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Abstract: The sequence spaces `p(∇2
q) (0 ≤ p < ∞) and `∞(∇2

q) are introduced by using the q-
difference operator ∇2

q of the second order. Apart from studying some basic properties of these
spaces, we construct the basis and obtain the α-, β- and γ-duals of these spaces. Besides some matrix
classes involving q-difference sequence spaces, `p(∇2

q) and `∞(∇2
q) are characterized. The final

section is devoted to classifying the spectrum of the q-difference operator ∇2
q over the space `1 of

absolutely summable sequences.
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1. Introduction and Preliminaries

A linear subspace of ω, i.e., the set of all real- or complex-valued sequences, is known
as a sequence space. The sets `p, `∞, c, c0, bs and cs are standard notations for the sequence
spaces of absolutely p-summable sequences, bounded sequences, convergent sequences,
null sequences, bounded series, and convergent series, respectively. A BK-space is a Banach
space possessing continuous coordinates. The fact that `p (1 ≤ p < ∞) and `∞ are BK-

spaces normed by ‖f‖`p
=
(
∑r|fr|

p)1/p and ‖f‖`∞
= supr |fr|, respectively, are well known.

It follows from the choice of 0 ≤ p < 1 that `p is a complete p-normed space due to p-norm
‖f‖`p

= ∑r |fr|p. For simplicity, we utilize the notations ∑r and supr in place of ∑∞
r=0 and

sup over r ∈ N(the set of natural numbers).
Let X,Y ⊂ ω and the notation Hr mean the rth row of an infinite matrix H = (hrt)r,t∈N

of real (or complex) entries. Let f ∈ ω then, its H-transform denoted by H f , be given by
the sequence g = (gr) defined by gr = (Hf)r = ∑t hrtft, given that the infinite sum ∑t hrtft
converges for each r ∈ N. We take the convention that the matrix H ∈ (X,Y) if g ∈ Y for all
f ∈ X. The domain of the matrix H in X is defined by the set XH :=

{
f = (fr) ∈ ω : Hf ∈ X

}
,

which is also a sequence space. Additionally, H is known as a triangle if hrr 6= 0 and hrt = 0
for all r < t. Moreover, when X is a BK-space and H is a triangle, then XH is also a BK-
space normed by ‖f‖XH = ‖Hf‖X. Thus, by using this technique, several authors have
constructed new sequence spaces that are generated from special matrices. We refer to the
monograph [1] wherein the author described various aspects of summability, including the
construction of BK-spaces as domains of some special matrices.

1.1. Difference Sequence Spaces

The forward difference operator ∆ and the backward difference operator ∇ are, re-
spectively, defined by (∆f)r = fr − fr+1 and (∇f)r = fr − fr−1 for all k ∈ N. These oper-
ators play a significant role in the field of theory of sequence spaces and summability.
For instance, the sequence (fr) = (r)∞

r=1 is divergent, but the sequence
(
(∆f)r

)
= (1) is
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convergent. Kızmaz introduced the difference sequence spaces `∞(∆) = (`∞)∆, c(∆) = c∆
and c0(∆) = (c0)∆.

The operators ∆ and ∇ were later generalized to the forward and the backward
difference operators of the second order ∆2 and ∇2, respectively, defined by (∆2f)r =
(∆f)r− (∆f)r+1 and (∇2f)r = (∇f)r− (∇f)r−1, (cf. [2,3]). Since then, several generalizations
of the difference operators ∆ and ∇ were contributed in the literature. The few of the
celebrated generalized difference operators are B(a, b) [4,5], B(a, b, c) [6], ∆m [7], ∇m [8],
B(m) [9] and B

(m)
v [10] defined by

(B(a, b)f)r = afr + bfr−1; (B(a, b, c)f)r = afr + bfr−1 + cfr−2; (∆mf)r = (∆(∆m−1f))r;

(∇mf)r = (∇(∇m−1f))r; (B(m)f)r =
m

∑
t=0

(
m
t

)
am−tbtfr−t;

(B
(m)
v f)r =

m

∑
t=0

(
m
t

)
am−tbtvr−tfr−t;

respectively. One may also refer to these papers [9,11–15] for the relevant studies.

1.2. q-Analog

The theory of the q-analog plays a significant role in various fields of mathematical,
physical and engineering sciences. Due to its vast applications in diverse field of mathemat-
ics, several studies related to q-calculus can be traced in the literature. Initially, Jackson [16]
gave the application of q-calculus while introducing q-analog of classical derivative and
integral operators. Since then, studies on q-analogs of well-known mathematical notions
have taken a rapid pace, and studies involving q-analogs of hypergeometric functions,
algebras, approximation theory, combinatorics, difference and integral equations, etc., have
been researched.

Throughout this article, we assume that q ∈ (0, 1). The following notions and defini-
tions are very familiar in the field of q-calculus.

The q-number (cf. [17]) is defined by

[t]q =


t−1
∑

v=0
qv (t = 1, 2, 3, . . .),

0 (t = 0).

One may notice that, when q→ 1−, then [t]q = t.
The q-binomial coefficient is given as

(
r
t

)
q
=


[r]q !

[r−t]q ![t]q ! (r ≥ t),

0 (t > r),

where the notation [t]q! is known as the q-factorial of t and is given as

[t]q! =


t

∏
v=1

[v]q (t = 1, 2, 3, . . .),

1 (t = 0).

We strictly refer to [17,18] for basic terminologies in q-calculus.

1.3. q-Sequence Spaces and Motivation

The construction of sequence spaces by using q-calculus was realized very recently
in the literature. The following q-analogs (or (p, q)-analogs) Cq = (cq

rt), C(q) = (c̃rt),
∇2

q = (δ
2;q
rt ) and E(p, q) = (ep,q

rt ) of the Cesàro matrix, Catalan matrix, difference matrix of
the second order and Euler matrix, respectively, can be found in [19–22]:
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cq
rt =


qt

[r + 1]q
, 0 ≤ t ≤ r,

0 , t > r,

c̃rt =

{
qt ct(q)cr−t(q)

cr+1(q)
, 0 ≤ t ≤ r,

0 , t > r,

δ
2;q
rt =

{
(−1)r−tq(

r−t
2 )( 2

r−t)q , 0 ≤ t ≤ r,

0 , t > r,

ea,b
rt (p, q) =

{
1

(a⊕b)r
p,q
(r

t)p,q p(
r−t

2 )q(
t
2)atbr−t , 0 ≤ t ≤ r,

0 , t > r,

where cr(q) is the rth q-Catalan number. Demiriz and Şahin [23] and Yaying et al. [24]
studied the q-analogs of Cesàro sequence spaces Xq

p = (`p)Cq , Xq
0 = (c0)Cq , Xq

c = cCq

and Xq
∞ = (`∞)Cq . Additionally, q-analogs of Catalan sequence spaces c0(C(q)) = (c0)C(q)

and c(C(q)) = cC(q) (cf. [22]) were contributed recently to the literature. Moreover, Yay-

ing et al. [20] studied the (p′, q)-analog ea,b
p (p′, q) = (`p)E(p′ ,q) and ea,b

∞ (p′, q) = (`∞)E(p′ ,q)
of Euler sequence spaces. Bustoz and Gordillo [25] introduced the m-th order q-difference
operator ∇m

q defined as follows:

(∇m
q f)r =

m

∑
v=0

(−1)v
(

m
v

)
q
q(

v
2)fm+r−v.

By following this theory of the q-difference operator, quite recently, Yaying et al. [21]
introduced q-difference sequence spaces of the second order c0(∇2

q) = (c0)∇2
q

and c(∇2
q) =

c∇2
q

and obtained the spectral analysis of ∇2
q over the space c0.

One can observe from the above discussion that the widely studied spaces c0, c, `∞
and `p have been modified by various authors with the use of difference operators, as well
as investigating the relations of the aforesaid spaces. Most recently, involving q-calculus
and the difference operators, the authors of [21] presented a modification of c0 and c, which
were denoted by c0(∇2

q) and c(∇2
q). In the next section, we present the generalization of

`∞ and `p by defining `p(∇2
q) and `∞(∇2

q), which will fill the gap of further research in
this direction.

Obviously, c ⊆ `∞. Previous work had limitations in that we could not demonstrate
the relationship between c and `∞ as well as further research related to `∞ and `p in the
quantum sense, but one can study these types of work after the present studies.

Motivated by the above studies, in particular [8,21], we construct the domains (`p)∇2
q

and (`∞)∇2
q
. Additionally, the spectral analysis of the operator ∇2

q over the space `1 is
also obtained.

2. `p(∇2
q) and `∞(∇2

q)

In this section, the q-difference sequence spaces `p(∇2
q) and `∞(∇2

q) are presented,
inclusion relations are obtained, and the basis of the space `p(∇2

q) is determined.
Yaying et al. [21,26] defined the difference operator ∇2

q : ω → ω by

(∇2
qf)r = fr − (1 + q)fr−1 + qfr−2,

where r ∈ N and fr = 0 for r < 0. Equivalently,
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∇2
q =


1 0 0 0 · · ·

−(1 + q) 1 0 0 · · ·
q −(1 + q) 1 0 · · ·
0 q −(1 + q) 1 · · ·
...

...
...

...
...

.

It is evident that ∇2
q = ∇2 when q → 1−. Additionally, unlike its ordinary form,

∇2
q 6= ∇q ◦ ∇q. In fact

(∇2
qf)r = (∇qf)r − q(∇qf)r−1.

The inverse ∇−2
q =

(
(∇−2

q )rt
)

of the operator ∇2
q is obtained as (cf. [21])

(∇−2
q )rt =

{
(r−t+1

r−t )q , 0 ≤ t ≤ r,

0 , t > r.

Define the q-difference sequence spaces `p(∇2
q) and `∞(∇2

q) by

`p(∇2
q) :=

{
f ∈ ω : g = ∇2

qf ∈ `p

}
,

`∞(∇2
q) :=

{
f ∈ ω : g = ∇2

qf ∈ `∞

}
.

These spaces can also be illustrated in the notation of the matrix domain as follows:

`p(∇2
q) = (`p)∇2

q
and `∞(∇2

q) = (`∞)∇2
q
.

It is clear from the above definition of the sequence spaces `p(∇2
q) and `∞(∇2

q) that
the sequence g = ∇2

qf = (gr) defined by

gr = (∇2
qf)r =

r

∑
t=0

(−1)tq(
t
2)

(
2
t

)
q
fr−t = fr − (1 + q)fr−1 + qfr−2 (r ∈ N) (1)

is the ∇2
q-transform of the sequence f = (fr). Moreover, by using (1), we notice that

fr =
r

∑
v=0

(
r− v + 1

r− v

)
q
gv (2)

for each r ∈ N. Here onward, the sequences f and g are related by (1) (or by (2)).
For q = 1, the space `p(∇2

q) becomes `p(∇m) (m = 2) due to Altay [27], and `∞(∇2
q)

becomes `∞(∇m) (m = 2) due to Malkowsky and Parashar [28]. We notice that ∇1
q =

∇ [25], so it is not meaningful to work on `∞(∇1
q) [29], but the studies involving the

difference operator∇2 is stronger than∇. Based on these facts, we conclude that the spaces
`∞(∇2

q) and `p(∇2
q) are stronger than `∞(∇2) (and so `∞(∇)) and `p(∇2) (and so `p(∇)),

respectively, and hence, our results too.
We recall that a sequence space X is symmetric (cf. [30]) if fπ(r) ∈ X whenever (fr) ∈ X,

where π(r) is a permutation on N0. We consider the sequence (fr) = (r)r∈N0 , then (fr) ∈
`∞(∇2

q). Now, we consider the rearranged sequence

(f′r) = (f0, f1, f3, f2, f8, f4, f15, f5, f24, f6, f35, f7, f48, f9, . . .).

Then, (f′r) /∈ `∞(∇2
q). Consequently, `∞(∇2

q) is not a symmetric space.
Now, we state our first result:
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Proposition 1.

1. `p(∇2
q) (0 ≤ p < 1) is a complete p-normed space due to the p-norm

‖f‖`p(∇2
q)
= ‖g‖`p

= ∑
r
|fr − (1 + q)fr−1 + qfr−2|p.

2. `p(∇2
q) (1 ≤ p < ∞) is a BK-space normed by

‖f‖`p(∇2
q)
= ‖g‖`p

=

(
∑

r
|fr − (1 + q)fr−1 + qfr−2|p

)1/p

.

3. `∞(∇2
q) is a BK-space normed by

‖f‖`∞(∇2
q)
= ‖g‖`∞

= sup
r
|fr − (1 + q)fr−1 + qfr−2|.

Proposition 2. `p(∇2
q)
∼= `p and `∞(∇2

q)
∼= `∞.

Proof. The result is proved for the space `p(∇2
q). Since the q-difference operator ∇2

q is a
triangular matrix, its inverse exists. This immediately implies that the mapping τ defined by

τ : `p(∇2
q) −→ `p

f 7−→ τf = g = ∇2
qf.

is a linear bijection that preserves the norm (or p-norm). This concludes that `p(∇2
q) is

linearly isomorphic to the space `p.

We emphasize here that the q-difference sequence spaces `p(∇2
q) and `∞(∇2

q) reduce
to `p(∇2) and `∞(∇2), respectively, as q→ 1−. Thus the relations `p ⊆ `p(∇2) ⊆ `p(∇2

q)

and `∞ ⊆ `∞(∇2) ⊆ `∞(∇2
q) are trivial. Additionally, we consider the sequence (fr) = (r)

mentioned in p.4. We observe that ( fr) ∈ `∞(∇2
q) but (fr) /∈ `∞.

Proposition 3. `p(∇2
q) ⊂ `∞(∇2

q) strictly holds.

Proof. Since `p ⊂ `∞ holds, the inclusion part is obvious.
The relation `p ⊂ `∞ is strict, so we take a sequence h = (hr) ∈ `∞ \ `p. Let us define a

sequence h′ = (h′r) by h′r = ∑r
v=0 (

r−v+1
r−v )qhv for each r ∈ N. Then, ∇2

qh′ = h ∈ `∞ \ `p. This

implies the fact that h′ ∈ `∞(∇2
q) \ `p(∇2

q), as desired.

Proposition 4. `p(∇2
q) ⊂ `p′(∇2

q) strictly holds, where 1 ≤ p < p′ < ∞.

Proof. We utilize the similar method applied in the proof of Theorem 3 to establish this
result.

A Schauder basis for X(normed linear space) ⊂ ω is a sequence
(
ur
)

r∈N such that for
each f ∈ X, there corresponds a unique sequence, say

(
yr
)
, of scalars,

f = ∑
r

yrur ∀r ∈ N.

It is known that, for a triangle H, the matrix domain XH has a basis if X has a basis.
As a result of this fact along with with Theorem 2, we deduce the following result:
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Theorem 1. Define the sequence ξ(t)(q) =
(
ξ
(t)
r (q)

)
by

ξ
(t)
r (q) =

{
(r−t+1

r−t )q , t ≤ r,

0 , t > r.

Then

(a) The basis of the space `p(∇2
q) is given by the set

{
ξ(0)(q), ξ(1)(q), ξ(2)(q), . . .

}
and every

f ∈ `p(∇2
q) has a unique representation of the form f = ∑t gtξ

(t)(q), where gr = (∇2
qf)r.

(b) The sequence space `∞(∇2
q) has no Schauder basis.

3. Duals of the Spaces `p(∇2
q) and `∞(∇2

q)

For X ⊂ ω, the α-, β- and γ-dual of X are the sets

Xα :=
{

x = (xr) ∈ ω : xf = (xrfr) ∈ `1 ∀f = (fr) ∈ X
}

,

Xβ :=
{

x = (xr) ∈ ω : xf = (xrfr) ∈ cs ∀f = (fr) ∈ X
}

,

Xγ :=
{

x = (xr) ∈ ω : xf = (xrfr) ∈ bs ∀f = (fr) ∈ X
}

,

respectively.
In this section, we obtain Xα, Xβ and Xγ for X ∈

{
`p(∇2

q), `∞(∇2
q)
}

. Before proceeding
further, we list the following lemmas which are required to obtain the duals of these spaces.
Here onward, the family of all finite subsets of N is denoted by N and 1/p∗+ 1/p = 1.

Lemma 1 ([31]). These results are well known:

(i) H = (hrt) ∈ (`∞, `1) iff

sup
R∈N

∑
t

∣∣∣∣∣∑r∈R
hrt

∣∣∣∣∣ < ∞. (3)

(ii) H = (hrt) ∈ (`∞, c) iff

∃ht ∈ C 3 lim
r→∞

hrt = ht for each t ∈ N, (4)

lim
r→∞ ∑

t
|hrt| = ∑

t

∣∣∣ lim
r→∞

hrt

∣∣∣. (5)

(iii) H = (hrt) ∈ (`∞, `∞) iff

sup
r

∑
t
|hrt| < ∞. (6)

(iv) Let 1 < p < ∞. Then, H = (hrt) ∈ (`p, `∞) iff

sup
r

∑
t
|hrt|p∗ < ∞. (7)

(v) Let 1 < p < ∞. Then, H = (hrt) ∈ (`p, c) iff (4) and (7) hold.

Lemma 2. These results hold:

(i) (ref. [32], Theorem 5.1.0 with pr = p for all r) H = (hrt) ∈ (`p, `1) if

sup
R∈N

sup
t

∣∣∣∣∣∑r∈R
hrt

∣∣∣∣∣
p

< ∞, (0 < p ≤ 1). (8)
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sup
R∈N

∑
t

∣∣∣∣∣∑r∈R
hrt

∣∣∣∣∣
p∗

< ∞, (1 < p < ∞). (9)

(ii) (ref. [33], Theorem 1 (i) with pr = p for all r) H = (hrt) ∈ (`p, `∞) if

sup
r,t
|hrt|p < ∞, (0 < p ≤ 1). (10)

(iii) (ref. [33], Corollary for Theorem 1 with pr = p for all r) H = (hrt) ∈ (`p, c) if (4)
and (10) hold.

Theorem 2. Let

ν1 :=

{
d = (dr) ∈ ω : sup

R∈N
sup

t

∣∣∣∣∣∑r∈R

(
r− t + 1

r− t

)
q
dj

∣∣∣∣∣
p

< ∞

}
, (0 < p ≤ 1),

ν2 :=

{
d = (dr) ∈ ω : sup

R∈N
∑

t

∣∣∣∣∣∑r∈R

(
r− t + 1

r− t

)
q
dr

∣∣∣∣∣
p∗

< ∞

}
, (1 < p < ∞),

ν3 :=

{
d = (dr) ∈ ω : sup

R∈N
∑

t

∣∣∣∣∣∑r∈R

(
r− t + 1

r− t

)
q
dr

∣∣∣∣∣ < ∞

}
.

Then,

(i) [`p(∇2
q)]

α =

{
ν1 , 0 < p ≤ 1,
ν2 , 1 < p < ∞.

(ii)
[
`∞(∇2

q)
]α

= ν3.

Proof. For d = (dr) ∈ ω, define the matrix Λ(q) = (λ
q
rt) defined for all r, t ∈ N by

λ
q
rt =

{
(r−t+1

r−t )qdj , 0 ≤ t ≤ r,

0 , t > r

This leads to the equality:

drfr =
r

∑
t=0

(
r− t + 1

r− t

)
q
drgt = (Λ(q)g)r, (11)

where the sequence g = (gt) is given g = ∇2
qf. Thus df = (drfr) ∈ `1 whenever f ∈ `p(∇2

q)

iff Λ(q)g ∈ `1 whenever g ∈ `p. Thus, d = (dr) ∈
[
`p(∇2

q)
]α

if Λ(q) ∈ (`p, `1). Therefore,
by applying Lemma 2(i), we obtain that

[`p(∇2
q)]

α =

{
ν1 , 0 < p ≤ 1,
ν2 , 1 < p < ∞.

In a similar way, the proof of Part (ii) is established by utilizing Lemma 1(i) in place
of Lemma 2(i) in the above statements. We omit the details here to avoid repetition of the
same lines.

Theorem 3. Let

ν4 :=

{
d = (dr) ∈ ω : lim

r→∞

r

∑
z=t

(
z− t + 1

z− t

)
q
dz exists

}
,

ν5 :=

{
d = (dr) ∈ ω : sup

r,t

∣∣∣∣∣ r

∑
z=t

(
z− t + 1

z− t

)
q
dz

∣∣∣∣∣
p

< ∞

}
, (0 < p ≤ 1),
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ν6 :=

{
d = (dr) ∈ ω : sup

r
∑

t

∣∣∣∣∣ r

∑
z=t

(
z− t + 1

z− t

)
q
dz

∣∣∣∣∣
p∗

< ∞

}
,

ν7 :=

{
d = (dr) ∈ ω : lim

r→∞ ∑
t

∣∣∣∣∣ r

∑
z=t

(
z− t + 1

z− t

)
q
dz

∣∣∣∣∣ = ∑
t

∣∣∣∣∣ lim
r→∞

r

∑
z=t

(
z− t + 1

z− t

)
q
dz

∣∣∣∣∣ exists

}
.

Then,

(i) [`p(∇2
q)]

β =

{
ν4 ∩ ν5 , 0 < p ≤ 1,
ν4 ∩ ν6 , 1 < p < ∞.

(ii)
[
`∞(∇2

q)
]β

= ν3 ∩ ν7.

Proof. For d = (dr) ∈ ω, define the matrix Θ(q) = (θ
q
rt) for all r, t ∈ N by

θ
q
rt =

{
∑r

z=t (
z−t+1

z−t )qdz , 0 ≤ t ≤ r,

0 , t > r

This leads to the equality:

r

∑
t=0

dtft =
r

∑
t=0

[
t

∑
z=0

(
t− z + 1

t− z

)
q
gz

]
dt

=
r

∑
t=0

[
r

∑
z=t

(
z− t + 1

z− t

)
q
dz

]
gt

= (Θ(q)g)r (r ∈ N), (12)

where the sequence g = (gt) is given g = ∇2
qf. We see that

(
∑r

t=0 dtft
)

converges whenever

f ∈ `p(∇2
q) if Θ(q)g ∈ c whenever g ∈ `p. This means that d = (dt) ∈

[
`p(∇2

q)
]β

if
Θ(q) ∈ (`p, c). Hence, by utilizing Lemma 1(v) and Lemma 2(iii), we conclude that

[`p(∇2
q)]

β =

{
ν4 ∩ ν5 , 0 < p ≤ 1,
ν4 ∩ ν6 , 1 < p < ∞.

The β-dual of `∞(∇2
q) is obtained in the similar fashion by utilizing Lemma 1(ii),

respectively, in place of Lemma 1(v) and Lemma 2(iii) in the above statements. To avoid
repetition of similar statements, we omit the details.

Theorem 4. We have

(i) [`p(∇2
q)]

γ =

{
ν5 , 0 < p ≤ 1,
ν6 , 1 < p < ∞.

(ii)
[
`∞(∇2

q)
]γ

= ν6 with p∗ = 1.

Proof. To obtain the γ-dual of the space `p(∇2
q), we utilize Lemma 2(ii) and Lemma 1(iv)

in place of Lemma 2(iii) and Lemma 1(v) in the proof of Theorem 3, respectively. For ob-
taining the γ-dual of `∞(∇2

q), we utilize Lemma 1(iii) instead of Lemma 1(ii). Details are
omitted.

4. Matrix Mappings

We here characterize the matrix classes (X,Y), where X ∈ {`p(∇2
q), `∞(∇2

q)} and
Y ∈ {`∞, c, c0, `1}. A very useful and interesting proceeding result follows from [5].
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Theorem 5. Let X = `p or `∞ and Y ⊂ ω. Let C(r) = (c(r)vt ) and C = (crt) be defined by

c(r)vt =

{
0 (t > v),

∑v
z=t (

z−t+1
z−t )qhrz (0 ≤ t ≤ v),

crt =
v

∑
z=t

(
z− t + 1

z− t

)
q
hrz

for all r, t ∈ N. Then, H = (hrt) ∈ (X(∇2
q),Y) if C(r) = (c(r)vt ) ∈ (X, c) for each r ∈ N, and

C = (crt) ∈ (X,Y).

Proof. Let H ∈ (X(∇2
q),Y) and f ∈ X(∇2

q). Then, we have the following equality

v

∑
t=0

hrtft =
v

∑
t=0

t

∑
z=0

(
t− z + 1

t− z

)
q
gzhrt =

v

∑
t=0

v

∑
z=t

(
z− t + 1

z− t

)
q
hrzgt =

v

∑
t=0

c(r)vt gt (13)

for all v, r ∈ N. Since Hf exists, C(r) ∈ (X, c). Letting v→ ∞ in (13), we obtain Hf = Cg. As
Hf ∈ Y, Cg ∈ Y. Therefore, C ∈ (X,Y).

Conversely, let C(r) =
(
c(r)vt
)
∈ (X, c) (r ∈ N), and C = (crt) ∈ (X,Y). Let f ∈ X(∇2

q).

Then, Hr ∈ Xβ (r ∈ N) which leads us to the fact that Hr ∈
[
X(∇2

q)
]β

for each r ∈ N. By

using (13), Hf = Cg as v→ ∞. Thus H ∈ (X(∇2
q),Y).

Now, we utilize (5) to characterize some matrix classes from X ∈ {`1(∇2
q), `p(∇2

q),
`∞(∇2

q)} to Y ∈ {`1, c0, c, `∞}. We give below some conditions which are necessary for
deducing our results:

sup
v∈N

∑
t

∣∣∣c(r)vt

∣∣∣ < ∞; (14)

lim
v→∞

c(r)vt exists for all t ∈ N; (15)

sup
r∈N

∑
t
|crt|p∗ < ∞; (16)

lim
r→∞

crt exists for all t ∈ N. (17)

lim
r→∞

crt = 0 for all t ∈ N; (18)

sup
R∈N

∑
t

∣∣∣∣∣∑r∈R
crt

∣∣∣∣∣
p∗

< ∞; (19)

sup
r,t∈N
|crt| < ∞; (20)

sup
t∈N

∑
r
|crt| < ∞; (21)

lim
r→∞ ∑

t
|crt| = ∑

t
| lim

r→∞
crt|; (22)

lim
r→∞ ∑

t
|crt| = 0; (23)

sup
R∈N

∑
t

∣∣∣∣∣∑r∈R
crt

∣∣∣∣∣ < ∞. (24)

Lemma 3. One can see the necessary and sufficient condition from Table 1 for H = (hrt) ∈ (X,Y),
where X ∈

{
`1(∇2

q), `p(∇2
q), `∞(∇2

q)
}
(1 < p < ∞) and Y ∈ {`1, c0, c, `∞}.
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Table 1. Characterization of the matrix class (X,Y), where X ∈
{
`1(∇2

q), `p(∇2
q), `∞(∇2

q)
}

and
Y ∈ {`1, c0, c, `∞}.

From\To `1 c0 c `∞

`1(∇2
q) (14), (15), (21) (14), (15), (18), (20) (14), (15), (17), (20) (14), (15), (20)

`p(∇2
q) (14), (15), (19) (14), (15), (16), (18) (14), (15), (16), (17) (14), (15), (16)

`∞(∇2
q) (14), (15), (24) (14), (15), (23) (14), (15), (17), (22) (14), (15), (16),

(with p∗ = 1)

5. Spectrum of ∇2
q Over the Space `1

Finally, some spectral analyses of ∇2
q over `1 are examined.

Consider a complex normed space X 6= {θ} and any linear operator φ : D(φ) → X

(D(φ):=domain of φ). We use the following notations for the proceeding work:

φ∗ := The adjoint of the operator φ;

R(φ) := The range of the operator φ;

B(X) := The set of all bounded linear operators from X into itself;

I := Identity operator in D(φ);

φς := φ− ςI (ς ∈ C).

For any ς ∈ C, the inverse φ−1
ς of the operator φς is called the resolvent operator of φ,

provided that φς is invertible. Further, ς is a regular value of φ if

(A1) φ−1
ς exists;

(A2) φ−1
ς is bounded;

(A3) φ−1
ς is defined on a set which is dense in X.

Define the set r(φ,X) = {ς ∈ C : ς as a regular value of φ}. Then, r(φ,X) is called the
resolvent set of φ. The spectrum φ is the set s(φ,X) = C \ r(φ,X). It is further classified into
three disjoint sets:

(1) The set sp(φ,X) = {ς ∈ C : (A1) does not hold} is called point spectrum of φ over the
space X.

(2) The set sc(φ,X) = {ς ∈ C : (A1) and (A3) hold but (A2) does not hold} is called
continuous spectrum of φ over the space X.

(3) sr(φ,X) = {ς ∈ C : (A1) holds but (A3) does not hold, (A2) may or may not hold}
is called residual spectrum of φ over the space X.

In the literature, several studies can be traced concerning spectral analysis of special
matrices in different sequence spaces. We do, however, briefly mention those studies in
the literature that deal with the determination and the classification of spectrum involving
only difference operators. The readers may refer Table 2 for studies concerning spectral
analysis of difference operators over various sequence spaces.

Table 2. Related work by some authors.

Difference Operators Studied over the Opace (s) References

∆ `p, bvp [34,35]
∆ `p, c, c0 (0 < p < 1) [36,37]
∆ bv, `1 [38]
∇2 c0 [2]
B(a, b) bvp, `p, [4]
B(a, b) bv, `1 [39]
B(a, b, c) bvp, `p, c, c0 [40,41]
∇r c [42]
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Table 2. Cont.

Difference Operators Studied over the Opace (s) References

∇r
v c0, `1 [8,43]

B
(m)
v c0 [44]

B
(m)
v `1 [10]

Lemma 4 ([45]). The matrix H = (hrt) gives rise to a bounded linear operator φ ∈ B(`1) if the
supremum of `1 norms of the columns of H is bounded.

Lemma 5 ([46]). The adjoint operator φ∗ is one–one if φ has a dense range.

Theorem 6. ∇2
q : `1 → `1 is a linear operator and

∥∥∥∇2
q

∥∥∥
(`1,`1)

= 2(1 + q).

Proof. This is immediate from Lemma 4 together with(
2
0

)
q
+

(
2
1

)
q
+ q
(

2
2

)
q
= 2(1 + q).

Theorem 7. sp(∇2
q, `1) = ∅.

Proof. Consider the equality ∇2
qf = ςf for θ 6= f ∈ `1. This yields the following system

of equations:

f0 = ς f0

−(1 + q)f0 + f1 = ς f1

qf0 − (1 + q)f1 + f2 = ς f2

qf1 − (1 + q)f2 + f3 = ς f3

...

qfm−2 − (1 + q)fm−1 + fm = ς fm

... .

For a fixed m ∈ N, let fi = 0 for all i < m and fm 6= 0. Then, we obtain that ς = 1.
Taking ς = 1 in the proceeding equation yields fm = 0, which is a contradiction to the fact
fm 6= 0. Thus sp(∇2

q, `1) = ∅.

Theorem 8. Let 0 < q < 1 and assume that the series ∑∞
r=0 ηr

∣∣∣ 1+q
1−ς

∣∣∣r converges for an increasing

sequence of real numbers and η1/r
r

∣∣∣ 1+q
1−ς

∣∣∣ < 1 for large r. Then, s(∇2
q, c0) = {ς ∈ C :

∣∣∣ 1−ς
1+q

∣∣∣ ≤ 1}.

Proof. Consider ς ∈ C with
∣∣∣ 1−ς

1+q

∣∣∣ > 1. The operator (∇2
q − ςI) = (λrt) being a triangle has

an inverse (∇2
q − ςI)−1 = (µrt) given by
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µrt =



1
1− ς

0 0 0 · · ·
1 + q

(1− ς)2
1

1− ς
0 0 · · ·

(1 + q)2

(1− ς)3 −
q

(1− ς)2
1 + q

(1− ς)2
1

1− ς
0 · · ·

(1 + q)3

(1− ς)4 −
2q(1 + q)
(1− ς)3

(1 + q)2

(1− ς)3 −
q

(1− ς)2
1 + q

(1− ς)2
1

1− ς
· · ·

...
...

...
...

. . .


.

Equivalently, for each t ∈ N, entries µrt can be written as

µtt =
1

1− ς
;

µt+1,t =
q + 1

(1− ς)2 ;

µt+2,t =
(q + 1)2

(1− ς)3 −
q

(1− ς)2 ;

µt+3,t =
(q + 1)3

(1− ς)4 −
2q(q + 1)
(1− ς)3 ;

...

and so on. Clearly for r, t ∈ N, |µrt| < ∞.
Now we proceed to show that (µrt) ∈ B(`1), i.e., supt ∑r |µrt| < ∞. We first prove that

the series ∑r |µrt| converges for each t ∈ N.
Let

St = ∑
r
|µrt|

= |µtt|+ |µt+1,t|+ |µt+2,t|+ |µt+3,t|+ . . .

which gives

St =
∣∣∣(1− ς)−1

∣∣∣+ ∣∣∣(1− ς)−2(1 + q)
∣∣∣+ ∣∣∣(1− ς)−3(1 + q)2 − (1− ς)−2q

∣∣∣
+
∣∣∣(1− ς)−4(1 + q)3 − q(1− ς)−32(1 + q)

∣∣∣+ . . . .

≤ (1 + q)−1
{∣∣∣(1− ς)−1(1 + q)

∣∣∣+ ∣∣∣(1− ς)−1(1 + q)
∣∣∣2 + ∣∣∣(1− ς)−1(1 + q)

∣∣∣3
+q(1 + q)−1

∣∣∣(1− ς)−1(1 + q)
∣∣∣2 + ∣∣∣(1− ς)−1(1 + q)

∣∣∣4
+2q(1 + q)−1

∣∣∣(1− ς)−1(1 + q)
∣∣∣3 + ∣∣∣(1− ς)−1(1 + q)

∣∣∣5
+3q(1 + q)−1

∣∣∣(1− ς)−1(1 + q)
∣∣∣4 + q2(1 + q)−2

∣∣∣(1− ς)−1(1 + q)
∣∣∣3 + . . .

}
= (1 + q)−1

{
|ξ|+ |ξ|2 + |ξ|3 + . . .

}
+ (1 + q)−1

{
q(1 + q)−1|ξ|2 + 2q(1 + q)−1|ξ|3

+3q(1 + q)−1|ξ|4 + (1 + q)−2q2|ξ|3 + . . .
}

= (1 + q)−1|ξ|(1− |ξ|)−1 + (1 + q)−1
{
|ξ|2(1 + q)−1q

+|ξ|3
(

2(1 + q)−1q + q2(1 + q)−2
)
+ . . .

}
= (1 + q)−1|ξ|(1− |ξ|)−1 + (1 + q)−1

{
|ξ|2η2(q) + |ξ|3η3(q) + . . .

}
, (25)
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where
|ξ| =

∣∣∣(1− ς)−1(1 + q)
∣∣∣ < 1,

and
η2(q) = (1 + q)−1q, η3(q) = 2(1 + q)−1q + q2(1 + q)−2

are the coefficients of |ξ|2, |ξ|3, . . . , respectively. We fairly see that the sequence (ηt(q))
is increasing. It follows from our assumption that there exists a number v such that for
t > v the series ∑∞

t=v+1 ηt(q)|ξ|t = 0. Further, let η = max1<t≤v ηt(q). Then, by using
inequality (25) together with the fact that |ξ| =

∣∣(1− ς)−1(q + 1)
∣∣ < 1, we obtain

St < (1 + q)−1(1− |ξ|)−1|ξ|+ η(1 + q)−1|ξ|2
{
|ξ|v + . . . + |ξ|2 + |ξ|+ 1

}
= (1 + q)−1(1− |ξ|)−1|ξ|+ η(1 + q)−1|ξ|2(1− |ξ|)−1(1− |ξ|v−1)

= (1 + q)−1(1− |ξ|)−1|ξ|
{

1 + η|ξ|(1− |ξ|v−1)
}

< ∞.

Thus, (St) is a sequence of positive reals and limt→∞ St < ∞. Hence supt St < ∞.
Thus, (µrt) ∈ B(`1), whenever |1− ς| ≤ 1 + q. Moreover, the domain of (∇2

q − ςI)−1 is
dense in `1, which is clear from the fact that ∇2

q − ςI. Hence

s(∇2
q, c0) ⊆ {ς ∈ C : |1− ς| ≤ 1 + q}. (26)

The converse part is two-fold:

Case 1: When ς = 1, then (St) is unbounded. Thus, for ς = 1, (∇2
q − ςI)−1 /∈ B(`1).

Case 2: When ς 6= 1, (∇2
q − ςI) is a triangle, and so (∇2

q − ςI)−1 exists.

Let ς ∈ C with |1− ς| < 1 + q. Then (St) is unbounded. Consequently, (∇2
q − ςI)−1 /∈

B(`1) with |1− ς| < 1 + q.
Again, let ς ∈ C with |1− ς| = 1 + q which again yields that limt St = ∞. Hence (St)

is unbounded. Hence (∇2
q − ςI)−1 /∈ B(`1) with |1− ς| = 1 + q. Thus

{ς ∈ C : |1− ς| ≤ 1 + q} ⊆ s(∇2
q, `1). (27)

Thus, by using (26) and (27), we conclude that

s(∇2
q, `1) = {ς ∈ C :

∣∣∣∣1− ς

1 + q

∣∣∣∣ ≤ 1}.

Theorem 9. sp(∇2,∗
q , `∞) = {ς ∈ C : | 1−ς

1+q | ≤ 1}.

Proof. Let f = (fk) be a non-zero sequence such that ∇2,∗
q f = ςf, which gives the system of

linear equations as follows:

f0 − (1 + q)f1 + qf2 = ςf0,

f1 − (1 + q)f2 + qf3 = ςf1,

f2 − (1 + q)f3 + qf4 = ςf2,
... .

One may observe that for |1− ς| ≤ 1 + q, we obtain that

|f0| =
∣∣∣(1− ς)−1((1 + q)f1 − qf2)

∣∣∣
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=
∣∣∣(1− ς)−1(1 + q)

(
f1 − (1 + q)−1qf2

)∣∣∣
≥

∣∣∣f1 − (1 + q)−1qf2
∣∣∣,

and |f1| ≥
∣∣f2 − (1 + q)−1qf3

∣∣. Thus, following the similar pattern, we obtain that |f0| ≥
|f1| ≥ |f2| ≥ . . .. This implies that f ∈ `∞.

Conversely, it is trivial that if f ∈ `∞, then | 1−ς
1+q | ≤ 1.

Theorem 10. sr(∇2
q, `1) = {ς ∈ C : | 1−ς

1+q | ≤ 1}.

Proof. Let ς ∈ C with |1− ς| ≤ 1 + q. Then, the operator ∇2
q − ςI is a triangle and so is

invertible, provided that ς 6= 1. By using Theorem 6, the operator ∇2
q − ςI is one–one for

ς = 1 and so is invertible. Again by Theorem 9, the operator ∇2,∗
q − ςI is not one–one for

| 1−ς
1+q | ≤ 1. Thus with the help of Lemma 5, we conclude that R(∇2

q − ςI) 6= `1.

Hence sr(∇2
q, `1) = {ς ∈ C : | 1−ς

1+q | ≤ 1}.

Theorem 11. sc(∇2
q, `1) = φ.

Proof. This is straightforward from Theorems 8, 7 and 10 together with the fact that
s(∇2

q, `1) = sp(∇2
q, `1) ∪ sr(∇2

q, `1) ∪ sc(∇2
q, `1).

6. Conclusions

This study is a natural continuation of the works investigated in [21]. The present
literature contains various application of q-difference operators in different field of math-
ematics. But only a couple of studies [21,26] can be traced involving construction of
sequence spaces by using q-difference operator. We constructed q-difference sequence
spaces `p(∇2

q) = (`p)∇2
q

and `∞(∇2
q) = (`∞)∇2

q
. This work is an exemplar that focusses on

one of the many application of q-calculus in sequence spaces. Besides, we gave another
application of q-difference operator by determining spectral analysis of the operator ∇2

q in
the space `1.

It is evident that ∇2
q = ∇2 as q = 1. Consequently, this study is a q-analog of

difference sequence spaces of second order in `p and `∞. The investigated results advances
the sequence spaces theory to a new level and paves the way for more research in this
direction. For future scope, one may study the mth-generalization (m ∈ N) of this study
by following the theroy of mth order q-difference operator as studied by Bustoz and
Gordillo [25]. Further, q-difference operators can be used in the study associated to medical
diagnosis and decision making in the setting of spherical fuzzy sets [47].
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