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Abstract

:

In this article, we present an extension of the controlled rectangular b-metric spaces, so-called controlled rectangular metric-like spaces, where we keep the symmetry condition and we only change the condition   [ D ( s , r ) = 0 ⇔ s = r ]    to    [ D ( s , r ) = 0 ⇒ s = r ]  , which means we may have a non-zero self distance; also,   D ( s , s )   is not necessarily less than   D ( s , r ) .   This new type of metric space is a generalization of controlled rectangular b-metric spaces and partial rectangular metric spaces.
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1. Introduction


The uniqueness of a fixed-point theory for self-contractive mapping, which was introduced by Banach in 1922 [1], opened a new area of research in various fields. It has become an interesting domain and an exciting field of mathematical research see [2,3,4]; in fact, it has become an important tool now in many fields of mathematics, such as variational inequalities, approximation theory, linear inequalities nonlinear analysis, differential, and integral equations; for more details on these type of applications, see [5,6,7]. Its applications appear in mathematical sciences, super fractals, and more recently, in discrete dynamics. Kamran et al. [8] introduced extended b-metric spaces, which is a generalization of metric spaces and b-metric spaces [9]. Then, the generalization of these metrics appeared in the form of a controlled metric [10] and double controlled metric spaces [11]. Further, Branciari [12], in 2000, introduced rectangular metric spaces. Then, in 2015, George et al. in [13], generalized rectangular metric spaces to rectangular b-metric spaces. In 2020, Mlaiki et al., in [14], generalized the rectangular b-metric spaces by introducing the controlled rectangular metric spaces. Inspired by the work of Matthews in [15], where he introduced the notion of partial metric spaces, which is basically assuming that the self distance is not necessarily zero; however, we have   D ( s , s ) ≤ D ( s , r ) .   Shukla, in [16], introduced the concept of partial rectangular metric spaces, which is basically the exact same work as Matthews, except it is in rectangular metric spaces. In this article, we present a generalization of controlled rectangular b-metric spaces and partial rectangular metric spaces, so-called controlled rectangular metric-like spaces. In the next section, we present some preliminaries and concepts needed later; while in the next section, we prove our main result. In the last section, we present an application of our results.




2. Preliminaries


We present some preliminary definitions of rectangular b-metric spaces, and controlled rectangular metric spaces, before presenting our new notion of a controlled rectangular metric-like space.



Definition 1

([12]). (Branciari metric spaces) Let   X ≠ ϕ  . A mapping   D :  X 2  →  [ 0 , ∞ )    is called a rectangular metric on X if for any   x , y ∈ X   and all   u , ≠ v ∈ X \ { x , y }  , having the following conditions:



(  R 1  )   x = y ↔ D ( x , y ) = 0  ;



(  R 2  )   D ( x , y ) = D ( y , x )  ;



(  R 3  )   D ( x , y ) ≤ D ( x , u ) + D ( u , v ) + D ( v , y )  .



In this case, then   ( X , D )   is a rectangular metric space.





As a generalization of rectangular metric spaces, rectangular b-metric spaces were introduced in [13], where the triangle inequality has a constant   a > 1 .  



Definition 2

([13]). (Rectangular b-metric spaces)) Let   X ≠ ϕ  . A mapping   D :  X 2  →  [ 0 , ∞ )    is known as rectangular b-metric on X for a constant   a ≥ 1   such that any   x y ∈ X   and points   u ≠ , v ∈ X \ { x , y }  , which has the following conditions:



(  R  b 1   )   x = y ↔ D ( x , y ) = 0  ;



(  R  b 2   )   D ( x , y ) = D ( y , x )  ;



(  R  b 3   )   D ( x , y ) ≤ a [ D ( x , u ) + D ( u , v ) + D ( v , y ) ]  .



In this case, the pair   ( X , D )   is called a rectangular b-metric space.





In 2020, a new extension to the rectangular metric spaces was defined as follows.



Definition 3

([14]). Let X be a non empty set, a function   θ :  X 4  →  [ 1 , ∞ )    and   D :  X 2  →  [ 0 , ∞ )  .   We say that   ( X , D )   is a controlled rectangular b-metric space if all distinct   x , y , u , v ∈ X   we have:




	
  D ( x , y ) = 0   if and only if   x = y ;  



	
  D ( x , y ) = D ( y , x ) ;  



	
  D ( x , y ) ≤ θ ( x , y , u , v ) [ D ( x , u ) + D ( u , v ) + D ( v , y ) ] .  










In this manuscript, we define controlled rectangular metric-like spaces as follows;



Definition 4.

Let X be a non empty set, a function   θ :  X 4  →  [ 1 , ∞ )   and   D :  X 2  →  [ 0 , ∞ )  .   We say that   ( X , D )   is a controlled rectangular metric-like space if   x ≠ y ≠ u ≠ v ∈ X   having the functions:




	
   D ( x , y ) = 0 ⇒ x = y ;   



	
  D ( x , y ) = D ( y , x ) ;   (symmetric condition)



	
   D ( x , y ) ≤ θ ( x , y , u , v ) [ D ( x , u ) + D ( u , v ) + D ( v , y ) ] .   










Remark 1.

Note that, in Definition 4, we are assuming that the space is symmetric. However, in the case where the symmetric condition is not satisfied, we will have a different space with a totally different topology.





Next, we present two examples of controlled rectangular metric-like spaces that are not controlled rectangular b-metric spaces.



Example 1.

Let   X = [ 0 , ∞ )   and   p : [ 0 , ∞ ) × [ 0 , ∞ ) → ( 1 , ∞ ) .   Define   D :  X 2  →  [ 0 , ∞ )    by


   D  ( x , y )  =   ( x + y )   p ( x , y )     for  all  x , y ∈ X   








Note that   ( X , D )   is a controlled rectangular metric-like space with


   θ  ( x , y , u , v )  =  2  p ( max { x , y } , max { u , v } ) − 1   .   








For all   0 < y < x   we have


   D  ( x , x )  =   ( x + x )   p ( x , x )   >   ( x + y )   p ( x , y )   = D  ( x , y )  .   








Thus,   ( X , D )   is not a controlled rectangular b-metric space nor a partial rectangular metric space.





Example 2.

Let   X = Y ∪ Z   where   Y = {  1 m  ∣ m   is  a  natural  number }   and   Z ⊂  R +   . We define   D :  X 2  →  [ 0 , ∞ )    by


   D  ( x , y )  =      0 ,     if  and  only  if   x = y       2 β ,     if   x , y ∈  Y        1 2  ,     x = y = 1        β 2  ,     otherwise ,        








where β is a constant bigger than   0 .   Now, define   θ :  X 4  →  [ 1 , ∞ )    by   θ ( x , y , u , v ) = max { x , y , u , v } + 2 β .   It is quite easy to check that   ( X , D )   is a controlled rectangular metric-like space. However,   ( X , D )   is not a controlled rectangular metric type space nor a partial rectangular metric space, for example   D  ( 1 , 1 )  =  1 2  ≠ 0 .  





Remark 2.

Notice that by Example 1, not every controlled rectangular metric-like space is a controlled rectangular b-metric space. On the other hand, every controlled rectangular b-metric space and every partial rectangular metric space is a controlled rectangular metric-like space.





Next, we present the topology of controlled rectangular metric-like spaces.



Definition 5.

Let   ( X , D )   be controlled rectangular metric-like space,




	
A sequence   {  x l  }   in a controlled rectangular metric-like space   ( X , D )   is called   D −  convergent, if there exists   x ∈ X   such that    lim  l → ∞   D  (  x l  , ν )  = D  ( ν , ν )  .  



	
A sequence   {  x l  }   is called   D −  Cauchy if and only if    lim  l , m → ∞   D  (  x l  ,  x m  )    exists and finite.



	
A controlled rectangular metric-like space   ( X , D )   is called D-complete if for every   D −  Cauchy sequence   {  x n  }   in X, if there exists   ν ∈ X ,   such that


    lim  l → ∞   D  (  x l  , ν )  =  lim  l , m → ∞   D  (  x l  ,  x m  )  = D  ( ν , ν )  .   











	
For   a ∈ X  , an open ball in a controlled rectangular metric-like space   ( X , D )   define by


    B D   ( a , η )  =  { b ∈ X ∣ | D  ( a , b )  − D  ( a , a )  | < η }  .   


















Next, we define continuity in controlled rectangular metric-like spaces.



Definition 6.

A self-mapping function ζ in F is said continuous at   x ∈ F   if for all   ε > 0  , there exists   δ > 0   such that   ζ ( B ( s , δ ) ) ⊆ B ( ζ ( s , ε ) )  , that is    lim  n → ∞   ζ  (  x n  )  = ζ  (  lim  n → ∞    x n  )  .  





In the next section, we present our main results by proving the existence of a fixed point for mappings that satisfies different types of contractions in controlled rectangular metric-like spaces.




3. Main Results


Theorem 1.

Let   ( X , D )   be a complete controlled rectangular metric-like space, and T is continuous and maps to itself on   X .   If there exists   0 < k < 1 ,   such that   D ( T x , T y ) ≤ k D ( x , y )   and


    sup  m > 1    lim  l → ∞   θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x m  )  ≤  1 k  ,   








then in X there is a unique fixed point of T.





Proof. 

Let    x 0  ∈ X   and it is a sequence   {  x l  }   as follows    x 1  = T  x 0  ,  x 2  =  T 2   x 0  , ⋯ ,  x l  =  T l   x 0  , ⋯   Now, by the hypothesis of the theorem, we have


  D  (  x l  ,  x  l + 1   )  ≤ k D  (  x  l − 1   ,  x l  )  ≤  k 2  D  (  x  l − 2   ,  x  l − 1   )  ≤ ⋯ ≤  k l  D  (  x 0  ,  x 1  )  .  











Note that taking the limit of the above inequality as   n → ∞   we deduce that   D (  x l  ,  x  l + 1   ) → 0  as    l → ∞    . Denote by    D i  = D  (  x  l + i   ,  x  l + i + 1   )   . For all   l ≥ 1 ,   we have two cases.





Case 1: 

Let    x l  =  x m    for some integers   l ≠ m  . Therefore, if for   m > l   we have    T  m − l    (  x l  )  =  x l   . Choose   y =  x l    and   p = m − l  . Then    T p  y = y ,   and that is, y is a periodic point of T. Thus,   D  ( y , T y )  = D  (  T p  y ,  T  p + 1   y )  ≤  k p  D  ( y , T y )  .   Since   k ∈ ( 0 , 1 )  , we obtain   D ( y , T y ) = 0  , so   y = T y  , therefore, T has a fixed point y.





Case 2: 

Suppose    T l  x ≠  T m  x   for all integers   l ≠ m  . Let   l < m ∈ N ,   and to show that   {  x l  }   is a   D −  Cauchy sequence, we considered two subcases:



Subcase 1: Assume that   m = l + 2 p + 1 .   By property   ( 3 )   of the controlled rectangular-like metric spaces, we have,


     D (  x l  ,  x  l + 2 p + 1   )     ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )   [ D  (  x l  ,  x  l + 1   )  + D  (  x  l + 1   ,  x  l + 2   )  + D  (  x  l + 2   ,  x  l + 2 p + 1   )  ]           ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  D  (  x l  ,  x  l + 1   )  + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  D  (  x  l + 1   ,  x  l + 2   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )   [ D   (  x  l + 2   ,  x  l + 3   )         + D  (  x  l + 3   ,  x  l + 4   )  + D  (  x  l + 4   ,  x  l + 2 p + 1   )   ]         ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  D  (  x l  ,  x  l + 1   )  + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  D  (  x  l + 1   ,  x  l + 2   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  D  (  x  l + 2   ,  x  l + 3   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  D  (  x  l + 3   ,  x  l + 4   )           + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  D  (  x  l + 4   ,  x  l + 2 p + 1   )         ≤ ⋯     










        ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  D  (  x l  ,  x  l + 1   )  + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  D  (  x  l + 1   ,  x  l + 2   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  D  (  x  l + 2   ,  x  l + 3   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  D  (  x  l + 3   ,  x  l + 4   )           + ⋯ + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )         ⋯ θ  (  x  l + 2 p − 2   ,  x  l + 2 p − 1   ,  x  l + 2 p   ,  x  l + 2 p + 1   )  D  (  x  l + 2 p   ,  x  l + 2 p + 1   )           ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )   D 0  + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )   D 1         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )   D 2         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )   D 3           + ⋯        + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  × ⋯          × ⋯ θ  (  x  l + 2 p − 2   ,  x  l + 2 p − 1   ,  x  l + 2 p   ,  x  l + 2 p + 1   )   D  2 p       










        = θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )   [  D 0  +  D 1  ]         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )   [  D 2  +  D 3  ]           + ⋯ + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  × ⋯          × ⋯ θ  (  x  l + 2 p − 2   ,  x  l + 2 p − 1   ,  x  l + 2 p   ,  x  l + 2 p + 1   )   [  D  2 p − 1   +  D  2 p   ]           ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )   [  (  k l  +  k  l + 1   )  D  (  x 0  ,  x 1  )  ]         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )   [  (  k  l + 2   +  k  l + 3   )  D  (  x 0  ,  x 1  )  ]           + ⋯ + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  × ⋯          × ⋯ θ  (  x  l + 2 p − 2   ,  x  l + 2 p − 1   ,  x  l + 2 p   ,  x  l + 2 p + 1   )   [  (  k  l + 2 p − 2   +  k  l + 2 p − 1   )  D  (  x 0  ,  x 1  )  ]         ≤ [ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )   (  k l  +  k  l + 1   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )   (  k  l + 2   +  k  l + 3   )  +        ⋯ + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p + 1   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p + 1   )  × ⋯        × ⋯ θ  (  x  l + 2 p − 2   ,  x  l + 2 p − 1   ,  x  l + 2 p   ,  x  l + 2 p + 1   )   (  k  l + 2 p − 2   +  k  l + 2 p − 1   )   ] D   (  x 0  ,  x 1  )           =  ∑  r = 0   p − 1    ∏  i = 0  r  θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 2   ,  x  l + 2 p + 1   )   [  k  l + 2 l   +  k  l + 2 l + 1   ]  D  (  x 0  ,  x 1  )           =  ∑  r = 0   p − 1    ∏  i = 0  r  θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 2   ,  x  l + 2 p + 1   )   [ 1 + k ]   k  l + 2 r   D  (  x 0  ,  x 1  )      











As   k < 1  , the above inequalities imply the following:


  D  (  x l  ,  x  l + 2 p + 1   )  <  ∑  r = 0   p − 1    ∏  i = 0  r  θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 2   ,  x  l + 2 p + 1   )  2  k  l + 2 r   D  (  x 0  ,  x 1  )  .  








Since    sup  m > 1    lim  l → ∞   θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x m  )  ≤  1 k    we deduce that,


      lim  l , p → ∞   D  (  x l  ,  x  l + 2 p + 1   )      <  ∑  r = 0  ∞   ∏  i = 0  r  θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 2   ,  x  l + 2 p + 1   )  2  k  l + 2 r   D  (  x 0  ,  x 1  )           ≤  ∑  r = 0  ∞   1  k  r + 1    2  k  l + 2 r   D  (  x 0  ,  x 1  )           ≤  ∑  r = 0  ∞  2  k  l + r − 1   D  (  x 0  ,  x 1  )  .     








The series    ∑  r = 0  ∞  2  k  l + r − 1   D  (  x 0  ,  x 1  )    is convergent by the ratio test, which implies that   D (  x l  ,  x  l + 2 p + 1   )   converges as   l , p → ∞ .  



Subcase 2:   m = l + 2 p   Fist of all, note that


  D  (  x l  ,  x  l + 2   )  ≤ k D  (  x  l − 1   ,  x  l + 1   )  ≤  k 2  D  (  x  l − 2   ,  x l  )  ≤ ⋯ ≤  k l  D  (  x 0  ,  x 2  )  ,  








which leads us to conclude that   D (  x l  ,  x  l + 2   ) → 0   as   l → ∞ .   Similarly to Subcase 1, we have:


     D (  x l  ,  x  l + 2 p   )     ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )   [ D  (  x l  ,  x  l + 1   )  + D  (  x  l + 1   ,  x  l + 2   )  + D  (  x  l + 2   ,  x  l + 2 p   )  ]           ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  D  (  x l  ,  x  l + 1   )  + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  D  (  x  l + 1   ,  x  l + 2   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p   )   [ D   (  x  l + 2   ,  x  l + 3   )         + D  (  x  l + 3   ,  x  l + 4   )  + D  (  x  l + 4   ,  x  l + 2 p   )   ]         ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  D  (  x l  ,  x  l + 1   )  + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  D  (  x  l + 1   ,  x  l + 2   )      










        + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p   )  D  (  x  l + 2   ,  x  l + 3   )         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p   )  D  (  x  l + 3   ,  x  l + 4   )           + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p   )  D  (  x  l + 4   ,  x  l + 2 p   )      










        ≤ θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )   D 0  + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )   D 1         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p   )   D 2         + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p   )   D 3           + ⋯        + θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x  l + 2 p   )  θ  (  x  l + 2   ,  x  l + 3   ,  x  l + 4   ,  x  l + 2 p   )  × ⋯          × ⋯ θ  (  x  l + 2 p − 3   ,  x  l + 2 p − 2   ,  x  l + 2 p − 1   ,  x  l + 2 p   )   D  2 p          +  ∏  i = 0   2 p − 2   θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 1   ,  x  l + 2 p   )  D  (  x  l + 2 p − 2   ,  x  l + 2 p   )      










        =  ∑  r = 0   p − 1    ∏  i = 0  r  θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 2   ,  x  l + 2 p + 1   )   [  k  l + 2 r   +  k  l + 2 r + 1   ]  D  (  x 0  ,  x 1  )           +  ∏  i = 0   2 p − 2   θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 1   ,  x  l + 2 p   )  D  (  x  l + 2 p − 2   ,  x  l + 2 p   )      










        =  ∑  r = 0   p − 1    ∏  i = 0  r  θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 2   ,  x  l + 2 p + 1   )   [ 1 + k ]   k  l + 2 r   D  (  x 0  ,  x 1  )           +  ∏  i = 0   2 p − 2   θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 1   ,  x  l + 2 p   )  D  (  x  l + 2 p − 2   ,  x  l + 2 p   )           ≤  ∑  r = 0   p − 1    ∏  i = 0  r  θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 2   ,  x  l + 2 p + 1   )   [ 1 + k ]   k  l + 2 r   D  (  x 0  ,  x 1  )           +  ∏  i = 0   2 p − 2   θ  (  x  l + 2 i   ,  x  l + 2 i + 1   ,  x  l + 2 i + 1   ,  x  l + 2 p   )   k  l + 2 p − 2   D  (  x 0  ,  x 2  )      








Since    sup  m > 1    lim  l → ∞   θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x m  )  ≤  1 k    we deduce that,


      lim  l , p → ∞   D  (  x l  ,  x  l + 2 p   )       ≤  lim  l , p → ∞    ∑  r = 0   p − 1    1  k  l + 1     [ 1 + k ]   k  l + 2 r   D  (  x 0  ,  x 1  )  +  k  2 p − 1    k  l + 2 p − 2   D  (  x 0  ,  x 2  )           =  lim  l , p → ∞    ∑  r = 0   p − 1    [ 1 + k ]   k  l + r − 1   D  (  x 0  ,  x 1  )  +  k  l − 1   D  (  x 0  ,  x 2  )           ≤  ∑  m = 0  ∞   [ 1 + k ]   k m  D  (  x 0  ,  x 1  )  +  k m  D  (  x 0  ,  x 2  )      








From the ratio test, it is easy to show that the series


   ∑  m = 0  ∞   [ 1 + k ]   k m  D  (  x 0  ,  x 1  )  +  k m  D  (  x 0  ,  x 2  )   








converges. Hence,   D (  x l  ,  x  l + 2 p   )   converges as   l , p   going  toward    ∞ .   Thus, by subcase 1 and subcase 2, it is proved that the sequence   {  x l  }   is a   D −  Cauchy sequence. Since   ( X , D )   is a D-complete extended rectangular metric-like space, we deduce that   {  x l  }   converges to some   ν ∈ X .   Now, we show that  ν  is fixed point of   T .  


  D  (  x l  ,  x  l + 1   )  = D  ( T  x  l − 1   , T  x l  )  ≤ k D  (  x  l − 1   ,  x l  )  = k D  (  x  l − 1   , T  x  l − 1   )  < D  (  x  l − 1   , T  x  l − 1   )   








Now, taking the limit   l → ∞  , and as T is continuous, we deduce that


  D ( ν , T ν ) < D ( ν , T ν ) ,  








which leads us to a contradiction. Hence,   D ( ν , T ν ) = 0   and that is   T ν = ν   and  ν  is a fixed point of   T .  



Finally, for uniqueness, let us assume two fixed points of T say  ν  and  μ  such that   ν ≠ μ .   By the contractive property of T we have:


  D ( ν , μ ) = D ( T ν , T μ ) ≤ k D ( ν , μ ) < D ( ν , μ )  








which leads us to contradiction. Thus, T has a unique fixed point as required. □





Theorem 2.

Let   ( X , D )   be a complete controlled rectangular metric-like space, and T a continuous self-mapping on X satisfying the following condition; for all   x , y ∈ X   there exists   0 < k <  1 2    such that


   D ( T x , T y ) ≤ k [ D ( x , T x ) + D ( y , T y ) ]   








Furthermore, if


    sup  m > 1    lim  l → ∞   θ  (  x l  ,  x  l + 1   ,  x  l + 2   ,  x m  )  ≤  1 k  ,   








and for all   u , v ∈ X  , we have:


    lim  l → ∞   θ  ( u , v ,  x l  ,  x  l + 1   )  ≤ 1 ,   








then T has a fixed point in   X .   Moreover, if for every fixed point ν of T we have   D ( ν , ν ) = 0 ,   then the fixed point of T is unique.





Proof. 

Let    x 0  ∈ X   and define the sequence   {  x l  }   as follows


   x 1  = T  x 0  ,  x 2  = T  x 1  =  T 2   x 0  , ⋯ ,  x l  = T  x  l − 1   =  T n   x 0  , ⋯  








First of all, note that for all   l ≥ 1  , we have


        D  (  x l  ,  x  l + 1   )  ≤ k  [ D  (  x  l − 1   ,  x l  )  + D  (  x l  ,  x  l + 1   )  ]         ⇒  ( 1 − k )  D  (  x l  ,  x  l + 1   )  ≤ k D  (  x  l − 1   ,  x l  )         ⇒ D  (  x l  ,  x  l + 1   )  ≤  k  1 − k   D  (  x  l − 1   ,  x l  )  .     








Since   0 < k <  1 2   , one can easily deduce that   0 <  k  1 − k   < 1 .   Therefore, let   μ =  k  1 − k   .  



Hence,


     D (  x l  ,  x  l + 1   )     ≤ μ D (  x  l − 1   ,  x l  )          ≤  μ 2  D  (  x  l − 2   ,  x  l − 1   )         ≤ ⋯        ≤  μ l  D  (  x 0  ,  x 1  )  .     








Therefore,


  D (  x l  ,  x  l + 1   ) → 0    as    l → ∞ .    











Furthermore, for all   l ≥ 1  , we have


  D  (  x l  ,  x  l + 2   )  ≤ k  [ D  (  x  l − 1   ,  x l  )  + D  (  x  l + 1   ,  x  l + 2   )  ]   








Thus, by using the fact that   D (  x l  ,  x  l + 1   ) → 0    as    l → ∞ ,   we deduce that


  D (  x l  ,  x  l + 2   ) → 0    as    l → ∞ .  











Now, similarly to the proof of case 1 and case 2 of Theorem 1, we deduce that the sequence   {  x l  }   is a   D −  Cauchy sequence. Since   ( X , D )   is a D-complete controlled rectangular metric-like space, we conclude that   {  x l  }   converges to some   ν ∈ X .   Now, we show that  ν  is a fixed point of   T .  


  D  (  x l  ,  x  l + 1   )  = D  ( T  x  l − 1   , T  x l  )  ≤ k  [ D  (  x  l − 1   , T  x  l − 1   )  + D  (  x l  , T  x l  )  ]   








Now, taking the limit as   l → ∞   and using the fact that T is continuous, we deduce that


  D  ( ν , T ν )  < k  [ D  ( ν , T ν )  + D  ( ν , T ν )  ]  = 2 k D  ( ν , T ν )  < D  ( ν , T ν )     since     k <  1 2  ,  








which leads us to a contradiction. Hence,   D ( ν , T ν ) = 0  , and that is,   T ν = ν  , and  ν  is a fixed point of   T .   To show uniqueness, we assume two fixed points of T, say  ν  and  μ  such that   ν ≠ μ .   By the contractive property of T, we have:


  D ( ν , μ ) = D ( T ν , T μ ) ≤ k [ D ( ν , T ν ) + D ( μ , T μ ) ] = k [ D ( ν , ν ) + D ( μ , T μ ) ] = 0 .  








Thus,   D ( ν , μ ) = 0   and, that is,   ν = μ .   Therefore, T has a unique fixed point as required. □





In the next section, we present an application of our result.




4. Application


Let X be the set   C ( [ 0 , 1 ] , R )   and consider the following Fredholm type integral equation:


   ζ ′   ( t )  =  ∫  0  1  F  ( ψ , ω ,  ζ ′   ( t )  )  d s ,  for  ψ , ω ∈  [ 0 , 1 ]   



(1)




where   F ( ψ , ω ,  ζ ′   ( t )  )   is continuous from     [ 0 , 1 ]  2  → R .   Next, let


     D : X     × X ⟶ R         ( ζ , ϱ )  ↦  sup  t ∈ [ 0 , 1 ]    (    |   ζ ′    ( t )  | + | ϱ  ( t )  |   2  )      








Notice that   ( X , D )   is a complete controlled rectangular metric-like space, where


  θ ( x , y , u , v ) = max { x , y , u , v } .  











Theorem 3.

If   ζ , ϱ ∈ X   satisfies the following conditions



  ( 1 )     | F   ( ψ , ω ,  ζ ′   ( t )  )   | + | F   ( ψ , ω , ϱ  ( t )  )   | ≤ k ( |   ζ ′    ( t )  | + | ϱ  ( t )  | ) ,    for some   k ∈ ( 0 , 1 ) ;  



  ( 2 )    F  ( ψ , ω ,  ∫  0  1  F  ( ψ , ω ,  ζ ′   ( t )  )  d s )  < F  ( ψ , ω ,  ζ ′   ( t )  )    for all   ψ , ω ,  



then Equation (1) has a unique solution.





Proof. 

Let   T : X ⟶ X   be defined by   T  ζ ′   ( t )  =  ∫  0  1  F  ( ψ , ω ,  ζ ′   ( t )  )  d s ,   then



  D  ( T ζ , T ϱ )  =  sup  t ∈ [ 0 , 1 ]    (    | T   ζ ′    ( t )  | + | T ϱ  ( t )  |   2  )  .   Hence,


       | T   ζ ′    ( t )  | + | T ϱ  ( t )  |   2     =    |   ∫  0  1  F  ( ψ , ω ,  ζ ′   ( t )  )   d s | + |   ∫  0  1  F  ( ψ , ω , ϱ  ( t )  )   d s |   2         ≤    ∫  0  1   | F   ( ψ , ω ,  ζ ′   ( t )  )   | d s +   ∫  0  1   | F  ( ψ , ω , ϱ  ( t )  )  |  d s  2         =    ∫  0  1   ( | F   ( ψ , ω ,  ζ ′   ( t )  )   | + | F   ( ψ , ω , ϱ  ( t )  )   | )  d s  2         ≤    ∫  0  1   k ( |   ζ ′    ( t )  | + | ϱ  ( t )  | ) d s   2         ≤ k D (  ζ ′  , ϱ ) .     








Thus,   D ( T ζ , T ϱ ) ≤ k D ( ζ , ϱ ) .   Now, let   n ∈  N ☆    and   ζ ∈ X ;  


      (  T n  ζ )   ( t )  = T  (  T  n − 1    ζ ′   ( t )  )      =  ∫  0  1  F  ( ψ , ω ,  T  n − 1    ζ ′   ( t )  )  d s        =  ∫  0  1  F  ( ψ , ω , T  (  T  n − 2   ζ )   ( t )  )  d s        =  ∫  0  1  F  ( ψ , ω ,  ∫  0  1  F  ( ψ , ω ,  (  T  n − 2    ζ ′   ( t )  )  )  )  d s        <  ∫  0  1  F  ( ψ , ω ,  (  T  n − 2    ζ ′   ( t )  )  )  d s =  (  T  n − 1    ζ ′   ( t )  )      








Therefore, for all   t ∈ [ 0 , 1 ]   we have    (  T n   ζ ′   ( t )  )  n  , which is a strictly decreasing and bounded-below sequence and, hence, converges to some l. Since    (  T n  )  n   is a monotone sequence, it follows from Dini Theorem that    sup t   |  T n   ζ ′   ( t )  |    converges to some    l ′  ≤  sup  ψ , ω    | F  ( ψ , ω ,  ζ ′   ( t )  )  |  .   Now, it is not difficult to see that all the hypotheses of Theorem 1 are satisfied, and therefore, Equation (1) has a unique solution as required. □






5. Conclusions


In this manuscript, we have introduced a new type of metric space, which is a generalization of rectangular metric spaces, rectangular b-metric spaces, and controlled rectangular metric spaces. We have proved the existence and uniqueness of a fixed point for self-mapping on controlled rectangular metric-like spaces. Our results are a generalization of many theorems in the literature. Finally, we gave an application of our result to the Fredholm-type integral equation.



In closing, we would like to present the following two questions;



Question 1.

Let   ( X , D )   be a controlled rectangular metric like space, and T a map from   X → X .   Assume that for all   ζ , η , T ζ , T η ∈ X   there exists   k ∈ ( 0 , 1 )  , where


   D ( T ζ , T η ) ≤ k θ ( ζ , η , T ζ , T η ) D ( ζ , η )   








under what other condition(s) does T have a unique fixed point in    X ?   





Question 2.

Let  ( X , D )   be a controlled rectangular metric-like space, and T a map from  X → X .  Assume that for all  ζ , η , T ζ , T η ∈ X  there exists  k ∈ ( 0 , 1 )  , where


  D ( T ζ , T η ) ≤ θ ( ζ , η , T ζ , T η ) [ D ( ζ , T ζ ) + D ( η , T η ) ]  








under what other condition(s) does T have a unique fixed point in   X ?  









Author Contributions


Conceptualization, S.H., F.A. and N.M.; methodology, S.H., F.A. and N.M.; supervision, N.M.; validation, S.H., F.A. and N.M.; writing—original draft preparation, S.H., F.A. and N.M. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Informed Consent Statement


Not applicable.




Data Availability Statement


Not applicable.




Acknowledgments


The authors would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Banach, S. Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]

	



Souayah, N.; Mrad, M. On Fixed-Point Results in Controlled Partial Metric Type Spaces with a Graph. Mathematics 2020, 8, 33. [Google Scholar] [CrossRef]

	



Souayah, N.; Mrad, M. Some Fixed Point Results on Rectangular Metric-Like Spaces Endowed with a Graph. Symmetry 2019, 11, 18. [Google Scholar] [CrossRef]

	



Abodayeh, K.; Karapınar, E.; Pitea, A.; Shatanawi, W. Hybrid contractions on Branciari type distance spaces. Mathematics 2019, 7, 994. [Google Scholar] [CrossRef]

	



Chauhan, S.; Aydi, H.; Shatanawi, W.; Vetro, C. Some integral type fixed-point theorems and an application to systems of functional equations. Vietnam. J. Math. 2014, 42, 17–37. [Google Scholar] [CrossRef]

	



Laksaci, N.; Boudaoui, A.; Shatanawi, W. TAM Shatnawi Existence Results of Global Solutions for a Coupled Implicit Riemann-Liouville Fractional Integral Equation via the Vector Kuratowski Measure of Noncompactness. Fractal Fract. 2022, 6, 130. [Google Scholar] [CrossRef]

	



Shatanawi, W.; Karapinar, E.; Aydi, H.; Fulga, A. Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations. Univ. Politech. Buchar. Sci. Bull. Ser. Appl. 2020, 82, 157–170. [Google Scholar]

	



Kamran, T.; Samreen, M.; Ul Ain, Q. A Generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef]

	



Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]

	



Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled Metric Type Spaces and the Related Contraction Principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]

	



Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]

	



Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 2000, 1–2, 31–37. [Google Scholar]

	



George, R.; Rodenovic, S.; Rashma, K.P.; Shukla, S. Rectangular b-metric spaces and contraction principals. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]

	



Mlaiki, N.; Hajji, M.; Abdeljawad, T. A new extension of the rectangular-metric spaces. Adv. Math. Phys. 2020, 2020, 8319584. [Google Scholar] [CrossRef]

	



Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]

	



Shukla, S. Partial Rectangular Metric Spaces and Fixed Point Theorems. Sci. World J. 2014, 2014, 756298. [Google Scholar] [CrossRef] [PubMed]












	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  symmetry-14-00991


  
    		
      symmetry-14-00991
    


  




  





media/file0.png


