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Abstract: Based on the Density Functional Theory (DFT) calculations, we analyze the structural
and electronic properties of boron phosphide nanotubes (BPNTs) as functions of chirality. The DFT
calculations are performed using the M06-2X method in conjunction with the 6-31G(d) divided
valence basis set. All nanostructures, (n,0) BPNT (n = 5–8, 10, 12, 14) and (n,n) BPNT (n = 3–11), were
optimized minimizing the total energy, assuming a non-magnetic nature and a total charge neutrality.
Results show that the BPNT diameter size increases linearly with the chiral index “n” for both
chiralities. According to the global molecular descriptors, the (3,3) BPNT is the most stable structure
provided that it shows the largest global hardness value. The low chirality (5,0) BPNT has a strong
electrophilic character, and it is the most conductive system due to the small |HOMO-LUMO| energy
gap. The chemical potential and electrophilicity index in the zigzag-type BPNTs show remarkable
chirality-dependent behavior. The increase in diameter/chirality causes a gradual decrease in the
|HOMO-LUMO| energy gap for the zigzag BPNTs; however, in the armchair-type BPNTs, a phase
transition is generated from a semiconductor to a conductor system. Therefore, the nanostructures
investigated in this work may be suggested for both electrical and biophysical applications.

Keywords: boron phosphide nanotubes; density functional theory; chirality; electronic properties;
structural properties

1. Introduction

Since the discovery of the single-walled carbon nanotubes (SWCNT) in 1991 [1], numer-
ous investigations have been conducted on their structural, chemical, physical, mechanical
and electronic properties, which have proven to be extraordinary for certain applications.
There exists an increased interest in fabricating novel inorganic analogues to CNTs made
up of group III and V elements of the periodic table (groups neighboring the carbon group),
such as nitrides and phosphides of boron, aluminum, gallium and indium (BN, AlN,
GaN, InN, BP, AlP, GaP and InP, respectively). Among them, boron nitride nanotubes
(BNNTs), as predicted in 1994 [2] and synthesized in 1995 [3], have been quite attractive
and extensively investigated. Despite their structural similarity, CNT electronic properties
show a strong dependence on the chirality [4–7], while the properties of BNNTs with large
diameters remain almost constant [2,8], which in turn indicate chirality independence.
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The boron composed nanotubes have been more studied than those of phosphorus. Al-
though BPNTs have not been synthesized yet, theoretical research during the last decade
suggests that BPNTs may be good adsorbent materials for some molecules of environmen-
tal, industrial, pharmaceutical and catalytic interest, such as peroxide, phenol, imidazole,
thiazole, carbon monoxide and even some anions such as cyanates and thiocyanates [9–15].
Studies reveal that the band gap of BPNTs is similar to that of their silicon carbide analogs
(SiCNTs) [16,17]. Furthermore, BPNTs doped with carbon, germanium, gallium, silicon and
palladium atoms show a drastic change in their electronic properties as compared to the
pristine state [10,17–23]. However, not much information is available about investigations
focused on the dependence of the structural and electronic properties of BP nanotubes as
a function of their diameter/chirality. For example, Srivastava et al. [24] describe that the
value of the band gap of the zigzag-type BPNTs (n,0) (n = 4–15) ranges from a metallic to a
semiconductor behavior, while Azizi et al. [25] show values corresponding to semiconduc-
tor for both armchair- (n,n) and zigzag-type (n,0) BPNTs.

The interest of this work is to study the structural and electronic properties of armchair-
(n,n) (n = 3–11) and zigzag-type (n,0) (n = 5–8,10,12,14) BPNTs as functions of chirality.
The nanostructures were optimized and verified by calculating the vibrational frequencies.
Based on the DFT, the reactivity and chemical stability of the BPNTs are studied through
cohesion energy (Ecoh) and global molecular descriptors such as chemical potential (µ),
global hardness (η), electrophilicity index (ω), energy gap (Eg), ionization potential (I) and
electronic affinity (A).

2. Materials and Methods

Boron phosphide nanotube structural and electronic properties are investigated using
first principles total energy calculations within the Density Functional Theory. The BPNT
dangling bonds were passivated with hydrogen atoms to carry out a finite molecular study,
that is, each nanotube length was limited through covalent bonds with hydrogen atoms
at their ends. The number of atoms of each chemical species (H, B and P) that make up
each nanotube is proportional to the chirality index (n). In the case of the armchair-type
(n,n) BPNTs, H = 4n and B = P = 12n, while for the zigzag-type (n,0) BPNTs, H = 2n
and B = P = 7n. Calculations were performed to determine the geometric optimization,
the energy of the frontier molecular orbitals, HOMO and LUMO, dipole moment and the
total energy. Studies account for the gas phase within the M06-2X/6-31G(d) approach
implemented in the Gaussian 16 code [26]. The M06-2X functional is suitable to be applied
in medium-sized systems [27]. Furthermore, results show that the M06-2X functional is
suitable for unraveling non-covalent interactions, which allows more reliable results for
later functionalization studies [28,29].

The stabilized nanotubes showed a singlet multiplicity (M = 1) with a neutral charge
state (Q = 0). Vibrational frequency calculations were performed to verify that the struc-
tures relax with local minima. The reactivity of the systems was determined using global
quantum molecular descriptors such as chemical potential (µ), global hardness (η) and
electrophilicity index (ω), obtained from the HOMO and LUMO energies through the
quantities obtained using Koopmans’ theorem [30]:

I = −EHOMO, (1)

A = −ELUMO, (2)

where I is the ionization potential and A is the electron affinity. This is true for density func-
tionals that correctly describe the derivative discontinuity at the integer particle numbers.
Since M06-2X includes 54% of the HF exchange, we expect this functional to yield accurate
estimates. Therefore, the chemical potential (µ) and global hardness (η) can be calculated
with the following equations:
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µ =

(
∂E
∂N

)
ν(r)

= − I + A
2

(3)

η =

(
∂2E
∂N2

)
ν(r)

=
I − A

2
(4)

where E is the total energy, N is the number of electrons and ν(r) is the external potential of
the system [31]. The global electrophilicity index (ω) is described by Parr [32], which uses
the electronic chemical potential and is given by:

ω =
µ2

2η
(5)

This descriptor measures the tendency of the chemical species to accept electrons.
Small values of ω indicate that the chemical species behaves as an electron donor (nucle-
ophile), while high values of ω characterize the electron acceptor (electrophile).

The stability of all the nanotubes was validated by calculating the cohesion energy,
which is expressed as:

Ecoh =
EBPNT −

(
nBEBoron + nPEPhosp + nHEHydro

)
nB + nP + nH

(6)

where EBPNT is the total energy of the nanotube, while nB, nP, nH , EBoron, EPhosp and EHydro
represent the number of atoms and total energies of the isolated boron, phosphorus and
hydrogen atoms, respectively. The Ecoh is expressed in eV/atom. A stable geometry will be
characterized by a negative cohesion energy.

Solvation energies (ESolv) of each BPNT were obtained based on the total energy of
the optimized nanotube in vacuum (EBPNT) and water (EBPNT−CPCM) (via Conductor-like
Polarizable Continuum Model), as indicated by the following equation:

ESolv = EBPNT−CPCM − EBPNT (7)

The more negative the ESolv value is, the greater the degree of solubility of the system is.

3. Results and Discussion
3.1. Structural Properties

The diameter size trend with respect to the chirality in each nanotube is shown in
Figure 1. It is evident that for both armchair- and zigzag-type nanotubes, as the chiral
index increases, the diameter increases almost linearly, whose coefficients of determination
(termed as R2) are 0.9984 and 0.9996 for the (n,n) BPNT and (n,0) BPNT, respectively.
These R2 values indicate a very good linear fit since values are close to unity. Table 1 shows
in detail the diameter size corresponding to each nanotube.

Table 1. Diameter length (Ȧ) for the geometrically optimized armchair- (n,n) and zigzag-type (n,0)
BP nanotubes as calculated with the M06-2X/6-31G(d) method.

Chirality/Index n = 3 4 5 6 7 8 9 10 11 12 14

(n,0) - - 5.56 6.46 7.43 8.44 - 10.42 - 12.55 14.40
(n, n) 5.19 6.85 8.15 9.99 12.11 13.91 15.55 17.38 19.31 - -

The axial length of each nanotube shows no considerable variation with respect to
the chirality, with an average value of 19.94 Ȧ and 17.98 Ȧ for armchair- and zigzag-type
nanotubes, respectively. Tables 2 and 3 summarize the relaxed bond lengths and angles.
In both cases, the B-P bond length decreases as the chirality index increases. The average
length of the B-P bond for both chiralities is ~1.88 Ȧ. In addition, the boron–hydrogen bond
length is shorter than that of the phosphorus–hydrogen bond (B− H < P− H), because
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of the electronegativity difference in the B-H, which is greater than in the P-H, inducing
a more strengthened bond. The average value of the angle formed by the P-B-P atoms is
120.08◦ and 120.45◦ for armchair- and zigzag-type BPNTs, respectively. The angles of the
H-P-B and H-B-P bonds at the ends of armchair and zigzag nanotubes increase slightly with
increasing chirality. This small increase occurs because of chirality increase, as there is a
higher density of hydrogen atoms at the end of the tube, causing a repulsion effect between
them, which in turn generates an increase in the formed angle. The cohesion energy values
are reported in Table 4 (armchair type) and Table 5 (zigzag type). Negative values were
obtained for each nanotube, with an average value of −2.96 eV/atom for armchair-type
and −2.95 eV/atom for zigzag-type BPNTs, indicating that they are all stable structures.
These values suggest that pristine BPNTs are less stable than CNTs and BNNTs, since the
latter have cohesion energies of −8.72 and −7.27 eV, respectively [33]. For both types of
chirality, the cohesion energy decreases as the chiral index (n) increases, indicating that the
greater the diameter is, the better the stability of the system is. However, the decrease in
Ecoh is very small, since the energy difference between the maximum and the minimum
value is only 0.13 eV/atom, both in the armchair- and zigzag-type. Vibrational frequency
calculations showed that all nanotubes have non-imaginary frequencies.
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Table 2. Bond length (Ȧ) and bond angle (◦) values of armchair-type (n,n) BP nanotubes (where
n = 3–11) optimized via DFT/M06-2X/6-31G(d).

Nanotube Bond Lengths (Ȧ) Angle (◦)

Armchair Axial Length B-P P-H B-H P-B-P B-P-B H-P-B H-B-P

(3,3) 19.8894 1.9129 1.4259 1.1861 122.2794 109.5253 108.55 118.1869
(4,4) 19.9063 1.8924 1.4209 1.1859 119.2242 114.2072 109.4626 118.777
(5,5) 19.9237 1.8862 1.4187 1.1856 120.7065 115.1849 111.0487 119.6057
(6,6) 19.9376 1.8814 1.4166 1.1857 119.691 116.4117 111.9162 119.8233
(7,7) 19.9503 1.8798 1.4152 1.1856 119.6188 117.8321 112.3506 119.6171
(8,8) 19.9618 1.8771 1.4143 1.1856 119.4768 118.3511 112.997 119.7843
(9,9) 19.9708 1.8756 1.4134 1.1855 119.8691 118.3118 113.6048 119.9248

(10,10) 19.9805 1.8747 1.4127 1.1856 120.1455 118.9187 114.2501 120.085
(11,11) 19.9861 1.875 1.4122 1.1854 119.7613 119.2771 114.7068 120.1182
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Table 3. Bond length (Ȧ) and bond angle (◦) values of zigzag-type (n,0) BP nanotubes (where n = 5–8,
10, 12, 14) optimized via DFT/M06-2X/6-31G(d).

Nanotube Bond Lengths (Ȧ) Angle (◦)

Zigzag Axial Length B-P P-H B-H P-B-P B-P-B H-P-B H-B-P

(5,0) 17.8614 1.9135 1.4351 1.1861 120.8479 105.0648 101.9944 117.7055
(6,0) 17.9346 1.8995 1.4316 1.1858 121.7117 110.9808 102.8412 117.5638
(7,0) 17.9806 1.8939 1.4294 1.1856 120.3019 111.5138 104.9868 118.5491
(8,0) 17.9966 1.8851 1.4279 1.1854 120.3811 114.968 105.9255 118.8265
(10,0) 18.0259 1.8819 1.4255 1.1852 119.7837 115.6483 107.5051 119.1812
(12,0) 18.0435 1.8778 1.424 1.1848 119.8862 116.4566 108.7472 119.3955
(14,0) 18.0537 1.8775 1.4228 1.185 120.2846 118.1968 109.7213 119.513

Table 4. Optimized total energy (ETotal), energy of the highest occupied molecular orbital (EHOMO),
energy of the lowest unoccupied molecular orbital (ELUMO), energies of the quantum molecular
descriptors (η, µ, ω) and cohesion energy (Ecoh) for armchair-type BPNTs. All values are given in eV
units and performed via DFT/M06-2X/6-31G(d).

Armchair BPNT Quantum Molecular Descriptors and Ecoh for (n,n) BPNTs

Descriptors (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10) (11,11)

ETOTAL −358,734.516 −478,319.133 −597,903.132 −717,486.631 −837,069.831 −956,652.817 −1,076,235.658 −1,195,818.389 −1,315,401.058
EHOMO −6.8995 −6.7725 −6.6888 −6.6428 −6.6145 −6.5971 −6.5857 −6.5764 −6.5712
ELUMO −5.6244 −5.7531 −5.9084 −5.9922 −6.0406 −6.0694 −6.0874 −6.0988 −6.1061
Eg Gap 1.2751 1.0195 0.7804 0.6506 0.5739 0.5277 0.4983 0.4776 0.4651

I = −EHOMO 6.8996 6.7725 6.6888 6.6428 6.6145 6.5971 6.5857 6.5764 6.5712
A = −ELUMO 5.6244 5.7531 5.9084 5.9922 6.0406 6.0694 6.0874 6.0988 6.1061
η = (I − A)/2 0.6376 0.5097 0.3902 0.3253 0.2870 0.2638 0.2492 0.2388 0.2326

µ = −(I + A)/2 −6.2620 −6.2628 −6.2986 −6.3175 −6.3275 −6.3332 −6.3365 −6.3376 −6.3387
ω = µ2/2η 30.7516 38.4741 50.8375 61.3418 69.7618 76.0120 80.5761 84.0923 86.3841

Ecoh −2.8618 −2.9193 −2.9494 −2.9665 −2.9772 −2.9843 −2.9892 −2.9927 −2.9954

Table 5. Optimized total energy (ETotal), energy of the highest occupied molecular orbital (EHOMO),
energy of the lowest unoccupied molecular orbital (ELUMO), energies of the quantum molecular
descriptors (η, µ, ω) and cohesion energy (Ecoh) for zigzag-type BPNTs. All values are given in eV
and as calculated via DFT/M06-2X/6-31G(d).

Zigzag BPNT Quantum Molecular Descriptors and Ecoh for (n,0) BPNTs

Descriptors (5,0) (6,0) (7,0) (8,0) (10,0) (12,0) (14,0)

ETOTAL −348,742.4988 −418,495.3783 −488,247.8623 −558,000.0492 −697,503.8110 −837,007.0566 −976,509.9845
EHOMO −6.9882 −6.9210 −7.0652 −6.8106 −6.8770 −6.7910 −6.7140
ELUMO −6.9077 −6.7092 −6.4298 −6.2049 −5.8934 −5.9500 −6.0411
Eg Gap 0.0805 0.2119 0.6354 0.6057 0.9836 0.8410 0.6729

I = −EHOMO 6.9882 6.9210 7.0652 6.8106 6.8770 6.7910 6.7140
A = −ELUMO 6.9077 6.7092 6.4298 6.2049 5.8934 5.9500 6.0411
η = (I − A)/2 0.0403 0.1059 0.3177 0.3029 0.4918 0.4205 0.3365

µ = −(I + A)/2 −6.9480 −6.8151 −6.7475 −6.5077 −6.3852 −6.3705 −6.3776
ω = µ2/2η 599.5909 219.1985 71.6547 69.9151 41.4526 48.2548 60.4427

Ecoh −2.8633 −2.9090 −2.9380 −2.9575 −2.9809 −2.9939 −3.0017

The calculated IR spectra of all systems are shown in Figures 2 and 3 for the armchair-
and zigzag-type boron phosphide nanotubes, respectively. In both cases, a pair of sets of
characteristic peaks are noted in the frequency region of >2400 cm−1, corresponding to
the P-H stretch vibration (2503–2521 cm−1) and the B-H stretch vibration (~2725 cm−1).
The highest ε intensity peaks occur in the frequency range between 850–1100 cm−1, again
for both cases, attributed to a P-B-P stretch vibration (900–955 cm−1) and to the B-H bending
vibration (1031–1040 cm−1). It is noted that the P-B-P stretch vibration mode is affected by
a blue shift when the chiral index increases (+10 cm−1/n, Figures 2b and 3b). The armchair-
and zigzag-type BPNTs display a very similar IR spectra; however, the armchair-type
nanotubes exhibit a characteristic small peak in the frequency range of 820–840 cm−1 corre-
sponding to the P-H bond bending mode. This characteristic signal allows differentiating
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between both chiralities. In general, the peak intensity increases with the chiral index,
as induced by the number of bonds present in the structure.
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3.2. Electronic Properties

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) are discussed in this section. Figure 4 shows the |HOMO-LUMO| energy
gaps as functions of the chirality as obtained in this work and compared with those
obtained in the previously mentioned reports (see Introduction Section). The energy gap of
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the (n,n) BPNTs decreases as the index (diameter) increases, reaching stabilization when
n ≥ 10, (10,10) BPNT. This characteristic has also been reported for BNNT and SiCNT,
where starting at a certain diameter the band gap energy is chirality independent [16,24].
On the other hand, zigzag nanotubes transform from a metallic character (5,0) BPNT
with 0.08 eV to semiconductor, with (10,0) BPNT being the one with a larger energy gap
value (0.98 eV). Thus, low chirality zigzag BPNTs can be used in electronic and energy
transport devices. It can be noted that, in the case of zigzag BPNTs, our values have a
similar trend and are close to those reported by Srivastava et al. [24], particularly with those
calculated by the LDA/PZ/DZP method. However, our results differ largely from those
described by Azizi et al. [25] for both armchair- and zigzag-type nanotubes. Other authors
have also reported the value of the energy gap for some chiralities in studies about the
functionalization of boron phosphide nanotubes. Table 6 summarizes these values reported
by different authors [9–12,14,15,17,18,20–22,34–37] for the nanotubes (5,0), (6,0), (7,0), (8,0)
and (4,4), comparing them with the values obtained in this work. Considerable different
values of molecular gap are noted for the same chirality, however, all the values reported
by other authors are calculated with the B3LYP or BLYP functional. This suggests that there
is an underestimation or overestimation when calculating the HOMO-LUMO gap when
the functionals B3LYP/BLYP and the M06-2X are used, respectively. Another factor that
could be responsible for this difference in the molecular gap is the number of atoms that
make up the nanotube, that is, its molecular formula. For all the cases shown in Table 6, our
models of BPNTs have a larger number of atoms and, therefore, a greater length, because
chirality determines the diameter of the nanotube but not its length. This would be a great
challenge to synthesize BPNTs in a controlled way, since their electronic properties would
present a strong dependence on the length of the nanotube.
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Table 6. Review of the HOMO-LUMO gap values (eV) reported in the literature for different boron
phosphide nanotubes. Values calculated by this work (Gaussian16/M06-2X/6-31G(d)) and references.

Summary of HOMO-LUMO Gap Values and Molecular Formula Reported in the Literature

Chirality Software + Method HOMO-LUMO Gap Molecular Formula Reference

(5,0) GAMESS/B3LYP/6-31G(d,p) 1.62 B27P27H10 [34]
(5,0) Gaussian16/M06-2X/6-31G(d) 0.0805 B35P35H10 This work
(6,0) Gaussian03/B3LYP/6-31G(d) 2.27 B24P24H12 [12]
(6,0) Gaussian03/B3LYP/6-31G(d) 2.43 B24P24H12 [18]
(6,0) GAMESS/B3LYP/6-31G(d) 1.93 B36P36H12 [14]
(6,0) Gaussian98/BLYP/6-31G(d) 1.09 B24P24H12 [35]
(6,0) GAMESS/B3LYP/6-31G(d) 2.06 B30P30H12 [11]
(6,0) Gaussian98/BLYP/6-31G(d) 1.09 B24P24H12 [17]
(6,0) Gaussian03/B3LYP/6-31G(d) 2.06 B30P30H12 [10]
(6,0) Gaussian98/B3LYP/6-311G(d,p) 2.25 B24P24H12 [36]
(6,0) Gaussian98/B3LYP/6-31G(d) 2.27 B24P24H12 [15]
(6,0) Gaussian16/M06-2X/6-31G(d) 0.2118 B42P42H12 This work
(7,0) GAMESS/B3LYP/6-31G(d) 2.22 B42P42H14 [14]
(7,0) Gaussian16/M06-2X/6-31G(d) 0.6353 B49P49H14 This work
(8,0) Gaussian03/B3LYP/6-31G(d) 2.57 B32P32H16 [20]
(8,0) Gaussian16/M06-2X/6-31G(d) 0.6057 B56P56H16 This work
(4,4) Gaussian98/BLYP/6-31G(d) 1.77 B28P28H16 [17]
(4,4) Gaussian03/B3LYP/6-31G(d) 2.95 B28P28H16 [9]
(4,4) Gaussian98/BLYP/6-31G(d) 1.77 B28P28H16 [35]
(4,4) GAMESS/B3LYP/6-31G(d) 2.95 B28P28H16 [14]
(4,4) Gaussian03/BLYP/6-31G(d) 1.75 B28P28H16 [22]
(4,4) Gaussian03/B3LYP/6-31G(d) 2.95 B28P28H16 [22]
(4,4) Gaussian03/B3LYP/6-31G(d) 2.95 B28P28H16 [21]
(4,4) Gaussian03/B3LYP/6-31G(d) 2.95 B32P32H16 [37]
(4,4) Gaussian16/M06-2X/6-31G(d) 1.0194 B48P48H16 This work

The distribution of the HOMO and LUMO orbitals through the nanotubes are graph-
ically depicted in Figures 5 and 6 for the armchair and zigzag BPNTs, respectively. It is
evident that the HOMO orbital is uniformly distributed throughout the entire nanotube
in the armchair type, however, different features display the zigzag type, since this is
concentrated at one end of the nanotube. The LUMO orbital, in the zigzag-type BPNTs, is
uniformly distributed until chirality (8,0). At larger index, this is concentrated at one of
the extremes. In the armchair-type BPNTs, analogous to HOMO, the LUMO is distributed
throughout the entire nanotube.
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The reactivity and chemical stability of the nanotubes was measured through global
quantum molecular descriptors such as chemical potential (µ), global hardness (η) and
electrophilicity index (ω), energy gap (Eg), ionization potential (I) and electronic affinity (A),
as summarized in Tables 4 and 5. These parameters have been widely used for many years
in computational chemistry studies [38–41] and, recently, to study the functionalization
and stability of some III-V nanotubes [42–46]. The global hardness represents the system
resistance to a charge transfer, that is, high values of η indicate greater electronic stability.
Thus, the electronic stability of the armchair-type BPNTs decreases as chirality increases,
with (3,3) BPNT being the most electronically stable system (see Figure 7). The zigzag-type
BPNTs exhibit an arbitrary variation in the global hardness with respect to the chirality,
showing a maximum energy value of ~0.492 eV in the (10,0) BPNT. In addition, the zigzag
nanotubes display the highest (most negative) µ values and these decrease with increasing
chirality, so that the zigzag BPNTs with the highest chirality are the least chemically reactive,
since the chemical potential is a property that characterizes the tendency of electrons to
escape from a system in equilibrium. No significant variation in the value of µ of the
armchair-type BPNTs, −6.34 eV < µ <−6.26 eV, is found, indicating chirality independence
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(see Figure 8). However, the chemical potential of both chiralities tend to converge towards
the same value, i.e., µ = −6.36 eV± 0.37% for n ≥ 10. Comparing the global hardness and
chemical potential values of boron phosphide nanotubes with their most studied structural
analogues, CNTs and BNNTs, it is noted that BPNTs show η values in a range very close
to that of CNTs, however, this later structure is much smaller than those reported for the
BNNTs. Moreover, in the case of the chemical potential, µ, the BPNT values are similar to
those of the BNNTs, being much smaller than those reported for CNTs [46–48]. Therefore,
we can establish that ηCNTs ∼= ηBPNTs � ηBNNTs and |µCNTs| < |µBPNTs| ∼= |µBNNTs|.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 7. |HOMO-LUMO| gap and global hardness as functions of the chiral index for armchair-
type (black line) and zigzag-type (red line) BPNTs. Inset: equation of the relationship between 
|HOMO-LUMO| gap and global hardness (bottom); (3,3) and (10,0) BPNTs (top). 

 
Figure 8. Chemical potential behavior as a function of the chiral index for armchair-type (black line) 
and zigzag-type (red line) BPNTs. 

Figure 7. |HOMO-LUMO| gap and global hardness as functions of the chiral index for armchair-
type (black line) and zigzag-type (red line) BPNTs. Inset: equation of the relationship between
|HOMO-LUMO| gap and global hardness (bottom); (3,3) and (10,0) BPNTs (top).

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 7. |HOMO-LUMO| gap and global hardness as functions of the chiral index for armchair-
type (black line) and zigzag-type (red line) BPNTs. Inset: equation of the relationship between 
|HOMO-LUMO| gap and global hardness (bottom); (3,3) and (10,0) BPNTs (top). 

 
Figure 8. Chemical potential behavior as a function of the chiral index for armchair-type (black line) 
and zigzag-type (red line) BPNTs. Figure 8. Chemical potential behavior as a function of the chiral index for armchair-type (black line)
and zigzag-type (red line) BPNTs.



Symmetry 2022, 14, 964 12 of 16

Regarding the electrophilicity index, the (5,0) BPNT exhibits a large value provided
that ω (599.59 eV) is large. However, the electrophilic character of the zigzag BPNTs drops
abruptly with increasing chirality, while in the armchair type, this parameter increases
gradually (see Figure 9). The ionization potential (I) measures the tendency to yield
electrons, while electron affinity (A) measures the tendency to accept electrons. Thus, high
ionization potential values indicate that large energy is required to yield electrons from
the HOMO orbital, while large values of electron affinity indicate high electron accepting
capacity. Both the armchair- and the zigzag-type chiralities exhibit large energy values of I
and A, therefore, BPNTs are systems that easily accept electrons. This justifies their great
electrophilic character, as indicated by the ω index.
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The dipole moment
→
µD is a quantitative measure of the dipole moment magnitude

and allows differentiating between polar and non-polar molecules. It is considered to a
certain extent an index of reactivity, which is very important to define some biological
properties [49]. The dipole moment of a polyatomic system is the vector sum of the bond
dipoles. Our results show that the (n,n) BPNTs exhibit nearly zero dipole moment values
(i.e., non-polar systems), as induced by the structural symmetry of the armchair-type
nanotubes (see Figure 10). Nearly-zero polarity is independent of the type of atoms that
make up the nanotube, since other nanotubes such as GaNNT, BNNT and AlNNT also
display null dipole moment values of armchair-type chirality [43,50]. On the other hand,
zigzag-type nanotubes are polar structures, with the (14,0) BPNT being the one with the
largest value

→
µD = 2.32 D, although with no dependence of polarity (

→
µD) on the chiral

index (n). This suggests that zigzag-type boron phosphide nanotubes are more soluble
than armchair-type structures in polar solvents such as water, which in turn indicates that
they are suitable for applications in biological systems. This characteristic of zigzag-type
nanotubes of having a higher dipole moment, and therefore greater solubility, compared to
armchair type, has also been reported for BNNTs [51,52]. These results make it clear that the
zigzag-type nanotubes have a higher degree of solubility, since polarity is a key property
for high solubility. We can validate this through the solvation energy values calculated
using Equation (7). The results show that, in general, the solvation energy in the zigzag
type is higher (more negative) than in armchair nanotubes, as expected. It may be thought
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that Figure 11 contradicts this last assertion since, for example, the armchair-type (11,11)
BPNT has higher ESolv values than most of the zigzag-type nanotubes. However, this is
not an appropriate comparison, since the (11,11) BPNT contains a much larger number of
atoms that promotes intermolecular interactions which in turn favors solvation. Then, it is
necessary to compare the ESolv values between nanotubes with a similar number of atoms
and having almost the same diameters, for example the (5,5) BPNT (−12.08 kcal/mol)
vs. (8,0) BPNT (−17.27 kcal/mol) or the (6,6) BPNT (−13.49 kcal/mol) vs. (10,0) BPNT
(−19.83 kcal/mol). There are several recent investigations that show the important role
that the dipole moment plays on the solubility of some pristine and/or functionalized
nanotubes [51–56].
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4. Conclusions

In this study, the structural and electronic properties of boron phosphide nanotubes
in the zigzag and armchair chiralities were investigated. The study was conducted under
the Density Functional Theory approach with the M06-2X/6-31G(d) method. The total
energy minimization, assuming a non-magnetic nature and a total charge neutrality, yielded
the ground state of all nanostructures, (n,0) BPNT (n = 5–8, 10, 12, 14) and (n,n) BPNT
(n = 3–11). In both chiralities, results indicate that the BPNT diameter grows linearly with
the chiral index (n). Global molecular descriptors establish that (3,3) BPNT is the most
stable nanotube because it has the largest global hardness value. The (5,0) BPNT has
a strong electrophilic character, acting as an excellent electron acceptor. The chemical
potential and the electrophilicity index in the zigzag-type BPNTs show remarkable chirality-
dependent behavior. Based on the characteristic behavior of the |HOMO-LUMO| energy
gap, the zigzag-type BPNTs transform from metallic to semiconductor as their chirality
increases. In contrast, the armchair-type nanotubes show a semiconductor behavior with
the energy gap decreasing gradually with the increase in the chiral index. Finally, in this
study of nanotubes as finite molecules, it is observed that armchair BPNTs are non-polar
systems, unlike the remarkable polar behavior of zigzag-type BPNTs regardless of chirality.
In general, studying the variation in the structural and electronic properties of BPNTs
allows proposing these systems for possible applications. Therefore, the set of nanotubes
studied in this work may be proposed for both electrical and biophysical applications.
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