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Abstract: In this paper, composite high-dimensional nonparametric tests for two samples are pro-
posed, by using component-wise Wilcoxon–Mann–Whitney-type statistics. No distributional assump-
tion, moment condition, or parametric model is required for the development of the tests and the
theoretical results. Two approaches are employed, for estimating the asymptotic variance of the
composite statistic, leading to two tests. In both cases, banding of the covariance matrix to estimate
variance of the test statistic is involved. An adaptive algorithm, for selecting the banding window
width, is proposed. Numerical studies are provided, to show the favorable performance of the new
tests in finite samples and under varying degrees of dependence.

Keywords: high dimension; two-sample test; Wilcoxon–Mann–Whitney; nonparametric; α-mixing

1. Introduction

Recent advances in technology have allowed for the collection of data in high frequency
and resolution. Sparked by these advances, high-dimensional data have been a subject of
theoretical and applied investigations, in the last few decades. High-dimensional refers
to the situation where the dimension is (much) larger than the sample size. Examples
include data from genomic studies, biological studies, financial studies, satellite imaging,
modern diagnostic and intervention modalities, etc. To analyze these data, in particular
in the context of group or treatment comparison, the asymptotic theory requires both the
sample sizes and dimensions to diverge. For an extensive account of the literature on this
subject, we refer the reader to the review article by Harrar and Kong [1].

The classical parametric tests (e.g., [2]) are not applicable because the sample covari-
ance matrices are singular. Even in the nonsingular situation, these tests suffer from low
power [3]. The problem is worse, if the distribution of the data is heavy-tailed, or if the
data is measured in a nonmetric scale, as the usual mean-based hypothesis and inference
are not well defined anymore.

Nonparametric methods are well known for being more robust against nonnormality
and other conditions, than their parametric counterparts. Classical nonparametric theory
formulates tests, considering distribution functions rather than parameters. The challenges
with these formulations are that (a) the alternative hypothesis is difficult to interpret and
(b) the tests can not be pivoted to construct confidence intervals. To overcome these chal-
lenges, some characteristic of the distribution functions is, often, investigated to compare
treatments. In our interest, to be as general as possible, we will employ a nonparametric
test statistic, for quantifying group or treatment differences.

In the finite dimensional situation (small p and large n), the problem of testing hy-
potheses formulated in terms of the nonparametric relative effects have been considered
in several papers (e.g., [4–8]). A related topic to high-dimensional inference is the asymp-
totic setting, where the number of treatments goes to infinity but the sample size per
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treatment could be fixed or large. These problems have been thoroughly investigated in
nonparametric situations [9–13]. High-dimensional theory for nonparametric methods is
underdeveloped. To the best of our knowledge, there are only two papers that have studied
this problem [14,15]. Wang and Akritas [14] focuses on hypotheses formulated in terms of
marginal distributions, while Kong and Harrar [15] considered the more general situation,
in which the hypotheses of interest are formulated in terms of the nonparametric relative
effects. The underlying idea in both works [14,15] is to make the stochastic comparison of
each marginal distribution relative to the overall (average of all marginal) distributions.
Therefore, the variables must be commensurate, for these methods to be appropriate. It
is one aim of the present manuscript to overcome this challenge, by defining the relative
effects, marginally.

Consider two mutually independent random samples Xi1, . . . , Xini ∈ Rp for i ∈ {1, 2}.
For each i, denote Xij = (Xij1, . . . , Xijp)

>, where the random variable Xijk is the kth variable
of the jth subject from the ith sample group. Denote the total sample size by n = n1 + n2.
To be as general as possible, we assume the nonparametric model

Xijk ∼ Fik, for j = 1, ..., ni,

where Fik(·) is an arbitrary non-degenerate distribution function. In order to accommodate
binary, ordered categorical, discrete, and continuous data types in a unified manner, we
will use the normalized version of the distribution function, defined as

Fik(x) =
1
2

{
F+

ik (x) + F−ik (x)
}
= P(Xi1k < x) +

1
2

P(Xi1k = x),

where F−ik (x) = P(Xi1k < x) and F+
ik (x) = P(Xi1k ≤ x) are the left and right continuous

versions of the distribution function [16–18].
In our investigation to compare group effects, we study the so-called nonparametric

relative group effects. The relative effect for the kth variable is defined by

ωk = P(X11k < X21k) +
1
2

P(X11k = X21k) =
∫

F1kdF2k. (1)

When ωk is greater that 1/2, we interpret that observations on the kth variable in
the first sample tend to have smaller values, than observations on the kth variable in the
second sample and vice versa, if ωk is smaller than 1/2. If ωk = 1/2, the two variables are
tendentiously equal. It is obvious that if F1k = F2k, then ωk = 1/2. However, ωk = 1/2
does not necessarily imply F1k = F2k. For example, assume Xi1k has normal distribution
with mean µik and standard deviation σik, for each i. It is easy to see that ωk = 1

2 , if and
only if µ1k = µ2k, but F1k and F2k may have different standard deviations. Motivated by
this, we consider a nonparametric hypothesis testing, about ωk’s in the high-dimensional
framework. The multivariate relative effect of interest combines all marginal effects,
ω = (ω1, ..., ωp)>. The global non-parametric hypothesis in terms of these relative
effects is

H0 : ω =
1
2

1p. (2)

A parametric hypothesis could be a special case of (2), e.g., for the multivariate
normal distribution.

In this paper, we investigate nonparametric tests, for testing the hypothesis H0 in high
dimension. Our tests are applicable, even in situations where the variables are measured
in binary, ordinal, and continuous scales, or a mixture of these. The main contributions
are: (a) we construct a nonparametric test in high dimension. A composite of variable-
by-variable univariate Wilcoxon–Mann–Whitney type tests of Brunner and Munzel [4]
is proposed. We develop the asymptotic theory of the test statistics, without requiring
any distributional assumption, moment condition, or parametric model. Motivated by
Gregory et al. [19] and Zhang and Wang [20], two versions of the scaling parameter are
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constructed. (b) We provide an adaptive algorithm for the asymptotic variance estima-
tion. (c) We have shown, with a simulation study, that the proposed tests have superior
performance compared to existing methods, especially for heavy-tailed data, where the
parametric tests are not applicable.

The remainder of the paper is organized as follows. We propose the rank-based-
test statistic in Section 2. The asymptotic results for the test statistic and the results are
used to construct hypothesis tests are stated in Section 3. The performance of the tests is
investigated via simulation study in Section 4, together with the adaptive algorithm for
selecting the banding window width. Finally, we will end the paper with some conclusions
in Section 5. All technical details and proofs of lemmas are shifted to the Appendix A.

2. Test Statistic
2.1. Preliminaries

For any k ∈ {1, . . . , p}, define the transformed variables Y1jk and Y2jk by

Y1jk = F2k(X1jk) for j ∈ {1, . . . , n1}, and Y2jk = F1k(X2jk), for j ∈ {1, . . . , n2}.

Let Yij = (Yij1, . . . , Yijp)
> for i ∈ {1, 2} and j ∈ {1, . . . , ni} be a vector of the transformed

variables. Note that Yi1, . . . , Yini are iid, and the two samples {Y1j : j = 1, . . . , n1} and {Y2j :
j = 1, . . . , n2} are, still, independent. Further, let Y i = (Yi1, . . . , Yip)

> and Si = (Sikk′)
p
k,k′=1

be the sample mean vector and sample covariance matrix for the ith sample, where Yik and
Sikk (also denoted by S2

ik) are the sample mean and sample variance, respectively, of the
k-th variable, and Sikk′ is the sample covariance between the k-th and k′-th variables.

Note that Yijk ∈ [0, 1] and is a non-degenerate random variable. Moments of any order
of Yijk exist, and σ2

ik = Var(Yijk) > 0. In particular,

E(Y1jk) = 1−ωk and E(Y2jk) = ωk.

The null hypothesis (2) is equivalent to the equality of mean vectors of Y11 and Y21, i.e.,
ω = 1p −ω. The problem of testing equality of mean vectors has been, extensively, studied
under the parametric and semiparametric contexts (see [1]). One of the test statistics that
has received considerable attention for testing

H0 : µ1 = µ2 against H0 : µ1 6= µ2

is a composite statistic, formed by averaging the squared two-sample t-statistic over the p
dimensions. More specifically,

Tn = p−1
p

∑
k=1

t2
k , where tk =

Y2k −Y1k√
S2

1k/n1 + S2
2k/n2

. (3)

Intuitively, this statistic quantifies the “total” separation between two groups, across all
the dimensions.

To maintain an approximate balance between the two samples, we assume n1 and
n2 have the same order of magnitude, i.e., ni/n → λi ∈ (0, 1) as n1, n2 → ∞. Further, to
standardize Tn in high dimension, various estimators for variance of Tn have been proposed
(e.g., [19–21]). Srivastava and Du [21] makes multivariate normality assumption, which
was later, generalized, to a nonnormal situation by Srivastava et al. [22].

The test by Gregory et al. [19] assumed {t2
k : k = 1, . . . , p} to be an α-mixing sequence

and proposed the so-called Generalized Component Test (GCT) statistic, by normalizing
Tn as

TGCT =

√
p(Tn − ξ̃n)

ζ̃n
. (4)
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Two estimators of the centering parameter ξ̃n suitable for moderate-p and large-p
were proposed. For moderate-p, more precisely p = o(n2), the center estimator is ξ̃n = 1.
For large-p, specifically p = o(n6), it was shown that E[Tn] = 1 + n−1an + n−2bn + O(n−3)
under some moment conditions and, thus, center estimator

ξ̃n = 1 +
1
n

ãn +
1
n2 b̃n, (5)

was proposed, where the rather lengthy formulas for ãn and b̃n can be found in their
paper. The finite sample corrections in the second and third terms on the right-hand
side of (5) guard against finite sample bias, from the large-sample approximation of the
center. This bias could accumulate considerably, as the dimension p gets large. The scaling
quantity ζ̃n was estimated by a smoothed version of the sample autocovariance function of
{t2

k : k = 1, . . . , p} as

ζ̃n = ∑
|r|<L

w(r/L)γ̃(r), where γ̃(r) =
1

p−|r|

p−|r|

∑
k=1

(t2
k − Tn)(t2

k+|r| − Tn), (6)

where L is a user-selected window width, and w(·) is an even-weight function. Such
weight functions are, commonly, used in spectral-density estimation (e.g., [23]) and satisfy
w(0) = 1,

∣∣w(x)
∣∣ ≤ 1 for |x| ≤ 1 and w(x) = 0 for |x| > 1. Two examples of smoothing

weight functions that were used in Gregory et al. [19] are the Parzen window and the
trapezoid window [24], defined by

wp(r/L) =


1− 6|r/L|2 + 6|r/L|3 , if 0 ≤|r| < L/2;

2
(

1−|r/L|
)3

, if L/2 ≤|r| ≤ L;
0 if |r| > L,

and

wt(r/L) =


1, if 0 ≤|r| < L/2;
1− |r|−bL/2c

L−bL/2c if L/2 ≤|r| ≤ L;
0 if |r| > L,

respectively, where bL/2c denotes the largest integer not exceeding L/2.
More recently, Zhang and Wang [20] proposed a more efficient scaling quantity and,

therefore, a potentially more powerful test (MPT) statistic can be defined, by making α-
mixing assumption on the original data. Denote σikk′ = Cov(Yi1k, Yi1k′) and
σ2

ik = Var(Yi1k) for i ∈ {1, 2}. Applying Lemma 2.1 of Zhang and Wang [20], it follows that
Cov(t2

k , t2
k′) = γkk′ + O(n−1/2) for any k, k′ ∈ {1, . . . , p}, where

γkk′ =
2
(

σ1kk′/λ1 + σ2kk′/λ2

)2(
σ2

1k/λ1 + σ2
2k/λ2

)(
σ2

1k′/λ1 + σ2
2k′/λ2

) . (7)

Estimating σikk′ and σ2
ik, by the sample covariance Sikk′ and sample variance S2

ik, respectively,
the quantity γkk′ can be estimated by

γ̃kk′ =
2
(

S1kk′/λ1 + S2kk′/λ2

)2(
S2

1k/λ1 + S2
2k/λ2

)(
S2

1k′/λ1 + S2
2k′/λ2

) .
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Note that the assumptions of the aforementioned Lemma 2.1, of Zhang and Wang [20],
are automatically satisfied for Yijk. Zhang and Wang [20] proposed the estimator of
Var(
√

pTn) as

τ̃2
n =

1
p ∑
|k−k′ |≤L

γ̃kk′ , (8)

where L = dpεe is a window width for some 0 < ε < 1. The banded partial sum
is intended to capture the important correlations among neighboring observations and
facilitates consistent estimation of the asymptotic variance. Zhang and Wang [20] suggested
selecting L = dp3/8e when p ≥ 300 for practical applications. Incidentally, they, also, noted
from their simulation study that the type I error rate and power of GCT change, drastically,
with varying window width. We will discuss more about window-width selection in
Section 4. They, numerically, validated that the estimator τ̃2

n provides an improvement over
ζ̃2

n, for scaling Tn. An intuitive explanation is that τ̃2
n makes use of the replications in the

sample, directly, to reduce the variability.
The MPT statistic is, then, defined by normalizing Tn as

TMPT =

√
p(Tn − ξ̃n)

τ̃n
. (9)

It was noted in Zhang and Wang [20] that both GCT and MPT yield liberal type I
error rates, when using the large-p version of the centering parameter ξ̃n, given in (5).
This happens, especially, in small n, which may be due to the fact that the third and
fourth moments involved in the estimator ξ̃n, often, require large sample size to achieve a
reasonable accuracy. Both Gregory et al. [19] and Zhang and Wang [20] proposed to reject
null hypothesis with two-tailed rejection regions.

However, the transformed variables {Yijk} are not observable and, thus, the test statis-
tics TGCT or TMPT cannot be, directly, computed to test the nonparametric null hypothesis (2).
Alternatively, the empirical distribution functions will be substituted in places of the distri-
bution functions, to construct valid nonparametric tests. This strategy is investigated in
detail in the next subsection.

2.2. Nonparametric Tests

In our approach, we seek rank-based estimates for the relative effects and use these
estimates to construct a nonparametric test. To that end, define F̂ik =

1
2 (F̂+

ik + F̂−ik ), where
F̂+

ik and F̂−ik are the right- and left-continuous empirical distribution functions, respectively.
More specifically, F̂ik(x) = 1

ni
∑ni

j=1 c(x − Xijk), where c(u) = 0, 1/2, or 1 according to

u < 0, u = 0, or u > 0. For k ∈ {1, . . . , p}, define Ŷ1jk = F̂2k(X1jk) for j ∈ {1, . . . , n1} and
Ŷ2jk = F̂1k(X2jk) for j ∈ {1, . . . , n2}.

It is natural to estimate the relative effects ωk, by replacing the distribution functions
Fik with their empirical counterparts F̂ik. That is,

ω̂k =
∫

F̂1kdF̂2k =
1
n2

n2

∑
j=1

F̂1k(X2jk) =
1

n1n2

n1

∑
`=1

n2

∑
j=1

c(X2jk − X1`k),

which is, actually, the sample mean of Ŷ2jk for k ∈ {1, . . . , p} and can be computed in terms
of component-wise ranks as [4],

ω̂k =
1

n1n2

n2

∑
j=1

(
R2jk − R(2)

jk

)
=

1
n1

(
R2·k −

n2 + 1
2

)
.
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To see this, observe that Ŷ2jk =
1

n−ni
(R2jk − R(2)

jk ) and ∑ni
j=1 R(i)

jk = ni(ni−1)
2 , where Rijk refers

to the (mid-)rank of Xijk among all n observations of the k-th variable within the two

samples, R(i)
jk refers to the (mid-)rank of Xijk, among the ni observations of the k-th variable,

within sample i, and Ri·k =
1
ni

∑ni
j=1 Rijk. More precisely, Rijk = n1 F̂1k(Xijk) + n2 F̂2k(Xijk) +

1/2 and R(i)
jk = ni F̂ik(Xijk) + 1/2.

Note that ω̂k is the Wilcoxon–Mann–Whitney-type U-statistic. It is well known that, even
in the presence of ties, the estimator ω̂k is L2-consistent for ωk, under the asymptotic framework
that n1 and n2 diverge proportionally [4,17]. It is, also, well known that, under the same
asymptotic framework,

√
n(ω̂k −ωk)/σk has, asymptotically, a standard normal distribution,

N (0, 1), where σ2
k = n(σ2

1k/n1 + σ2
2k/n2) (see, also, Theorem 2 of [6]). An L2-consistent

rank-based estimator for σ2
k can be constructed, as given in Brunner and Munzel [4]

σ̂2
k = n( σ̂2

1k/n1 + σ̂2
2k/n2),

where

σ̂2
ik =

1
(n− ni)2(ni − 1)

ni

∑
j=1

(
Rijk − R(i)

jk − Ri·k +
ni + 1

2

)2
(10)

is the sample variance of Ŷijk for j ∈ {1, . . . , ni}. Thus, it follows, immediately, from
Slutsky’s theorem that

√
n(ω̂k−ωk)/σ̂k has, asymptotically, a standard normal distribution,

N (0, 1). Some of these results are summarized in Lemmas A1–A7 of Appendix A.
Under the null hypothesis (2), denote

t̂k =
√

n(ω̂k − 1/2)/σ̂k.

Obviously, t̂k and tk have the same asymptotic distribution under the null hypothesis (2).
In the following Lemma, the mean of t̂2

k is given, up to the order of n−1.

Lemma 1. Assume limn→∞ ni/n → λi ∈ (0, 1) for i = 1, 2 and min{σ2
1k, σ2

2k} > 0, for all
k ∈ {1, . . . , p}. Then, under H0, E(t̂2

k) = 1 + O(n−1), for any k ∈ {1, . . . , p}. Moreover,
supk E[t̂2r

k ] < ∞, for any integer r > 1.

The covariance of t̂2
k and t̂2

k′ , for any k, k′ ∈ {1, . . . , p}, are given up to the order of

n−1/2, in Lemma 2. It is shown that the covariance Cov
(

t̂2
k , t̂2

k′

)
shares the same dominating

term as Cov(t2
k , t2

k′).

Lemma 2. Assume limn→∞ ni/n → λi ∈ (0, 1) for i = 1, 2 and min{σ2
1k, σ2

2k} > 0 for all

k ∈ {1, . . . , p}. Then, under H0, Cov
(

t̂2
k , t̂2

k′

)
= γkk′ + O(n−1/2), for any k, k′ ∈ {1, . . . , p},

where γkk′ is defined in (7).

The core component of our test is the composite statistic

T̂n =
1
p

p

∑
k=1

t̂2
k . (11)

The motivation behind this construction is that in many high-dimensional applications, e.g.,
transcriptomics, the effect on any individual variable (gene expression) may be small, and
composite statistics will have high power in detecting the cumulative effect. To develop
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a test statistic for testing the null hypothesis (2), based on (11), there are two options for
scaling T̂n. One is replacing tk by t̂k in (6), i.e., define

ζ̂n = ∑
|r|<L

w(r/L)γ̂(r), where γ̂(r) =
1

p−|r|

p−|r|

∑
k=1

(t̂2
k − T̂n)(t̂2

k+|r| − T̂n), (12)

and employ similar results, as in Gregory et al. [19]. The other option is using a scale similar
to (8) and define

τ̂2
n =

1
p ∑
|k−k′ |≤L

γ̂kk′ , where γ̂kk′ =
2
(

σ̂1kk′/λ1 + σ̂2kk′/λ2

)2(
σ̂2

1k/λ1 + σ̂2
2k/λ2

)(
σ̂2

1k′/λ1 + σ̂2
2k′/λ2

) , (13)

σ̂2
ik is the L2-consistent estimator for σ2

ik, defined in (10), and σ̂ikk′ is the L2-consistent
estimator of σikk′ , defined by (see Lemma A8),

σ̂ikk′ =
1

(n− ni)2(ni − 1)

ni

∑
j=1

(
Rijk − R(i)

jk − Ri·k +
ni + 1

2

)(
Rijk′ − R(i)

jk′ − Ri·k′ +
ni + 1

2

)
, (14)

which is the sample covariance of Ŷijk and Ŷijk′ for j ∈ {1, . . . , ni}. The comparison of
the two scaling parameters is investigated, numerically, in Section 4. The main difference
between these two scaling quantities given in (12) and (13) is that (13) uses the data more
efficiently and, hence, is expected to enhance the power of the test. The window width
can be, similarly, set as L = dpεe, for some 0 < ε < 1, as for MPT. However, the choice of
ε should depend not only on the dimension p but also on the underlying distribution of
the data. It can be seen from the simulation that there is no fixed number ε, for which the
window width L = dpεe works for all models. Thus, we provide an algorithm in Section 4
for choosing L, for use in practice.

For the moderate-p setting, specifically p = o(n2), we propose the test statistic analo-
gous to (4) and (9) as

T̂GCT :=
√

p(T̂n − 1)

ζ̂n
and T̂MPT :=

√
p(T̂n − 1)

τ̂n
.

In the large-p setting, the center (5) computed in terms of Ŷijk may be used. However, as
stated in Zhang and Wang [20], using the large-p center estimator tends to give liberal type
I error rates.

3. Main Results

For a sequence of random variables {Zk : k = 1, 2 . . .}, define the mixing coefficient
α(r) as

α(r) = sup
k≥1

{∣∣P(A ∩ B)− P(A)P(B)
∣∣ : A ∈ F k

1 , B ∈ F∞
k+r

}
,

for r = 1, 2, . . . , where F b
a = σ{Zk : a ≤ k ≤ b} denotes the σ-field generated by the random

variables Za, . . . , Zb. Here, α(r) measures the dependency among the components that are at
least r indices apart. A sequence of random variables is α-mixing (strong-mixing), if the mixing
coefficient α(r) goes to 0 as r goes to infinity. The α-mixing condition assumed on the sequence
{Zk : k = 1, . . . , p}, basically, requires the dependence between two observations to decay, as
the separation between the observations (r) increases. It prescribes weak dependence among
the components of the random vector, which is commonly assumed in time-series analysis,
repeated measures, or some other types of data. Two-sample tests on α-mixing sequence random
variables were considered by many authors ([14,15,19,20,25–27], etc.).
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To derive the asymptotic distribution of T̂n and construct a test statistic, we require
the following assumptions that are analogous to Zhang and Wang [20].

C1: For any i ∈ {1, 2} and j ∈ {1, . . . , ni}, the sequence {Xijk : k = 1, . . . , p} has a mixing
coefficient α(r), which satisfies ∑∞

r=1 r[α(r)]ν/(2+ν) < ∞, for some ν > 0.

C2: For any i ∈ {1, 2}, j ∈ {1, . . . , ni} and k ∈ {1, . . . , p}, Xijk ∼ Fik is non-degenerate.

C3: limn→∞ ni/n→ λi ∈ (0, 1) for i = 1, 2 where n = n1 + n2.

Remark 1. Similar to Zhang and Wang [20], a sufficient condition for ∑∞
r=1 r[α(r)]ν/(2+ν) < ∞

in C1 is α(r) = O(r−c), for some c > 2 + 4/ν. It provides a condition on the mixing coefficient
α(r) on r, for a given ν > 0; if satisfied, the window width L is not required in the proof of the
consistency of the estimator for the scaling parameter, see Theorem 2.

Applying the Theorem 5.2 of Bradley [28] to the marginal distribution function
Fik, which is a Borel function with a single argument, the α-mixing assumption on the
original sequence {Xijk : k = 1, . . . , p} will be inherited by the transformed sequence
{Yijk, k = 1, . . . , p}, with the same mixing coefficient. Under condition C1, the sequence
of squared t-statistics derived from {Xijk} is an α-mixing process, with the same mixing
coefficient α(r), by Lemma III.3 in the Supplementary Material of Zhang and Wang [20],
so the sequence derived from {Yijk}. Strictly speaking, the mixing coefficients of the two
samples are not required to be equal. Condition C1 can be stated in terms of the maximum
of the two coefficients from the two samples. Note that squared Wilcoxon–Mann–Whitney-
type statistic t̂2

k , derived from {Ŷijk}, is actually defined through basic arithmetic operations
on the Borel functions c(X2jk − X1`k) for ` = 1, . . . , n1, and j = 1, . . . , n2. Thus, t̂2

k can be
viewed as a Borel function hk of the n observations on the k-th variable, i.e.,

t̂2
k = hk(X11k, . . . , X1n1k, X21k, . . . , X2n2k).

Therefore, along the same arguments as in Zhang and Wang [20], the sequence
{t̂2

k : k = 1, . . . , p} is α-mixing with the same coefficient α(r), under condition C1. The
asymptotic distribution of T̂n is, then, established in Theorem 1.

Theorem 1. Suppose {Xijk : k = 1, . . . , p} for any i ∈ {1, 2} and j ∈ {1, . . . , ni} are sequences
of random variables satisfying conditions C1, C2, and C3. Then, under H0,

√
p(T̂n − E[T̂n])√

Var(
√

pT̂n)

d−→ N (0, 1), as n, p→ ∞.

Proof. Under conditions C1, C2, and C3, the sequence {t̂2
ik, k = 1, ..., p} has the same

α-mixing property as {t2
ik; k = 1, ..., p}. Moment conditions that are analogous to those

in Theorem 2.2 of Zhang and Wang [20] are satisfied by Lemmas 1 and 2. Therefore, the
remainder of the proof follows, along the same lines.

Remark 2. As pointed out earlier, asymptotic normality of Tn was argued in Gregory et al. [19],
without proof under different conditions. Similar arguments could be made here, to have asymp-
totic normality of T̂n. Besides the α-mixing condition on the {t̂2

k : k = 1, . . . , p} and condi-
tions C2 and C3, it is, additionally, required that the autocovariance function of the sequence
{t̂2

k : k = 1, . . . , p} satisfies limn→∞
1

p−r ∑
p−r
k=1 Cov(t̂2

k , t̂2
k+r) = γ(r), for each lag r > 0. Other

conditions assumed in Gregory et al. [19] are, automatically, satisfied in our setup.

The central limit theorem stated above involves centering E(T̂n) and scaling
√

Var(
√

pT̂n)

parameters. In both statistics T̂GCT and T̂MPT, the centering parameter ξ̃n is set to 1, whereas

the scaling parameter
√

Var(
√

pT̂n) is estimated by ζ̂n and τ̂n, respectively. If the estimators for
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the scaling parameter are consistent, then the asymptotic normality of T̂GCT and T̂MPT follow
from Slutsky’s theorem. In Lemma 3, the consistency of γ̂kk′ is proven and, subsequently, in
Theorem 2, the consistency of τ̂n is established.

Lemma 3. Suppose {Xijk : k = 1, . . . , p} for any i ∈ {1, 2} and j ∈ {1, . . . , ni} are sequences of
random variables satisfying conditions C1, C2, and C3. Then, under H0, γ̂kk′ = γkk′ +Op(n−1/2),
for any k, k′ ∈ {1, . . . , p}, where γkk′ and γ̂kk′ are as defined in (7) and (13), respectively.

Theorem 2. Suppose {Xijk : k = 1, . . . , p} for any i ∈ {1, 2} and j ∈ {1, . . . , ni} are sequences
of random variables satisfying conditions, C1, C2, and C3. Assume L = dpεe, for some 0 < ε < 1.
Then, under H0 and for τ̂n, defined in (13),

τ̂2
n −Var(

√
pT̂n) = Op(n−1/2) + O(L−1), as n, p→ ∞.

Further, if α(r) = O(r−c), for some c > 1 , then

τ̂2
n −Var(

√
pT̂n) = Op(n−1/2) + O(p1−cν/(2+ν)),

for some ν > 2/(c− 1) as n, p→ ∞.

Proof. Similar to the proof of Theorem 2.5 of Zhang and Wang [20],

The asymptotic distribution of the test statistic T̂MPT is stated in Corollary 1.

Corollary 1. Suppose {Xijk : k = 1, . . . , p} for any i ∈ {1, 2} and j ∈ {1, . . . , ni} are sequences
of random variables satisfying conditions C1, C2, and C3. Then, under H0 and p = o(n2),

T̂MPT =

√
p(T̂n − 1)

τ̂n

d−→ N (0, 1), as n, p→ ∞,

where τ̂n is as defined in (13) and L = dpεe for some 0 < ε < 1.

Proof. The consistency of τ̂n is stated in Theorem 2. By Lemma 1, E(t̂2
k) = 1 + O(n−1).

Therefore,

√
p(E[T̂n]− 1)] =

√
p

p

p

∑
i=1

(E[t̂2
k ]− 1) = o(1), when p = o(n2).

The desired result follows from Theorem 1, by applying Slutsky’s theorem.

Under the assumptions discussed in Remark 2, the sample autocovariance γ̂(r) is
consistent for γ(r). Therefore, the consistency of ζ̂n follows, if a suitable window width L is
chosen. Consequently, one can establish the asymptotic distribution of the statistic T̂GCT as

T̂GCT =

√
p(T̂n − 1)

ζ̂n

d−→ N (0, 1), as n, p→ ∞,

where ζ̂n is defined in (12) for either of the Parzen or trapezoid-window-weight function
w(·). To be consistent, one may choose the same window width L as in Corollary 1. It was
noted in Zhang and Wang [20] that GCT’s estimate of scaling parameter does not, effectively,
use the sample replications, as they rely on a single term (t̂2

k − T̂n)(t̂2
k′ − T̂n). This might

be a negative number, while Cov(t̂2
k , t̂2

k′) has been proven to be positive. Instead, MPT’s
estimate of the scaling parameter benefits from both increasing the number of replications
and the dimension. Thus, MPT’s estimate is likely to produce more stable and consistent
results over different samples, while the GCT’s estimate could vary drastically. From the
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simulation study in Section 4, we can see features from the two proposed ranked-version
tests, referred to as RGCT and RMPT, respectively.

Both Gregory et al. [19] and Zhang and Wang [20] proposed to use a two-tailed
rejection region. However, we believe that the hypothesis H0 should be rejected, when
Tn or T̂n is large. That means a one-tailed rejection region should be used. The numerical
results are shown in Figures 1–5.

4. Simulation
4.1. Simulation Design

The aim of this section is to compare the proposed rank-based tests RGCT and RMPT
(for testing the hypothesis (2)), with their parametric versions GCT and MPT (for testing
the hypothesis of equality of two mean vectors), through Monte Carlo simulation. As we
explained before, we use the moderate-p version statistics for all four tests. We employ
one-tailed rejection regions and Parzen window weight for GCT and RGCT, and two-
tailed rejection regions for MPT and RMPT. In order to allow correct interpretation of the
powers vis-à-vis the achieved sizes, the empirical type I error rates as well as powers of
these tests are presented in Figures 2–4. Throughout, the sizes and powers are calculated
through 2000 replications, and the actual level of significance is set at α = 0.05. The
proportion of rejections, out of the 2000 runs, is recorded. We will investigate the effects of
window width and the influence of dimensionality under various dependence structures
and innovation distributions, while some of them may violate the model assumption C1 or
moment assumptions stated in Gregory et al. [19] or Zhang and Wang [20].

The two groups are always independent, and the dependency only exists within the
same subject. More precisely, for any i ∈ {1, 2} and j ∈ {1, . . . , ni}, we generate data as

Xijk = µik + εijk,

for k ∈ {1, . . . , p}, where µik is a constant and {εijk : k = 1, . . . , p} is the error process. Let
µi = (µi1, . . . , µip)

>. Under the null hypothesis, we set µ1 = µ2 = 0p. Under the alternative
hypothesis, let µ1 = 0p and 0 < β ≤ 1 be the proportion of nonzero elements in µ2. We
set the pβ/2 elements of µ2 to δ, the next pβ/2 elements to −δ, and the remaining p− pβ
elements to 0, i.e.,

µ2 = (δ, . . . , δ︸ ︷︷ ︸
βp/2

,−δ, . . . ,−δ︸ ︷︷ ︸
βp/2

, 0, . . . , 0︸ ︷︷ ︸
1−βp

).

Four distributions for the innovation εijk are considered,

Normal: standard normal distribution Normal (0, 1);

T: t distribution with degrees of freedom 3;

Gamma: centered Gamma distribution with shape parameter 4 and scale parameter 2;

Cauchy: Cauchy (0, 0.1) distribution.

Here, standard normal distribution serves as a benchmark; the t distribution is used
to assess how the tests perform, when the higher-order moment conditions are violated
of GCT and MPT; and the gamma and Cauchy distributions allow to evaluate robustness
to skewed and heavy-tailed data, respectively. We will consider independent and three
dependent error processes, but, otherwise, the errors in the two groups are generated by
the same process.

IND (independent): εijk is independently drawn from the innovation distribution for
k = 1, . . . , p.

WD (weakly dependent): εijk is generated, according to ARMA(2, 2), with autoregressive
parameter φ = (0.4,−0.1) and moving-average parameters ϑ = (0.2, 0.3).

SD (strongly dependent): εijk is generated, according to AR(1), with autoregressive param-
eters φ = 0.9.
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LD (long-range dependent): Let A = (ast)
p
s,t=1, where ast = 0.5[(r + 1)2H + (r− 1)2H −

2r2H ], for constant self-similarity parameters H = 0.7 and r = |s− t|. Decompose A
by Cholesky factorization, to get the matrix U, such that A = U>U. Independently,
draw ηijk from the innovation distribution for k = 1, . . . , p. Let ηij = (ηij1, . . . , ηijp)

>

and set εij = (εij1, . . . , εijp)
> = U>ηij.

The long-range dependent process is generated, following the approach proposed by
Hall et al. [29]. It was mentioned in Zhang and Wang [20] that the correlation for each of
the four setups tends to 0, when the lag separation between the two components goes to
infinity. However, the decaying speed of LD is that the correlation converges to 0 at the
rate O(r−2(1−H)) (see [30]), which is much slower than the ARMA model. The condition
for mixing coefficients C1 holds for the IND, WD, and SD models but not for the LD model.
Thus, including the LD error process in the simulation helps us to evaluate the robustness
of the tests, against the assumed dependence regularity.

4.2. Adaptive Selection of Window Width L

To compare the two estimators of the scaling parameter, estimated autocovariance of
the sequence {t̂2

k : k = 1, . . . , p} at lags r = 0, 1, . . . , L, i.e., γ̂(r) for RGCT and 1
p ∑k−k′=r γ̂kk′

for RMPT are displayed in Figure 1, together with the parametric versions for GCT and MPT,
on the original data. Estimates are averages over 2000 runs at each lag r, with dimension
p = 500, sample size n1 = 80, n2 = 100, and for L = 5001/2 ≈ 23. The four estimates are
very close, except for LD and SD Cauchy. The similarity of the estimates verifies that the
mixing structures of the sequence of squared t-statistics, derived from the original data and
the rank-transformed data, are about the same. It, also, shows that the decaying speeds are
not only related to the error processes but also to the innovation distributions. Thus, there
does not appear to exist a fixed number ε, such that the window-width choice L = dpεe
works, reasonably, for all data.

LD, Normal LD, T LD, Gamma LD, Cauchy

SD, Normal SD, T SD, Gamma SD, Cauchy

WD, Normal WD, T WD, Gamma WD, Cauchy

IND, Normal IND, T IND, Gamma IND, Cauchy
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Figure 1. The estimates of the autocovariance function at varying lags r = 0, 1, . . . , L, from 2000
simulation runs. We set n1 = 80, n2 = 100, and p = 500.

To illustrate the sensitivity to the choice of the window width, Figure 2 reports a type I
error rate, by setting the dimension p = 500 and sample sizes n1 = 80 and n2 = 100. A se-
quence of values, L = dpεe, for ε = i/8, and i = 0, 1, . . . , 7, i.e., L = 1, 3, 5, 11, 23, 49, 106, 230,
are experimented. It can be, clearly, seen from the plots that all four tests are sensitive to the
window width. MPT and RMPT exhibit a slightly decreasing trend of the type I error rate,
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while the trends of GCT and RGCT are not monotonic if the data are dependent. When
the window gets wider, the type I errors of MPT and RMPT tend to be conservative, while
GCT and RGCT have more rejections. Especially, if the data are strongly or long-range
dependent, a wider window width is needed, to capture more correlations, but if the data
are less dependent, a wider window width may include more noise, such that the scaling
parameters of GCT and RGCT will be underestimated, while those for MPT and RMPT
are overestimated.

LD, Normal LD, T LD, Gamma LD, Cauchy

SD, Normal SD, T SD, Gamma SD, Cauchy

WD, Normal WD, T WD, Gamma WD, Cauchy

IND, Normal IND, T IND, Gamma IND, Cauchy
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Figure 2. The empirical type I errors at level α = 0.05 from 2000 simulation runs, for varying window
widths L = (1, 3, 5, 11, 23, 49, 106, 230). We set n1 = 80, n2 = 100, and p = 500.

Thus, instead of using a window width L = dpεe, for a fixed ε, we provide the follow-
ing algorithm to select L for RMPT. According to Lemma 2, Cov(t̂2

k , t̂2
k′) = γkk′ + O(n−1/2).

Since it was assumed that p = o(n2) and p > n, usually, holds in real data application,
we choose the window width L to be the smallest r, such that p−1 ∑|k−k′ |=r+1 γ̂kk′ is less
than p−1/2. In the case of n < p, the bound can be replaced with n−1/2. From Figure 1,
the decaying speed of RGCT and RMPT are about the same. So, we may choose L + 1
to be the window width for RGCT. The extra one is, actually, not used, since the weight
wp(L/L) = 0. Note that we do not use γ̂(r) as the selection criterion, since it relies only on
a single unstable term and does not take advantage of the sample replications. Applying
this algorithm to the original data (removing step 1 in Algorithm 1), we can obtain a win-
dow width L for MPT and, then, L + 1 could be used as a window width for GCT. For all
the remaining simulations and applications, we will use this algorithm to determine the
window width.
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Algorithm 1: Data adaptive window width selection

Data: Two samples of data Xij with p-dimension, for i ∈ {1, 2} and j ∈ {1, . . . , ni}.
Result: Return window width L and scaling estimate τ̂n.

1 Applying rank transformation to the original data, to get Ŷij;
2 Set r = 0 and τ̂n = p−1 ∑|k−k′ |=0 γ̂kk′ ;
3 while (r < p) do
4 Set τ̂nr = p−1 ∑|k−k′ |=r+1 γ̂kk′ ;
5 if {τ̂nr > min(p−1/2, n−1/2)} then
6 τ̂n = τ̂n + τ̂nr;
7 r = r + 1;
8 else
9 break;

10 end
11 end
12 Output L = r and τ̂n.

4.3. Type I Error Rate

The effect of dimensionality is investigated in Figure 3, by considering p =100, 500,
1000, and 1500, for fixed sample sizes n1 = 80 and n2 = 100. In addition, a two-sample
rank-based test, given in Kong and Harrar [15] (referred to as KH), is included, always with
the other four tests, although it tests the overall relative effects. From Figure 3, MPT tends to
be conservative for Cauchy innovations. That is reasonable, since the moments of Cauchy
distribution do not exist. When the dimension gets larger, some inflated type I errors for
GCT and RGCT are observed, especially for LD dependence that violates condition C1. Test
KH has a few inflated type I errors, under SD dependence. Speaking overall, RMPT always
has a type I error rate close to the nominal level, which also confirms that the window
width was selected well.

LD, Normal LD, T LD, Gamma LD, Cauchy

SD, Normal SD, T SD, Gamma SD, Cauchy

WD, Normal WD, T WD, Gamma WD, Cauchy

IND, Normal IND, T IND, Gamma IND, Cauchy
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Figure 3. The empirical type I errors at level α = 0.05 from 2000 simulation runs, for varying
dimensions p = 100, 500, 1000, and 1500, with n1 = 80 and n2 = 100. Window widths are calculated
from Algorithm 1.
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4.4. Power Comparison

For power comparison, we fix dimension p = 500 and sample sizes n1 = 80 and
n2 = 100. We plot the powers of the tests against β ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The signal
magnitude δ is chosen as follows: δ = 0.1 for IND, 0.2 for LD and WD, and 0.5 for SD.
As shown in Figure 4, there is a clear advantage of the rank tests RGCT and RMPT, for
heavily tailed distributions, such as Cauchy, while GCT and MPT tend to be conservative,
under correlated error processes. This is expected, because the model violates most of the
moment assumptions needed for the theoretical results of GCT and MPT. All five tests are
comparable in terms of power, for the other innovation distributions. Notably, they all have
low power under centered Gamma innovation, increasing signal magnitude δ, which is
needed for obtaining higher power.

WD, Normal WD, T WD, Gamma WD, Cauchy

SD, Normal SD, T SD, Gamma SD, Cauchy

LD, Normal LD, T LD, Gamma LD, Cauchy

IND, Normal IND, T IND, Gamma IND, Cauchy
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Figure 4. The empirical rejection frequencies at nominal level α = 0.05 from 2000 simulation runs
for varying β = (0, 0.2, 0.4, 0.6, 0.8, 1). Fix p = 500, n1 = 80, and n2 = 100, and window widths are
calculated from Algorithm 1. The signal magnitude δ = 0.1 for IND, 0.2 for LD and WD, and 0.5
for SD.

4.5. One-Tailed versus Two-Tailed Tests

We close the simulation study, by investigating type I error rates for one-tailed and two-
tailed tests. Figure 5 provides achieved type I error rates, in the case of the SD-dependence
model. For convenience, two-tailed tests are labeled as GCT, MPT, RGCT, and RMPT, while
the corresponding one-tailed tests are labeled as GCT1, MPT1, RGCT1, and RMPT1. The
plot shows that two-tailed GCT and RGCT tend to have liberal type I error rates. Although
there is not much difference, the type I errors of one-tailed MPT and RMPT are closer to
the nominal level (α = 0.05). Thus, we recommend to use the one-tailed rejection region
for GCT and RGCT and keep using the two-tailed rejection region for MPT and RMPT for
comparison. It can, also, be seen from the power plot in Figure 4, that the one-tailed GCT
and RGCT are comparable to the two-tailed MPT and RMAPT.
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Figure 5. The empirical type I errors at level α = 0.05 from 2000 simulation runs for one-tiled and
two-tiled tests, under SD dependence. Set p = 500, n1 = 80, and n2 = 100, and window widths are
calculated using Algorithm 1.

5. Conclusions

In this work, we developed nonparametric tests for high-dimensional data, in two
samples. The hypothesis is formulated in terms of the nonparametric marginal relative
effects. These effects are meaningful and well defined, even for data measured on an ordinal
scale or for heavily tailed data. The only stipulation is that the marginal distributions of the
data are non-degenerate.

Related research by Gregory et al. [19] or, more recently, Zhang and Wang [20] devel-
oped a test for equality of mean vectors, where a composite of the squares of marginal t
statistics are employed. Our test statistics are in the same vein, but we use the nonpara-
metric Wilcoxon–Mann–Whitney-type statistic of Brunner and Munzel [4], instead of the t
statistic. In many high-dimensional applications, such as transcriptomics, the effect on any
individual variable (gene expression) may be small, and composite statistics will have high
power in detecting the cumulative effect.

We proposed two tests that differ in the way the asymptotic variance of the composite
statistic is estimated. In both cases, the test statistics are shown to, asymptotically, follow a
standard normal distribution, under α-mixing (strong-mixing) dependence. The estimation
of the asymptotic variances involves banding the covariance matrix of the marginal squared
Wilcoxon–Mann–Whitney-type statistics, to guard against overestimation or underestima-
tion. We demonstrated that the length of the banding window is related to the distribution
of data as well as the strength of dependence, among the variables. We provided an algo-
rithm for, adaptively, selecting the window width from the data. The algorithm was shown
to improve the performance of the asymptotic variance estimator and, also, plays a crucial
role in controlling the type I error rate.

The finite sample performance of the proposed tests was studied via simulation and
compared with their parametric counterparts as well as another rank-based test. Generally,
the parametric tests were found to be liberal in type I error control, when the dimension
is large or for heavily tailed distributions, whereas the proposed tests have satisfactory
performance overall.

Nonparametric tests, for relative effects in high dimensions, are not well studied [14,15].
For available methods to be applicable, the variables must be commensurate, so that the
relative effects, which are measured to the average of all marginal distributions, would be
appropriate. The present manuscript overcomes this challenge, by defining the relative
effects, marginally. Comparing our proposed tests, overall RGCT is more reliable, when
sample sizes are small. However, efficiency may be gained, by using the replications in
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estimating the asymptotic variance, as in RMPT, if the sample size per group is relatively
large. All these nonparametric methods are, currently, available only for two groups and, by
extension, to multiple treatment groups, which is an important problem for future research.
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Appendix A

We present some key Lemmas, needed for the proof of the main results, below. The
proofs of Lemmas A1, A2, A5, and A7 can be found, for example, in Brunner and Mun-
zel [4]. For the sake of completeness, Lemmas A3, A4, and A6 are stated for proving
Lemmas A8, 1, and 2, which are somewhat new.

Lemma A1. For any 1 ≤ k ≤ p and 1 ≤ j ≤ n2, E[F̂1k(X2jk)] = E[F1k(X2jk)] = ωk.

Lemma A2. For any 1 ≤ k ≤ p and 1 ≤ j ≤ n2, E
[{

F̂1k(X2jk)− F1k(X2jk)
}2
]
≤ 1/n1.

Lemma A3. For any 1 ≤ k, k′ ≤ p, 1 ≤ `1 6= `2 ≤ n1 and 1 ≤ j ≤ n2,

E
[{

c(X2jk − X1`1k)−ωk

}{
c(X2jk′ − X1`2k′)−ωk′

}]
= σ2kk′ .

Lemma A4. For any 1 ≤ k, k′ ≤ p, 1 ≤ ` ≤ n1 and 1 < j1 6= j2 ≤ n2,

E
[{

c(X2j1k − X1`k)−ωk

}{
c(X2j2k′ − X1`k′)−ωk′

}]
= σ1kk′ .

Lemma A5. As min{n1, n2} → ∞ and ni/n → λi ∈ (0, 1), two statistics,
√

n(ω̂k − ωk) and√
n(Y2k −Y1k + 1− 2ωk), asymptotically, have the same distribution.

Lemma A6. As min{n1, n2} → ∞ and ni/n → λi ∈ (0, 1), Var(ω̂k) = σ2
1k/n1 + σ2

2k/n2 +
O(n−2).

Lemma A7. As min{n1, n2} → ∞ and ni/n → λi ∈ (0, 1), σ̂2
ik defined in (10) is an L2

consistency estimator of σ2
ik.

Lemma A8. As min{n1, n2} → ∞ and ni/n → λi ∈ (0, 1), σ̂ikk′ defined in (14) is an L2
consistency estimator of σikk′ for any k 6= k′.

Proof. The proof of the two i’s are similar, so, without loss of generality, we only prove it
for i = 2. First,

σ2kk′ = Cov(Y21k, Y21k′) = E[Y21kY21k′ ]−ωkωk′ ,
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and

σ̂2kk′ =
1

n2
1(n2 − 1)

n2

∑
j=1

(
R2jk − R(2)

jk − R2·k +
n2 + 1

2

)(
R2jk′ − R(2)

jk′ − R2·k′ +
n2 + 1

2

)

=
1

n2 − 1

n2

∑
j=1

{
F̂1k(X2jk)− ω̂k

}{
F̂1k′(X2jk′)− ω̂k′

}
=

n2

n2 − 1

(
1
n2

n2

∑
j=1

F̂1k(X2jk)F̂1k′(X2jk′)− ω̂kω̂k′

)
.

Thus, it suffices to show that, as n→ ∞,

1
n2

n2

∑
j=1

F̂1k(X2jk)F̂1k′(X2jk′)
L2−→ E[Y21kY21k′ ], and ω̂kω̂k′

L2−→ ωkωk′ . (A1)

It is known from Lemma A6 that ω̂k and ω̂k′ are L2-consistent to ωk and ωk′ , respectively.
Thus, applying cr-inequality for r = 2, it follows that

E[{ω̂kω̂k′ −ωkωk′}2] = E[{ω̂k(ω̂k′ −ωk′) + (ω̂k −ωk)ωk′}2]

≤2E[ω̂2
k(ω̂k′ −ωk′)

2] + 2E[(ω̂k −ωk)
2ω2

k′ ] ≤ 2E[(ω̂k′ −ωk′)
2] + 2E[(ω̂k −ωk)

2]→ 0,

since |ω̂k| ≤ 1 and |ωk′ | ≤ 1. It proves the second L2 consistency in (A1).

On the other hand, 1
n2

∑n2
j=1 F1k(X2jk)F1k′(X2jk′)

L2−→ E[Y21kY21k′ ], since

E
[{

1
n2

n2

∑
j=1

F1k(X2jk)F1k′ (X2jk′ )− E[Y21kY21k′ ]

}2]
=

1
n2

2

n2

∑
j=1

E
[
{Y2jkY2jk′ − E[Y2jkY2jk′ ]}2

]
≤ 1

n2
→ 0,

where the last inequality is because
∣∣∣Y2jkY2jk′ − E[Y2jkY2jk′ ]

∣∣∣ ≤ 1. Thus, to prove the first L2

consistency in (A1), it suffices to prove

E
[{

1
n2

n2

∑
j=1

(
F̂1k(X2jk)F̂1k′(X2jk′)− F1k(X2jk)F1k′(X2jk′)

)}2]
→ 0.

Applying cr-inequality for r = 2, it follows that{ n2

∑
j=1

(
F̂1k(X2jk)F̂1k′ (X2jk′ )− F1k(X2jk)F1k′ (X2jk′ )

)}2

=

{ n2

∑
j=1

F̂1k(X2jk)
(

F̂1k′ (X2jk′ )− F1k′ (X2jk′ )
)
+
(

F̂1k(X2jk)− F1k(X2jk)
)

F1k′ (X2jk′ )

}2

≤2
{ n2

∑
j=1

F̂1k(X2jk)
(

F̂1k′ (X2jk′ )− F1k′ (X2jk′ )
)}2

+ 2
{ n2

∑
j=1

(
F̂1k(X2jk)− F1k(X2jk)

)
F1k′ (X2jk′ )

}2
.

Taking the expectation on the first term, it follows that

2
n2

2
E
[{ n2

∑
j=1

F̂1k(X2jk)(F̂1k′
(

X2jk′ )− F1k′ (X2jk′ )
)}2]

≤ 2
n2

2

n2

∑
j=1

E
[

F̂2
1k(X2jk)

(
F̂1k′ (X2jk′ )− F1k′ (X2jk′ )

)2]
+

2
n2

2

n2

∑
j1 6=j2

E
[

F̂1k(X2j1k)
(

F̂1k′ (X2j1k′ )− F1k′ (X2j1k′ )
)

F̂1k(X2j2k)
(

F̂1k′ (X2j2k′ )− F1k′ (X2j2k′ )
)]

.
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Since F̂2
1k(X2jk) ≤ 1, and by Lemma A2,

2
n2

2

n2

∑
j=1

E
[

F̂2
1k(X2jk)

(
F̂1k′(X2jk′)− F1k′(X2jk′)

)2]
≤ 2

n2
2

n2

∑
j=1

E
[(

F̂1k′(X2jk′)− F1k′(X2jk′)
)2]
≤ 2

n1n2
→ 0,

and

2
n2

2

n2

∑
j1 6=j2

E
[

F̂1k(X2j1k)
(

F̂1k′(X2j1k′)− F1k′(X2j1k′)
)

F̂1k(X2j2k)
(

F̂1k′(X2j2k′)− F1k′(X2j2k′)
)]

=
2

n4
1n2

2

n2

∑
j1 6=j2

n1

∑
`1,`2,`3,`4=1

E
[
c(X2j1k − X1`1k)

{
c(X2j1k′ − X1`2k′)− F1k(X2j1k′)

}
c(X2j2k − X1`3k)

{
c(X2j2k′ − X1`4k′)− F1k(X2j2k′)

}]
≤

2n2(n2 − 1)(n3
1 + 2n1(n1 − 1))

n4
1n2

2
→ 0, as n1, n2 → ∞.

The last inequality is because the expectations of terms in the summation are zero, if
{`1, `2, `3, `4} are all different, `2 is not the same of any {`1, `3, `4}, or `4 is not the same
of any {`1, `2, `3} by Lemma A1. We divide it by two cases, when the expectations may
not be 0, `2 = `4, or `2 6= `4. If `2 = `4, the above summation is less than n2(n2 − 1)n3

1.
If `2 6= `4, then it should have {`1, `3} = {`2, `4}, and the above summation is less than
2n2(n2 − 1)n1(n1 − 1).

Similarly, the second term,

2
n2

2
E
[{ n2

∑
j=1

(
F̂1k(X2jk)− F1k(X2jk)

)
F1k′(X2jk′)

}2]

=
2
n2

2

n2

∑
j=1

E
[
(F̂1k(X2jk)− F1k(X2jk))

2F2
1k′(X2jk′)

]
+

2
n2

2

n2

∑
j1 6=j2

E
[(

F̂1k(X2j1k)− F1k(X2j1k)
)

F1k′(X2j1k′)
(

F̂1k(X2j2k)− F1k(X2j2k)
)

F1k′(X2j2k′)
]
.

Since F2
1k′(X2jk′) ≤ 1, and by Lemma A2,

2
n2

2

n2

∑
j=1

E
{(

F̂1k(X2jk)− F1k(X2jk)
)2

F2
1k′ (X2jk′ )

}
≤ 2

n2
2

n2

∑
j=1

E
{(

F̂1k(X2jk)− F1k(X2jk)
)2}
≤ 2

n1n2
→ 0,

and

2
n2

2

n2

∑
j1 6=j2

E
[(

F̂1k(X2j1k)− F1k(X2j1k)
)

F1k′ (X2j1k′ )
(

F̂1k(X2j2k)− F1k(X2j2k)
)

F1k′ (X2j2k′ )
]

=
2

n2
1n2

2

n2

∑
j1 6=j2

n1

∑
`1 ,`2=1

E
[{

c(X2j1k − X1`1k)− F1k(X2j1k)
}{

c(X2j2k − X1`2k)− F1k(X2j2k)
}

F1k′ (X2j1k′ )F1k′ (X2j2k′ )
]

=
2

n2
1n2

2

n2

∑
j1 6=j2

n1

∑
`1=1

E
[{

c(X2j1k − X1`1k)− F1k(X2j1k)
}{

c(X2j2k − X1`1k)− F1k(X2j2k)
}

F1k′ (X2j1k′ )F1k′ (X2j2k′ )
]

≤ 2(n2 − 1)
n1n2

→ 0.

Proof of Lemma 1. For any k ∈ {1, . . . , p}, denote ∆n = σ̂2
1k/λ1 − σ2

1k/λ1 + σ̂2
2k/λ2 −

σ2
2k/λ2. It can be seen from Lemma A7 that σ̂2

1k = σ2
1k + Op(n−1/2) and σ̂2

2k = σ2
2k +
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Op(n−1/2). Thus ∆n = Op(n−1/2). From Lemma A6, n(ω̂k − 1/2)2 = Op(1) under H0.
Recall that σ2

k = σ2
1k/λ1 + σ2

2k/λ2. Therefore,

t̂2
k =

(ω̂k − 1/2)2

σ̂2
1k/n1 + σ̂2

2k/n2
=

n(ω̂k − 1/2)2

∆n + σ2
k

= nσ−2
k (ω̂k − 1/2)2(1 + σ−2

k ∆n) + Op(n−1),

where the last equality follows from Taylor’s expansion. Taking the expectation, by
Lemma A6, it follows that

nσ−2
k E[(ω̂k − 1/2)2] = 1 + O(n−1).

For the second term,

(ω̂k − 1/2)2∆n = (ω̂k − 1/2)2(σ̂2
1k/λ1 − σ2

1k/λ1) + (ω̂k − 1/2)2(σ̂2
2k/λ2 − σ2

2k/λ2).

It suffices to show that E[(ω̂k − 1/2)2(σ̂2
2k − σ2

2k)] = O(n−2), while the proof for the other
term is similar. Note that, by Lemma A7, it follows that

(ω̂k − 1/2)2(σ̂2
2k − σ2

2k)

=
n2

n2 − 1
(ω̂k − 1/2)2

{ ∫
F̂2

1kdF̂2k −
∫

F2
1kdF2k − ω̂2

k + 1/4
}
+ Op(n−2)

=
n2

n2 − 1
(ω̂k − 1/2)2

{ ∫
(F̂2

1k − F2
1k)dF̂2k −

∫
F2

1kd(F̂2k − F2k)− (ω̂2
k − 1/4)

}
+ Op(n−2).

Taking the expectation, the first term becomes

E
[
(ω̂k − 1/2)2

∫
(F̂2

1k − F2
1k)dF̂2k

]
=

1
n2

E
[
(ω̂k − 1/2)2

n2

∑
j=1

{
F̂2

1k(X2jk)− F2
1k(X2jk)

}]

=
1
n3

2

n2

∑
j,j1,j2=1

E
[{

F̂1k(X2j1k)− 1/2
}{

F̂1k(X2j2k)− 1/2
}{

F̂1k(X2jk)− F1k(X2jk)
}{

F̂1k(X2jk) + F1k(X2jk)
}]

=
1

n4
1n3

2

n1

∑
`1,`2,`3,`4=1

n2

∑
j,j1,j2=1

E
[
{c(X2j1k − X1`1k)− 1/2}{c(X2j2k − X1`2k)− 1/2}·

{
c(X2jk − X1`3k)− F1k(X2jk)

}{
c(X2jk − X1`4k) + F1k(X2jk)

}]
=

1
n4

1n3
2

{ n1

∑
`1=`2 6=`3 6=`4

n2

∑
j 6=j1 6=j2

+
n1

∑
`1 6=`2 6=`3 6=`4

n2

∑
j 6=j1=j2

}
E[· · · ] + O(n−2) = O(n−2),

since E[c(X2j1k − X1`1k) − 1/2] = 0 for any `1 ∈ {1, . . . , n1} and E
[{

c(X2jk − X1`3k) −

F1k(X2jk)
}{

c(X2jk − X1`4k) + F1k(X2jk)
}]

= 0 for any `3 6= `4. The expectation of the
second term is

E
[
(ω̂k − 1/2)2

∫
F2

1kd(F̂2k − F2k)

]
=

1
n2

E
[
(ω̂k − 1/2)2

n2

∑
j=1

(
F2

1k(X2jk)− E[F2
1k(X2jk)]

)]

=
1

n2
1n3

2

n1

∑
`1,`2=1

n2

∑
j,j1,j2=1

E
[
{c(X2j1k − X1`1k)− 1/2}{c(X2j2k − X1`2k)− 1/2}

{
F2

1k(X2jk)− E[F2
1k(X2jk)]

}]
=

1
n2

1n3
2

{ n1

∑
`1=`2

n2

∑
j 6=j1 6=j2

+2
n1

∑
`1 6=`2

n2

∑
j=j1 6=j2

+
n1

∑
`1 6=`2

n2

∑
j 6=j1=j2

}
E[· · · ] + O(n−2) = O(n−2),

The following results, on expectation of the third term, can be proven, similarly,

E
[
(ω̂k − 1/2)2(ω̂2

k − 1/4)
]
= E

[
(ω̂k − 1/2)3(ω̂k + 1/2)

]
= O(n−2).
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Using the same arguments as above, it can be shown that E[(ω̂k − 1/2)2r] = O(n−r).
Finally, we show supk E[t̂2r

k ] < ∞, for any r > 1. Since 1 + σ−2
k ∆n = σ̂2

k /σ−2
k ≥ 0 and

(ω̂k − 1/2)2r ≥ 0, applying Hölder inequality,

E[t̂2r
k ] =σ−2r

k E[nr(ω̂k − 1/2)2r(1 + σ−2
k ∆n)

−r]

≤σ−2r
k

{
E[nr+1(ω̂k − 1/2)2r+2]

} 2r
2r+2
{

E[(1 + σ−2
k ∆n)

−2r(r+1)]
} 1

2r+2 .

First E[nr+1(ω̂k − 1/2)2r+2] = O(1). It was seen in Lemma A7 that ∆n converges to 0 in L2.
Thus, applying Taylor’s expansion

E[(1+σ−2
k ∆n)

−2r(r+1)] = E[1− 2r(r+ 1)σ−2
k ∆n +Op(∆2

n)] ≤ 1+σ−2
k E[|∆n|]+O(n−1) ≤ ∞.

This proves that E[t̂2r
k ] < ∞ for any k. Thus the desired result follows.

Proof of Lemma 2. Under H0,

t̂2
k =

(ω̂k − 1/2)2

σ̂2
1k/n1 + σ̂2

2k/n2
=

n(ω̂k − 1/2)2

σ2
1k/λ1 + σ2

2k/λ2
·

σ2
1k/λ1 + σ2

2k/λ2

σ̂2
1k/λ1 + σ̂2

2k/λ2
=

n(ω̂k − 1/2)2

σ2
1k/λ1 + σ2

2k/λ2
+ Op(n−1/2),

where the last equality follows from Taylor’s expansion. Next, consider

Cov
(

n(ω̂k − 1/2)2, n(ω̂k′ − 1/2)2
)

=n2E
[
(ω̂k − 1/2)2(ω̂k′ − 1/2)2

]
− n2E[(ω̂k − 1/2)2]E[(ω̂k′ − 1/2)2]. (A2)

By Lemma A6, the second term in (A2) becomes

n2
{

σ2
1k/n1 + σ2

2k/n2 + O(n−2)
}{

σ2
1k′/n1 + σ2

2k′/n2 + O(n−2)
}

=(σ2
1k/λ1 + σ2

2k/λ2)(σ
2
1k′/λ1 + σ2

2k′/λ2) + O(n−1).

The first term in (A2) is

n2E
[
(ω̂k − 1/2)2(ω̂k′ − 1/2)2

]
=

n2

n4
1n4

2

n1

∑
`1 ,`2 ,`3 ,`4=1

n2

∑
j1 ,j2 ,j3 ,j4=1

E
[{

c(X2j1k − X1`1k)−ωk

}{
c(X2j2k − X1`2k)−ωk

}
{

c(X2j3k′ − X1`3k′ )−ωk′
}{

c(X2j4k′ − X1`4k′ )−ωk′
}]

=
n2

n4
1n4

2

n1

∑
`1 6=`2 6=`3

n2

∑
j1 6=j2 6=j3

{
E
[{

c(X2j1k − X1`2k)−ωk

}{
c(X2j1k − X1`3k)−ωk

}]
·

E
[{

c(X2j2k′ − X1`1k′ )−ωk′
}{

c(X2j3k′ − X1`1k′ )−ωk′
}]

+ E
[{

c(X2j2k − X1`1k)−ωk

}{
c(X2j3k − X1`1k)−ωk

}]
·

E
[{

c(X2j1k′ − X1`2k′ )−ωk′
}{

c(X2j1k′ − X1`3k′ )−ωk′
}]

+ 4E
[{

c(X2j1k − X1`2k)−ωk

}{
c(X2j1k′ − X1`3k′ )−ωk′

}]
·

E
[{

c(X2j2k − X1`1k)−ωk′
}{

c(X2j3k′ − X1`1k′ )−ωk′
}]}

+
n2

n4
1n4

2

n1

∑
`1 6=`2

n2

∑
j1 6=j2 6=j3 6=j4

{
E
[{

c(X2j1k − X1`1k)−ωk

}{
c(X2j2k − X1`1k)−ωk

}]
·

E
[{

c(X2j3k′ − X1`2k′ )−ωk′
}{

c(X2j4k′ − X1`2k′ )−ωk′
}]
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+ 2E
[{

c(X2j1k − X1`1k)−ωk

}{
c(X2j2k′ − X1`1k′ )−ωk′

}]
·

E
[{

c(X2j3k − X1`2k)−ωk

}{
c(X2j4k′ − X1`2k′ )−ωk′

}]}
+

n2

n4
1n4

2

n1

∑
`1 6=`2 6=`3 6=`4

n2

∑
j1 6=j2

{
E
[{

c(X2j1k − X1`1k)−ωk

}{
c(X2j1k − X1`2k)−ωk

}]
·

E
[{

c(X2j2k′ − X1`3k′ )−ωk′
}{

c(X2j2k′ − X1`4k′ )−ωk′
}]

+ 2E
[{

c(X2j1k − X1`1k)−ωk

}{
c(X2j1k′ − X1`2k′ )−ωk′

}]
·

E
[{

c(X2j2k − X1`3k)−ωk

}{
c(X2j2k′ − X1`4k′ )−ωk′

}]}
+ O(n−1)

=
n2

n4
1n4

2

{ n1

∑
`1 6=`2 6=`3

n2

∑
j1 6=j2 6=j3

(σ2
1k′σ

2
2k + σ2

1kσ2
2k′ + 4σ1kk′σ2kk′ )

+
n1

∑
`1 6=`2

n2

∑
j1 6=j2 6=j3 6=j4

(σ2
1kσ2

1k′ + 2σ2
1kk′ ) +

n1

∑
`1 6=`2 6=`3 6=`4

n2

∑
j1 6=j2

(σ2
2kσ2

2k′ + 2σ2
2kk′ )

}
+ O(n−1)

=2(σ1kk′/λ1 − σ2kk′/λ2)
2 + (σ2

1k/λ1 + σ2
2k/λ2)(σ

2
1k′/λ1 + σ2

2k′/λ2) + O(n−1),

by Lemmas A3 and A4. Putting the simplified forms back in two terms of (A2), it
follows that

Cov
(

n(ω̂k − 1/2)2, n(ω̂k′ − 1/2)2
)
= 2(σ1kk′/λ1 − σ2kk′/λ2)

2 + O(n−1).

Therefore,

Cov
(

t̂2
k , t̂2

k′

)
=

2(σ1kk′/λ1 − σ2kk′/λ2)
2

σ2
1k/λ1 + σ2

2k/λ2
+ O(n−1/2).

Proof of Lemma 3. By Lemma 1, supk E[t̂2
k t̂2

k′ ] < ∞ and, hence, by Cauchy–Schwarz in-
equality γkk′ < ∞. By Lemmas A7 and A8, it follows that σ̂2

1k = σ2
1k + Op(n−1/2),

σ̂2
2k = σ2

2k + Op(n−1/2), σ̂1kk′ = σ1kk′ + Op(n−1/2), and σ̂2kk′ = σ2kk′ + Op(n−1/2) for any
k, k′ ∈ {1, . . . , p}. Thus, following similar arguments, as in the proof of Lemma 2.4 of Zhang
and Wang [20], we can get the desired result.
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