural network, Persistence models
	NMAE
	Wind farm in Beijing area, China



	[81], 2011
	China
	Expert Systems with Applications
	Chaotic wavelet decomposition–Grey model
	Wind farm
	Power
	Direct prediction method
	MAPE, NMAE, NRMSE
	Dongtai wind farm, East China



	[82], 2011
	USA
	IEEE Conference
	Probabilistic collocation
	Power system
	Sparse grid points
	Monte Carlo method
	Measurement error
	NASA



	[83], 2011
	China
	Procedia Engineering
	Global prediction method based on BPNN
	Gas
	Emission rate
	First-order weighted local prediction method
	MSE, RMSE
	Hegang nanshan mine, China



	[84], 2011
	China
	IEEE Conference
	Chaotic RBFNN
	Power system
	Load
	RBFNN
	Absolute error
	–



	[85], 2011
	China
	IEEE Conference
	Improved duffing oscillator-chaotic traffic prediction model
	Coal gas
	Traffic flow
	–
	Peak-to-peak error
	Coal mine northwest edge router room, China



	[86], 2012
	France
	IEEE Conference
	Anchor selection based on polynomial chaos expansions
	Anchor
	Angle-of-arrival
	–
	RMSE, Median error
	–



	[87], 2012
	China
	Physics Procedia
	Mutative scale chaos optimization
	SVM parameters
	Chaotic time series
	Chaos optimization algorithm
	RMSE
	–



	[88], 2012
	China
	Systems Engineering Procedia
	Chaotic local weighted linear forecast algorithm
	Electricity
	Daily load
	Weighted first order local method
	ARE
	South china city



	[89], 2012
	China
	IEEE Conference
	Hierarchic ESN
	Lorenz, Sunspot, Yellow river annual runoff models
	Time series
	ESN
	RMSE
	–



	[90], 2012
	South Korea
	IEEE Conference
	MLP
	DC electric arc furnace
	Voltage, Current signals, Arc resistance
	RBFNN
	Autocorrelation
	DC electric arc furnace



	[91], 2012
	China
	IEEE Transactions on Systems, Man, Cybernetics
	H-infinity state estimation
	Discrete time chaotic systems
	H-infinity state
	EKF
	Estimation error
	–



	[92], 2012
	China
	IEEE Conference
	Chaos algorithm
	Radio wave
	Amplitude
	Traditional chaotic time series prediction method
	RMSE
	–



	[93], 2012
	Italy
	IEEE Conference
	Decentralized polynomial chaos theory
	Power system
	Voltage sensor validation
	Decentralized polynomial chaos theory
	Local covariance error
	–



	[94], 2013
	Turkey
	Electric Power Systems Research
	Independent component analysis
	Power system
	Amplitude, Frequency signals
	Zero-crossing, Discrete Fourier transform, Orthogonal filters, Kalman filter
	MSE
	–



	[95], 2013
	China
	IEEE Conference
	WNN with phase space reconstruction
	Lorenz, Henon models
	Time series
	WNN without phase space reconstruction
	SMAPE
	–



	[20], 2013
	China
	IEEE Conference
	Global prediction of chaos
	Generator
	Output power
	–
	PRE
	Thermal power plant in Liaoning province, China



	[12], 2013
	China
	IEEE Conference
	Chaotic RBFNN
	Gasoline
	Intake flow
	RBFNN
	MSD, MAE, ARE
	–



	[96], 2013
	China
	Fluid Phase Equilibria
	Self-adaptive PSO based BPNN
	Polymers
	Gas solubility
	BPNN, PSO-BPNN
	MSE
	–



	[97], 2014
	Taiwan
	IEEE Transactions on Cybernetic
	Interval type-2 fuzzy cerebellar model articulation controller
	Henon system
	Time series
	FNN, Interval type-2 FNN
	MSE
	–



	[98], 2014
	China
	The Scientific World Journal
	Phase space reconstruction-LS-SVM
	FM radio
	Band occupancy rate
	GA-LS-SVM, Monte Carlo-LS-SVM
	NMSE, RMSE, MAPE
	Fixed radio monitoring station of Xihua university, China



	[99], 2014
	China
	IEEE Conference
	Chaos elitism estimation of distribution
	Chaotic system
	Elitism strategy
	Estimation of distribution algorithm for large scale global optimization
	Standard deviation
	–



	[100], 2014
	Egypt
	Journal of the Egyptian Mathematical Society
	Adaptive chaos synchronization technique
	Hyperchaotic system
	System parameters
	–
	Error dynamics
	–



	[101], 2014
	Greece
	Simulation Modeling Practice and Theory
	ANN
	Chaotic dynamical system
	Embedding dimension
	–
	RMSE
	–



	[102], 2014
	Hong Kong
	Building and Environment
	ANN-chaotic PSO
	Air quality
	Particulate matter concentration
	Mulleven Levenberg–Marquardt
	R, MSE
	–



	[103], 2014
	Mexico
	IEEE Conference
	SOM tuned neural network
	Mackey–Glass, NN5
	Time series
	–
	RMSE, MAE, SMAPE
	–



	[104], 2014
	Japan
	IEEE Conference
	Jacobian matrix estimation
	Wind farm
	Speed, Power
	ANN, GA
	RMSE
	Japan meteorological agency, Aomori area, North of Honshu, Japan



	[105], 2014
	China
	Mathematical Problems in Engineering
	Generalized Liu system
	Chaotic secure communication, implementation of electronic circuits, numerical simulations
	Global exponential stability
	Weighted first order local method
	RMSE
	–



	[106], 2014
	Canada
	IEEE Transactions on Power Delivery
	Minimum phase space volume-EKF equalization
	Power line communications
	Blind equalization
	Inverse filter-based MPSV method
	MSE
	–



	[107], 2015
	China
	Journal of Engineering Science and Technology Review
	Improved GA
	Lorenz model
	Time series
	GA
	Percentage coordinate error
	–



	[108], 2015
	China
	Applied Energy
	Hilbert–Huang transform and Hurst analysis
	Wind farm
	Power
	EMD model, LS-SVM
	NMAE, NRMSE
	Wind farm of Hebei province, China



	[109], 2015
	Iran
	Ocean Engineering
	False nearest neighbor
	Wind farm
	Wave characteristics
	–
	–
	Port and maritime organization, Iran



	[110], 2015
	Iran
	Journal of Intelligent & Fuzzy Systems
	Embedding theorem-repetitive fuzzy
	Mackey–Glass, Lorenz, Sunspot number models
	Time series
	MLP gradient, Adaptive neuro fuzzy inference, AR, Fuzzy
	MSE, RMSE, NMSE
	Solar influences data analysis center, Belgium 1



	[21], 2015
	Brazil
	Neural Computing & Applications
	MLP
	Flood
	River level
	Elman-RNN
	MAE, RMSE, R   2  
	Urban rivers by means of wireless sensor networks



	[111], 2016
	China
	Journal of Parallel and Distributed Computing
	Maximum velocity criterion, Sinusoidal wave frequency modulation, Chaotic control using fuzzy
	Smart grid
	Chaos
	Raw smart grid
	–
	–



	[112], 2016
	China
	Mathematical Problems in Engineering
	Self-constructing recurrent FNN
	Logistic, Henon maps
	Time series
	Self-constructing FNN
	RMSE
	–



	[113], 2016
	China
	IEEE Conference
	Chaos RBFNN prediction
	Blast furnace
	Carbon-monoxide utilization ratio
	–
	RMSE
	–



	[114], 2016
	China
	Mathematical Problems in Engineering
	Chattering-free sliding mode control
	Power system
	Disturbances
	Nonlinear disturbance observer based sliding mode control
	Steady state error
	–



	[115], 2016
	Malaysia
	Neural Computing & Applications
	BPNN, Chaos search GA, Simulated annealing
	Smart grid
	Electrical energy demand
	ANN
	MAE, RMSE, MSE, MAPE
	Grid of New South Wales, Australian



	[116], 2016
	Russia
	IEEE Conference
	Guaranteed
	One-dimensional chaotic system
	Guaranteed state, Parameter
	LS method
	Measurement errors
	–



	[117], 2016
	Iran
	Journal of Intelligent & Fuzzy Systems
	Interactively recurrent fuzzy functions
	Lorenz, Noisy Mackey–Glass, Real lung sound signals
	Time series
	FNN, WNN, ESN, LS
	RMSE, PRE
	Department of pneumology in Shariati hospital collected by Amirkabir University’s researchers



	[118], 2016
	Italy
	Chemical Engineering Transactions
	Parallel chaos
	Power system
	Load
	ANN
	–
	East China power grid enterprise



	[119], 2017
	China
	Energy
	Ensemble EMD, Full-parameters continued fraction
	Wind farm
	Power
	HEA, MLE, RBF
	NRMSE, NMAE
	Farm in Xinjiang, China



	[13], 2017
	China
	Chaos, Solitons and Fractals
	Wavelet transform, Multiple model fusion
	Lorenz, Mackey–Glass models
	Time series
	Improved free search-LS-SVM, Direct superposition without Gauss–Markov fusion
	RMSE, MAE, SMAPE
	–



	[120], 2017
	China
	Renewable and Sustainable Energy Reviews
	Wavelet decomposition, EMD
	Electricity
	Electricity demand
	ANN, SVM
	–
	–



	[121], 2017
	China
	IEEE Conference
	RBFNN, Volterra filter
	Spacecraft system
	Spacecraft telemetry parameter
	–
	Absolute error, RE
	–



	[122], 2017
	China
	Chaos, Solitons and Fractals
	Recursive Levenberg–Marquardt
	Neural networks
	Chaotic time series
	On-line Levenberg–Marquardt algorithm
	MSE
	–



	[123], 2017
	South Korea
	Sustainability
	Inverse model, Chaos time series inverse
	Building energy management system
	Electric energy consumption
	SVM
	MAE, CVRMSE
	–



	[124], 2017
	China
	Computer Methods in Applied Mechanics and Engineering
	Fast initial solution prediction
	Sheet metal stamping
	Inverse isogeometric analysis
	One-step inverse finite element method
	–
	–



	[17], 2017
	China
	International Journal of Mining Science and Technology
	Coal mine ventilation systems management technology
	Coal mine
	Gas concentration
	–
	MSE
	Coal mine in Jining, Shandong, China



	[125], 2017
	Iran
	IEEE Conference
	Takens embedding theory
	Chaotic Henon map
	Time series
	Pyragas method
	Estimation error
	–



	[126], 2017
	New Zealand
	Wireless Communications and Mobile Computing
	Adaptive multiuser transceiver scheme
	DS-CDMA System
	Bit error rate
	Least mean square
	MMSE
	–



	[127], 2017
	India
	IEEE Conference
	LLE, HFD, SampEn
	Electromyography signals
	Chaos, Fractal dimension, Entropy
	Grassberger–Procaccia algorithm, Approximate entropy
	–
	–



	[128], 2018
	China
	Neural Computing & Applications
	Chaotic BPNN
	Power system
	Load
	BPNN, RBFNN, Elman, PSO-BPNN, RBFNN-Quantile regression
	MRPE, MAPE
	Electrical load data of a city in china network



	[129], 2018
	China
	IEEE Conference
	Equivalent circuit model, EKF
	Li-ion batteries
	State of charge
	–
	Estimation error
	–



	[130], 2018
	Morocco
	IEEE Conference
	ANN–Discrete wavelet transform
	PV system
	Power
	ANN, ANN–Phase space reconstruction
	MSE, MAPE, RMSE
	Photovoltaic park, faculty of science and technology, Beni Mellal, Morocco



	[131], 2018
	Russia
	IEEE Conference
	Deep CNN
	Discrete dynamic systems
	Lyapunov exponent
	–
	MAPE, MPE
	Russian central bank 1



	[132], 2018
	China
	Sensors
	SA
	Time series interferometric synthetic aperture radar
	Deformation
	–
	–
	Beijing area, china



	[133], 2018
	Indonesia
	IEEE Conference
	SOM extreme learning mechanism-RBFNN
	Lorenz system
	Multi-step ahead time series
	AR, ARIMA models
	Multiple correlation coefficient
	–



	[134], 2018
	China
	IEEE Conference
	Generalized regression neural network of k-fold cross validation
	Sunspot
	Time series
	RBFNN
	Least generalization error, Normalized error
	Solar influences data analysis center, Belgium 2



	[135], 2018
	China
	IEEE Conference
	GA-LS-SVM
	Fractional order systems
	Nonlinear function
	LS-SVM
	MSE
	–



	[136], 2019
	Indonesia
	IEEE Conference
	Roberts edge detection
	Weather
	Tornadoes
	–
	–
	–



	[18], 2019
	China
	Journal of Hydrology
	Coupled quantity–pattern similarity
	Hydrological application
	Monthly precipitation
	Local approximation prediction, Autoregressive models
	R, RMSE, MARE, MSE
	Danjiangkou reservoir basin, China



	[137], 2019
	Mexico
	IEEE Conference
	Superimposed chaos sequence
	Quadratic base band, Orthogonal frequency division multiplexing-based cognitive radio Channel
	Frequency
	Pilot design method, Wavelet pilot design
	–
	–



	[138], 2019
	USA
	IEEE Conference
	Polynomial chaos expansion–Langevin MCMC
	Power system
	Inertia, Exciter gains, Damping ratio, Droop
	Metropolis–Hastings algorithm
	–
	–



	[139], 2019
	China
	IEEE Conference
	Principal component analysis–chaotic immune PSO-GRNN
	Cooling water
	Corrosion
	PSO-GRNN algorithm
	ARE
	Petrochemical enterprises



	[140], 2019
	UK
	Electric Power Systems Research
	Harmonic robust grid synchronization
	Grid
	Voltage signal
	Second-order generalized integrator-frequency locked loop technique
	Phase estimation error
	–



	[141], 2019
	China
	Applied Soft Computing
	Fuzzy information granules, LSTM-FNN
	Zurich monthly sunspot numbers, Mackey–Glass model, Daily maximum temperatures in Melbourne
	Time series, Granules
	AR, Nonlinear AR neural network
	RMSE, MAPE, MAE
	–



	[142], 2019
	Switzerland
	IEEE Conference
	Chaos–Rivest shamir adleman, Chaos–Random number generator
	Crypto system
	Security vulnerabilities
	–
	–
	–



	[143], 2019
	China
	IEEE Conference
	Correlation matrix augmentation
	Bistatic co-prime MIMO array
	Directions of departure and arrival
	ESPRIT-Root MUSIC and RD-Root MUSIC
	RMSE
	–



	[144], 2019
	China
	Renewable Energy
	Markov chain switching regime
	Wind farm
	Speed, direction
	Neural network, SVM
	MAE, RMSE, MAPE
	Bonneville power administration, Washington, USA



	[145], 2019
	USA
	IEEE Conference
	True random number generator
	Chaotic jerk system
	Sampling period
	Pseudo random number generator
	–
	–



	[146], 2019
	USA
	IEEE Signal Processing Letters
	Kalman filter
	Synchronous generator
	Computing time
	EKF
	RMSE
	–



	[147], 2019
	China
	IEEE Access
	Chaotic optimized-PSO
	Mobile
	Location
	Chan, Taylor, PSO
	RMSE, MSE
	–



	[148], 2019
	China
	Journal of Power Sources
	Fractional-order
	Li-ion battery and ultra-capacitor hybrid power source system
	Load current, power
	–
	MAE, RMSE, MRE
	–



	[149], 2019
	USA
	IEEE Transactions on Smart Grid
	Response surface-based Bayesian inference
	Power system
	Inertia, Exciter gains, damping ratio, droop
	Traditional Bayesian inference
	PE
	North American electric reliability corporation, Atlanta, USA



	[150], 2019
	China
	Physica A: Statistical Mechanics and its Applications
	Electric field detector-Chaos SVM
	Aircrafts
	Accidents
	SVM, Chaos SVM
	NMAE, NRMSE, NMAPE
	National transportation safety board, USA



	[151], 2020
	USA
	IEEE Transactions on Industrial Informatics
	Multifidelity-surrogate-based Bayesian inference via adaptive importance sampling
	Synchronous generator
	Inertia, Exciter gains, Damping ratio, Droop
	Importance sampling-based, polynomial chaos expansion-based-Bayesian inference models
	NRMSE
	Generator in New England test system, USA



	[152], 2020
	China
	IEEE Access
	Fractal dimension-Lorenz stenflo-Ensemble EMD, GA-BPNN
	Wind farm
	Speed
	Ensemble EMD-GA-BPNN, LS-Ensemble EMD-GA-BPNN
	RMSE, MAE, MAPE
	Wind farm in Abbotsford, Canada



	[153], 2020
	China
	IEEE Communications Letters
	Amplitude phase shift keying based M-Ary-DCSK
	Chaos shift Keying modulation system
	SER, BER, PAPR
	QAM based M-DCSK system
	–
	–



	[154], 2020
	Canada
	IEEE Access
	ML-PSV
	Blind system
	Frequency
	MPSV technique
	MSE
	–



	[155], 2020
	China
	IET Renewable Power Generation
	Chaos theory, Ensemble EMD
	PV System
	Output power
	Chaos-GA-BPNN, Ensemble EMD-GA-BPNN, NWP-GA-BPNN
	MAPE, RMSE, MAE
	St Lucia campus PV station, Australia 1



	[156], 2020
	China
	Complexity
	Variational mode decomposition-Maximum relevance minimum redundancy-BPNN-LS-SVM
	Power system
	Load
	EMD, Ensemble EMD
	MAE, RMSE, MAPE
	Xi’an power grid corporation, China



	[157], 2020
	Malaysia
	Chaos, Solitons and Fractals
	RNN-based LSTM
	COVID-19
	Mutation rate
	–
	RMSE
	NCBI GenBank 1



	[158], 2020
	Taiwan
	Energies
	CNN-SSA
	PV system
	Power
	SVM-SSA, LSTM-Neural network-SSA
	MAPE, MRE
	–



	[159], 2020
	Belgium
	IEEE Conference
	General polynomial chaos
	Distribution systems
	Power
	Monte Carlo
	RMSE
	European test feeder



	[160], 2020
	South Korea
	IEEE Transactions on Instrumentation and Measurement
	UKF
	EEG dynamic model
	Optimal parameters
	Particle filter, EKF
	RMSE
	Intracranial EEG data set 2



	[161], 2020
	China
	IEEE Access
	Novel hybrid Jaya–Powell
	Lorenz system
	Relative error of the stopping criterion, fitness value
	Jaya, Powell, TLBO, PSO, GA, CCO
	RMSE
	–



	[162], 2020
	China
	Neural Processing Letters
	Deep CNN
	Flight
	Training set loss value, Gradient value
	CNN
	Weight gradient, Hidden layer errors
	–



	[163], 2020
	USA
	IEEE Transactions on Power Systems
	Hybrid MCMC
	Power system
	Inertia, Exciter gains, Damping ratio, Droop
	Langevin MCMC algorithm
	NRMSE
	North American electric reliability corporation, Atlanta, USA



	[164], 2021
	Germany
	Applied Energy
	Non-intrusive load monitoring algorithm
	Commercial buildings, Industries
	Power
	–
	RMSE, MAE, MSLE, MAPE
	–



	[165], 2021
	USA
	Renewable Energy
	Empirical dynamical modeling
	Wind farm
	Speed
	Benchmark model
	RMSE, MAE
	Department of natural resources, Missouri



	[166], 2021
	China
	IEEE Conference
	BFA tuned double-reservoir ESN
	Wind farm
	Load
	ESN
	MAE, MSE, RMSE, MAPE
	–



	[167], 2021
	China
	Journal of Ambient Intelligence and Humanized Computing
	Hybrid prediction
	Wind farm
	Power
	–
	Maximum value, Minimum value, Mean value, standard deviation
	Wind farm of Hebei province, China 1



	[168], 2021
	China
	Optics Express
	LSTM neural network
	Optics
	Amplitude
	ACF, DMI, CNN
	Signal-to-noise ratio
	–



	[169], 2021
	Mexico
	Neural Processing Letters
	Gate recurrent unit-Deep RNN
	Lorenz, Rabinovich–Fabrikant, Rossler systems
	Time series
	LSTM-Deep RNN
	–
	2



	[170], 2021
	China
	Chaos, Solitons and Fractals
	TCN-CBAM
	Chen, Lorenz, sunspot systems
	Time series
	LSTM, Hybrid CNN-LSTM, TCN
	RMSE, MAE, R   2  
	Solar influences data analysis center, Belgium 3



	[171], 2021
	China
	IEEE Sensors
	CBAS-Elman neural network
	Polyvinyl chloride polymerization
	Temperature
	CBAS-BPNN, CBAS-SVM
	RMSE, MAE
	–



	[172], 2021
	Egypt
	IEEE Access
	CGO
	Three diode PV model
	Voltage, Current, Power
	IGWO, MRFO, HBO, AOA
	RMSE, IAE, APE
	–



	[173], 2021
	China
	Nonlinear Dynamics
	ESN-GWO
	Mackey–Glass, Lorenz systems
	Time series
	ESN, PSO-ESN, GWO-ESN
	RMSE
	–



	[174], 2021
	China
	IEEE Access
	YCO-PCS
	Microwave filters
	Yield
	YCO
	RMSE
	–



	[175], 2021
	Australia
	Energy
	Adaptive variational mode decomposition-AOA-LSTM
	Wind turbine
	Power
	Polynomial neural networks, FFNN, LSTM
	MSE, RMSE, MAE, R   2  
	–



	[176], 2021
	China
	IEEE Transactions on Vehicular Technology
	Adaptive RBFNN
	Online vehicle
	Velocity
	LSTM-Neural network, NARX-Neural network, Deep neural network
	RMSE, ARMSE
	Dongfeng Fengon Car



	[177], 2021
	India
	International Journal of Applied Mathematics and Computer Science
	FFNN
	Fractional-order Chaotic Oscillators
	System states
	RNN
	R   2  , MSE
	–







1https://zenodo.org/record/3874348#.YcGhC2BBxPZ (accessed on 1 March 2022), 2 https://github.com/Dajounin/DRNN-Chaos (accessed on 1 March 2022), 3 http://sidc.oma.be/ (accessed on 1 March 2022).
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