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Abstract: Many symmetric properties are well-explored in graph theory, especially in graph coloring,
such as symmetric graphs defined by the automorphism groups, symmetric drawing of planar graphs,
and symmetric functions which are used to count the number of specific colorings of a graph. This
paper is devoted to studying the star edge coloring of 1-planar graphs. The star chromatic index
χ′st(G) of a graph G is defined as the smallest k for which the edges of G can be colored by using
k colors so that no two adjacent edges get the same color and no bichromatic paths or cycles of
length four are produced. A graph G is called 1-planar if it can be drawn in the plane such that
each edge crosses at most one other edge. In this paper, we prove that every 1-planar graph G
satisfies χ′st(G) ≤ 7.75∆ + 166; and moreover χ′st(G) ≤ b1.5∆c+ 500 if G contains no 4-cycles, and
χ′st(G) ≤ 2.75∆ + 116 if G is 3-connected, or optimal, or NIC-planar.

Keywords: star edge coloring; strong edge coloring; 1-planar graph; edge-partition

1. Introduction

Symmetry occurs not only in geometry, but also in other branches of mathematics.
Graph coloring plays an important role in the whole history of the area of graph theory, in
which many symmetric properties are widely studied, such as symmetric graphs defined by
the automorphism groups, symmetric drawings of planar graphs. In 1995, Stanley studied
graph colorings and related symmetric functions [1], and introduced a homogeneous
symmetric function generalization of the chromatic polynomial of a graph. From then,
many kind of generalizations have been studied including Tutte symmetric functions [2].
In their book, Gross, Yellen and Anderson [3] wrote a chapter ′′Graph Colorings and
Symmetry′′ to explore the interplay between a graph’s symmetry and the number of
different colorings of that graph.

Throughout this paper, we consider only simple graphs, i.e., without loops and multi-
edges. Assume that G is a graph with vertex set V(G), edge set E(G), minimum degree
δ(G), and maximum degree ∆(G) (for short, ∆). We say that two edges of G have distance
d if their distance is d in the line graph of G. Given a vertex v ∈ V(G), we use dG(v) and
NG(v) to denote the degree of v in G and the set of neighbors of v in G, respectively. If
dG(v) = k or dG(v) ≥ k, then v is called a k-vertex or a k+-vertex. The maximum average
degree of G, denoted mad(G), is defined as max{ 2|E(H)|

|V(H)| |H ⊆ G}.
If a graph G has a mapping φ from E(G) to {1, 2, . . . , k} so that any two adjacent edges

receive different values, then φ is called an edge-k-coloring of G. If, in φ, each path of length
three has distinct colors (or no path or cycle of length four is bichromatic), then φ is called a
strong edge-coloring (or star edge-coloring). The chromatic index χ′(G) strong chromatic index
χ′s(G), star chromatic index χ′st(G), respectively) is the least k so that G is edge-k-colorable
(strongly edge-k-colorable, star edge-k-colorable, respectively).

It holds trivially that χ′s(G) ≥ χ′st(G) ≥ χ′(G) ≥ ∆ for any graph G.
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About the strong edge-coloring of graphs, Erdős and Nešetřil raised the following
challenging conjecture:

Conjecture 1. For a graph G,

χ′s(G) ≤
{

1.25∆2, if ∆ is even;
1.25∆2 − 0.5∆ + 0.25, if ∆ is odd.

It was shown in [4] that χ′s(G) ≤ 1.998∆2 for a graph G when ∆ is enough large. Very
recently, Bonamy et al. [5] improved this upper bound to 1.835∆2. It was shown in [6]
that every planar graph G has χ′s(G) ≤ 4∆ + 4, and there exist planar graphs H such that
χ′s(H) = 4∆− 4 .

The concept of the star edge-coloring of graphs was introduced by Liu and Deng [7].
They showed that χ′st(G) ≤ d16(∆− 1)

3
2 e if G is a graph with ∆ ≥ 7. In 2013, Dvořák et al. [8]

first established the following result for a complete graph Kn,

χ′st(Kn) ≤
22
√

2(1+o(1))
√

log n

(log n)
1
4

n,

and then used it to prove that χ′st(G) ≤ ∆2O(1)
√

log ∆ for any graph G.
Suppose that G is a subcubic graph, i.e., a graph with maximum degree at most three.

It was showed in [8] that χ′st(G) ≤ 7 and conjectured that 6 is enough. This result has been
extended from two aspects below. Lužar et al. [9] showed that G is list star edge-7-colorable.
Lei et al. [10] proved that χ′st(G) ≤ 6 if mad(G) < 5

2 , and χ′st(G) ≤ 5 if mad(G) < 24
11 .

In 2016, Bezegová et al. [11] verified: (i) a forest F has χ′st(F) ≤ b1.5∆c; (ii) an outer-
planar graph G has χ′st(G) ≤ b1.5∆c+ 12. Note that the upper bound b1.5∆c of (i) is tight
and the number 12 in (ii) was conjectured to be replaced by 1. By using an edge-partition
technique, Wang et al. [12] improved and extended the results in [11] as follows:

Theorem 1 ([12]). Let G be a planar graph. Then
(1) χ′st(G) ≤ 2.75∆ + 18.
(2) χ′st(G) ≤ b1.5∆c+ 18 if G has no 4-cycles.
(3) χ′st(G) ≤ b1.5∆c+ 5 if G is outerplanar.

If a graph G can be drawn in the plane such that each edge crosses at most one other
edge, then G is called a 1-planar graph. It was shown in [13] that every 1-planar graph G
has |E(G)| ≤ 4|V(G)| − 8, and δ(G) ≤ 7. Note that the largest complete graph that is not
1-planar is K6, and there exists a 7-regular 1-planar graph G′, as shown in Figure 1. Observe
that both K6 and G′ are symmetric with respect to their vertices.
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6K G

Figure 1. Compete graph K6 and 7-regular 1-planar graph G′.

Call a 1-planar graph G optimal if |E(G)| = 4|V(G)| − 8, NIC-planar if any two pairs of
crossing edges have at most one common end-vertices, and IC-planar if any two pairs of
crossing edges have no common end-vertices. Recently, Wang et al. [14] studied the strong
edge-coloring of 1-planar graphs and obtained the following results:

Theorem 2 ([14]). Let G be a 1-planar graph. Then
(1) χ′s(G) ≤ 14∆.
(2) χ′s(G) ≤ 10∆ + 14 if G is optimal.
(3) χ′s(G) ≤ 6∆ + 20 if G is IC-planar.

This paper is devoted to discuss the star edge-coloring of 1-planar graphs. The main
results obtained are described in the Abstract.

2. Edge-Partition

Suppose that G1, G2, and G are three graphs with same vertex set. If E(G) = E(G1) ∪
E(G2) and E(G1) ∩ E(G2) = ∅, then (G1, G2) is said to be an edge-partition of G.

Let G be a 1-planar graph. Ackerman [15] showed that G admits an edge-partition
into a planar graph and a forest. We say that G is k-nice, where k is a fixed constant, if G
can be edge-partitioned into two planar graphs G1 and G2 such that ∆(G2) ≤ k. It is easy
to check that IC-planar graph is 1-nice. Moreover, for our purpose, we list the following
more interesting results on k-nice 1-planar graphs.

Lemma 1 ([16]). NIC-planar graphs are 3-nice, and the result is the best possible.

Lemma 2 ([17]). Optimal 1-planar graphs are 4-nice, and the result is the best possible.

Lemma 3 ([18]). All 3-connected 1-planar graphs are 6-nice, and the result is the best possible.

To bind the linear 2-arboricity of 1-planar graphs, Liu et al. [19] established the follow-
ing structural theorem:

Lemma 4 ([19]). Every 1-planar graph G with ∆ ≥ 26 can be edge-partitioned into two forests
F1, F2 and a graph K such that ∆(K) ≤ 24 and ∆(Fi) ≤ d∆−23

2 e for i = 1, 2.

Corollary 1. Every 1-planar graph G with ∆ ≥ 26 can be edge-partitioned into a forest F and a
graph H such that ∆(F) ≤ d∆−23

2 e and ∆(H) ≤ d∆+25
2 e.

Proof. By Lemma 4, G has an edge-partition (F1, F2, K) such that Fi is a forest with ∆(Fi) ≤
d∆−23

2 e for i = 1, 2, and K is a graph with ∆(K) ≤ 24. Define F = F1 and H = F2 ∪ K.
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Then (F, H) is an edge-partition of G such that F is a forest with ∆(F) ≤ d∆−23
2 e and

∆(H) ≤ ∆(F2) + ∆(K) ≤ d∆−23
2 e+ 24 = d∆+25

2 e.

Given a graph G, identifying its vertices x and y means that gluing x, y into a new
vertex z such that each of the edges incident to x or y in G is joined to z. An edge e of
G is contracted if it is deleted and its end-vertices are identified. Call an edge e = xy
of G (i, j)-edge if dG(x) = i and dG(y) = j. Set M(e) = max{dG(x), dG(y)}, and define
M∗(G) = min{M(e) | e ∈ E(G)}.

The following lemma implies the existence of a light edge in a 1-planar graph with
minimum degree at least three.

Lemma 5 ([20]). Let G be a 1-planar graph with δ(G) ≥ 3. Then M∗(G) ≤ 20.

Let G be a 1-planar graph which is drawn in the plane such that each edge has at most
one crossing. Moreover, we may require that the number of crossings in G is as few as
possible. Let X(G) denote the set of crossings in G. Define the associated plane graph H of
G as follows:

V(H) = V(G) ∪ X(G),

E(H) = E0(G) ∪ E1(G),

where E0(G) denotes the set of non-crossed edges in G and
E1(G) = {xz, zy | xy ∈ E(G) \ E0(G) and z is a crossing on xy}.
We say that a vertex u ∈ V(H) is true if u ∈ V(G), and false if u ∈ X(G). Clearly,

dH(u) = dG(u) if u ∈ V(G), and dH(u) = 4 if u ∈ X(G). Since G is 1-planar, there do not
exist two adjacent false vertices in H.

Theorem 3. If G is a 1-planar graph with δ(G) ≥ 2 and without 4-cycles, then M∗(G) ≤ 40.

Proof. If δ(G) ≥ 3, then the result holds from Lemma 5. Thus assume that δ(G) = 2.
Suppose that the theorem is not true, i.e., M∗(G) ≥ 41. Let v be any 2-vertex of G with
neighbors x and y. Then dG(x) ≥ 41 and dG(y) ≥ 41. Let H be the associated plane
graph of G such that the number of crossings is as few as possible. If vx is a crossing
edge of G with crossing x×, then x× is a false vertex of H that satisfies vx×, x×x ∈ E(H)
and vx /∈ E(H). Let ρ(v) denote the number of crossing edges of G in {vx, vy}. Then
0 ≤ ρ(v) ≤ 2. We say that v is of type 1 if xy ∈ E(G) and type 2 if xy /∈ E(G). We need to
define the following operations (OP1)–(OP4):

(OP1) If v is of type 1, then remove the vertex v.

(OP2) If v is of type 2 and ρ(v) ≤ 1, say vy ∈ E(H) by the symmetry of x and y, then
contract the edge vy.

Assume that v is of type 2 and ρ(v) = 2. To introduce (OP3), we define an auxiliary
graph B in the following way. Let S denote the set of all type 2 2-vertices u in H with
ρ(u) = 2. Then each u ∈ S is adjacent to two false vertices in H. Let T denote the set of
false vertices in H which are adjacent to at least one vertex in S. Let B = H[S ∪ T], which is
an induced subgraph of H on the set S ∪ T.

Claim 1. B is a bipartite graph with ∆(B) = 2.

Proof. It follows from M∗(G) ≥ 41 that H contains no adjacent 2-vertices, so no two
vertices in S are adjacent. Because H contains no adjacent false vertices, no two vertices
in T are adjacent. Hence B is a bipartite graph with bipartitions S and T. Obviously,
dB(x) = dH(x) = 2 for every x ∈ S. Moreover, because M∗(G) ≥ 41, every false vertex is
adjacent to at most two 2-vertices in H. Hence ∆(B) ≤ 2. Noting that S 6= ∅, we derive
that ∆(B) = 2. This completes the proof of Claim 1.
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Let C be a component of B. By Claim 1, C is an even cycle of length at least 4 or a path
of length at least 2 from a false vertex to another false vertex.

First, suppose that C is not a path of length 2, say C = z1u1z2u2 · · · zkukz1 is an even
cycle or C = z1u1z2 · · · ukzk+1 is a path, where u1, u2, . . . , uk ∈ S, z1, z2, . . . , zk+1 ∈ T, and
k ≥ 2.

Let ziuizi+1ui+1zi+2 be a sub-path of C, where ui, ui+1 ∈ S and zi, zi+1, zi+2 ∈ T. Then
dH(ui) = dH(ui+1) = 2 and dH(zi) = dH(zi+1) = dH(zi+2) = 4. Let the neighbors of zi+1
in H are ui, ui+1, u′i, u′i+1 in a cyclic order. Then uiu′i and ui+1u′i+1 are two crossing edges of
G. It is easy to check that no vertex in {ui, ui+1} is joined to any vertex in {u′i, u′i+1}. Define
the following operation, as shown in Figure 2:

(τ1) Remove zi+1, identify ui and ui+1 into a new vertex ui,i+1, and then join ui,i+1 to
each of u′i and u′i+1.

)( 1
1iz

iz 2iz

iu
1iu

'
1iu '

iu

iz

1, iiu

2iz

'
1iu '

iu

Figure 2. (τ1) acting on the set {ui, ui+1}.

In all figures of this paper, vertices marked • have no edges of H incident with them
other than those shown, vertices marked ◦may have edges connected to other vertices of
H not in the configuration, and vertices marked ⊗ are false vertices of H.

We say that (τ1) is an operator acted on the set {ui, ui+1}.
Because ui and ui+1 lie in the boundary of some common face of H, (τ1) can be

reasonably defined, i.e., the resultant graph is a simple 1-planar graph. The following
Remark 1 holds obviously.

Remark 1. Let H1 be the graph obtained from H by acting (τ1) on the set {ui, ui+1}. Then
(1) dH1(ui,i+1) = 4;
(2) For each vertex t ∈ {zi, zi+2, u′i, u′i+1}, dH1(t) = dH(t).

Let ziuizi+1ui+1zi+2ui+2zi+3 be a sub-path of C, where ui, ui+1, ui+2 ∈ S and
zi, zi+1, zi+2, zi+3 ∈ T. Assume that the neighbors of zi+1 in H are ui, ui+1, u′i, u′i+1 in a cyclic
order, and the neighbors of zi+2 in H are ui+1, ui+2, u′′i+1, u′i+2 in a cyclic order. Similarly, no
vertex in {ui, ui+1} is adjacent to any vertex in {u′i, u′i+1}, and no vertex in {ui+1, ui+2} is
adjacent to any vertex in {u′′i+1, u′i+2}. Note that u′i+1 6= u′′i+1, for otherwise G will contain
a multi-edge. Moreover, if u′i+1 = u′i+2, then G will admit a new plane drawing such that
zi+1 may not exist, which contradicts the assumption that the number of crossings in G is
as few as possible. Hence the only possibility for two vertices in {u′i, u′i+1, u′′i+1, u′i+2} to
be same is that u′i = u′i+2. To deal with this case, we define the following operation (see
Figure 3):

(τ2) Remove zi+1, zi+2, identify ui, ui+1, ui+2 into a new vertex ui,i+1,i+2, and then join
ui,i+1,i+2 to each of u′i, u′i+1, u′′i+1, u′i+2.
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iu

iz 3iz

2iu

'
1iu '

iu "
1iu'

2iu

)( 2
1iu

2iz1iz

3iziz

"
1iu

'
2iu'

iu
'
1iu

2,1,  iiiu

Figure 3. (τ2) acting on the set {ui, ui+1, ui+2}.

Note that when u′i = u′i+2, i.e., u′i and u′i+2 coincide into a vertex w, we connect only
one edge between w and ui,i+1,i+2. This guarantees that the resultant graph is still a simple
plane graph. Similarly, (τ2) is called an operator acted on the set {ui, ui+1, ui+2}.

As an easy observation, we have the following:

Remark 2. Let H2 be the graph obtained from H by acting (τ2) on the set {ui, ui+1, ui+2}. Then
(1) 5 ≤ dH2(ui,i+1,i+2) ≤ 6; and dH2(ui,i+1,i+2) = 5 if and only if u′i = u′i+2;
(2) For j ∈ {i, i + 2}, dH(u′j)− 1 ≤ dH2(u

′
j) ≤ dH(u′j); and dH2(u

′
j) = dH(u′j)− 1 if and

only if u′i = u′i+2;
(3) For each vertex t ∈ {zi, zi+3, u′i+1, u′′i+1}, dH2(t) = dH(t).

Based on (τ1) and (τ2), we furthermore define the following operation:

(OP3) If k is even, then act (τ1) on {u1, u2}, {u3, u4}, . . ., {uk−1, uk}, respectively. If k
is odd, then act (τ2) on {u1, u2, u3}, and (τ1) on {u4, u5}, . . ., {uk−1, uk}, respectively.

Next, suppose that C = z1u1z2 is a path of length 2 with u1 ∈ S and z1, z2 ∈ T. Let the
neighbors of z1 in H be u1, w1, u′1, v1 in a cyclic order. Then w1, v1 are true 3+-vertices of H,
dH(u′1) ≥ 41, and u1u′1, w1v1 ∈ E(G). Because H is a simple graph, at least one of w1 and
v1 is not adjacent to z2, say z2w1 /∈ E(H).

In view of the symmetry of the vertices z1 and z2, we carry out the following operation,
see Figure 4:

(OP4) Remove z1, and then identify u1 and w1 into a new vertex w∗1 . If u′1w1 ∈ E(G),
then join w∗1 to v1; otherwise, join w∗1 to each of u′1 and v1.

1z 1u 2z 2z

1y 1y

1t 1t

''
1u

''
1u

1v 1v

1w

'
1u

'
1u

*
1w)OP4(

Figure 4. (OP4) acting on the set {u1, w1}.

Let H3 denote the resultant graph after (OP4) are carried out. It is easy to see that H3
is a simple plane graph. Moreover, the following Remark 3 holds clearly:

Remark 3. (1) dH(w1) + 1 ≤ dH3(w
∗
1) ≤ dH(w1) + 2; and dH3(w

∗
1) = dH(w1) + 1 if and only

if w1u′1 ∈ E(H);
(2) dH(u′1)− 1 ≤ dH3(u

′
1) ≤ dH(u′1); and dH3(u

′
1) = dH(u′1)− 1 if and only if w1u′1 ∈

E(H);
(3) dH3(v1) = dH(v1), and dH3(z2) = dH(z2).

By Remark 3(1), dH3(w
∗
1) ≥ dH(w1) + 1 ≥ 3 + 1 = 4.

Let H∗ denote the resultant graph obtained from H by carrying out (OP1)-(OP4) for
all 2-vertices of H. Then H∗ is a simple plane graph, which is the associated plane graph
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of some 1-planar graph K. Namely, we can construct a graph K from H∗ by performing
the following operation for each false vertex x: Assuming that the neighbors of x in H∗ are
x1, x2, x3, x4 in a cyclic order, then we remove x and add the diagonal edges x1x3 and x2x4.
It is easy to inspect that K is a simple 1-planar graph, and it may contain 4-cycles.

Let V(K) = V1 ∪ V2, where V1 is the set of new vertices added when carrying out
(OP3) and (OP4), and V2 = V(K) \V1. Then V2 ⊆ V(G).

Claim 2. δ(K) ≥ 3.

Proof. It suffices to show that dK(v) ≥ 3 for each vertex v ∈ V(K). If v ∈ V1, i.e., v is a
vertex of form ui,i+1, ui,i+1,i+2 and w∗1 , then Remarks 1–3 claim that dK(v) ≥ 4. Otherwise,
v ∈ V2. (OP1)-(OP4) imply that dG(v) ≥ 3. Let

n+
3 (v) = |{x ∈ NG(v) | dG(x) ≥ 3}|,

n2(v) = |{x ∈ NG(v) | dG(x) = 2}|.
For i = 1, 2, let ni

2(v) denote the number of 2-vertices of type i adjacent to v in G.
From (OP1)-(OP4), we can see that if vv′ ∈ E(G) with dG(v′) ≥ 3, then v′ ∈ V(K) and
vv′ is still an edge of K. This implies that dK(v) ≥ n+

3 (v). So, if n+
3 (v) ≥ 3, then we are

done. Otherwise, n+
3 (v) ≤ 2. Because dG(v) ≥ 3, v is adjacent to a 2-vertex y in G. Because

vy ∈ E(G) and M∗(G) ≥ 41, it follows that n2(v) = dG(v)− n+
3 (v) ≥ 41− 2 = 39. Let

v′ ∈ NG(v) with dG(v′) ≥ 3. Because G contains no 4-cycles, there exists at most one
2-vertex, say x, such that x, v, v′ forms a 3-cycle of G, i.e., x is a 2-vertex of type 1 in G. So it
follows that n1

2(v) ≤ n+
3 (v) ≤ 2, and therefore n2

2(v) = n2(v)− n1
2(v) ≥ 39− 2 = 37.

For 0 ≤ k ≤ 2, let Uk denote the set of type 2 2-vertices x ∈ NG(v) with ρ(x) = k.
Suppose that y ∈ U0 ∪U1, and let y′ be the neighbor of y other than v. Then vy′ /∈ E(G).
By (OP2), we need to remove y and then add the edge vy′ to the resultant graph. Then
vy′ ∈ E(K). So, when |U0|+ |U1| ≥ 3, we have that dK(v) ≥ |U0|+ |U1| ≥ 3. Otherwise,
|U0|+ |U1| ≤ 2, so that |U2| = n2

2(v)− (|U0|+ |U1|) ≥ 37− 2 = 35. Namely, there are at
least 35 2-vertices in U2 which are required to carry out (OP3) or (OP4). It is easy to observe
that when (OP3) or (OP4) is performed once, the degree of v in K is increased by at least
one. It therefore follows that dK(v) ≥

⌊ |U2|
3
⌋
≥ b 35

3 c = 11. This proves Claim 2.

By Claim 2 and Lemma 5, K contains an edge e = xy such that dK(x), dK(y) ≤ 20.

Claim 3. There is an edge e′ = x′y′ ∈ E(G) such that dG(x′), dG(y′) ≤ 40.

Proof. The proof is split into two cases as follows.

Case 1. xy ∈ E(G).

There exist x′, y′ ∈ V(G) such that x′ corresponds to x, and y′ corresponds to y. In
light of the symmetry of x and y, it suffices to define x′ and to prove that dG(x′) ≤ 40.
There are two possibilities as follows.

Case 1.1. x ∈ V1.

Assume that x is generated by acting (τ1) on two 2-vertices of G, say ui and ui+1. Then
x = ui,i+1 and dK(x) = 4 by Remark 1(1). So x′ can be defined as exactly one of ui and ui+1
such that dG(x′) = 2.

Assume that x is generated by acting (τ2) on three 2-vertices of G, say ui, ui+1, ui+2.
Then x = ui,i+1,i+2 and 5 ≤ dK(x) ≤ 6 by Remark 2(1). So x′ is exactly one of ui, ui+1 and
ui+2 such that dG(x′) = 2.

Assume, by symmetry, that x is generated by carrying out (OP4) for a 2-vertex, say u1,
and a 3+-vertex, say w1, of G. Then x = w∗1 , and x′ is exactly one of u1 and w1 such that
dG(x′) ≤ max{dG(u1), dG(w1)} < dK(x) ≤ 20 by Remark 3(1).

Case 1.2. x ∈ V2.
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Set x′ = x, and let z ∈ NK(x). There are two possibilities to be handled.
Assume that z ∈ V(G) with dG(z) ≥ 3. If zx′ ∈ E(G), then because G contains no

4-cycles, there exists at most one 2-vertex z′ ∈ V(G) such that zz′, z′x′ ∈ E(G). By (OP1),
the degree of x′ in G caused by z is at most two. Otherwise, zx′ /∈ E(G). There exists a
2-vertex t ∈ V(G) such that zt, tx′ ∈ E(G). In this case, t is a neighbor of x′ in G. By (OP2),
the degree of x′ in G caused by z stays unchanged.

Assume that z ∈ V1. Then, by (OP3), (OP4) and Remarks 1-3, z can be split into at
most three vertices in G, at most two of which are adjacent to x′. Thus, the degree of x′ in
G caused by z is at most two.

The above analysis implies that dG(x′) ≤ 2dK(x) ≤ 40.

Case 2. xy /∈ E(G).

Then there is a 2-vertex t ∈ V(G) such that xt, ty ∈ E(G) by (OP2)-(OP4). Set x′ = x
and y = t. Repeating the proof for Case 1, we can conclude that dG(x′) ≤ 40. This
completes the proof of Claim 3.

Claim 3 implies that M(x′y′) ≤ 40, which contradicts the assumption that M∗(G) ≥ 41.
This proves Theorem 3.

The condition that G contains no 4-cycles in Theorem 3 is essential. For example,
K2,n is a 1-planar graph (in fact, planar) with many 4-cycles, so that M∗(K2,n) = n is not
bounded by any given constant. Moreover, it should be pointed out that, in the proof of
Theorem 3, we employed the symmetry of subgraphs considered many times.

Now, by using Theorem 3 and Theorem 2 in [21], we obtain the following important
edge-partition theorem of 1-planar graphs without 4-cycles.

Theorem 4. Let G be a 1-planar graph with ∆(G) ≥ 41 and without 4-cycles. Then G has an
edge-partition (F, H) such that F is a forest with ∆(F) = ∆(G) − 39 and H is a graph with
∆(H) = 39.

3. Star Chromatic Index

Let G be a graph and M be a matching of G. M is called strong if G[V(M)] = M. Note
that finding the strong chromatic index χ′s(G) of G is equivalent to determine the least k
such that E(G) can be partitioned into k edge-disjoint strong matchings. M is said to be
partitioned into q strong matchings of G if M = M1 ∪ M2 ∪ · · · ∪ Mq, Mi ∩ Mj = ∅ for
i 6= j, and each Mi is a strong matching of G. Let ρG(M) denote the least q such that M can
be partitioned into q strong matchings. By definition, 1 ≤ ρG(M) ≤ |M|.

Lemma 6 ([14]). If M is a matching of a 1-planar graph G, then ρG(M) ≤ 14.

For a subgraph H of a graph G, we use χ′s(H|G) to denote the least l for which H has
an edge-l-coloring such that any two edges of H with at distance at most two in G receive
distinct colors.

Lemma 7 ([12]). If a graph G has an edge-partition (K, H), then χ′st(G) ≤ χ′st(K) + χ′s(H|G).

To apply effectively Lemma 7, we need furthermore to evaluate the value of χ′s(H|G).

Theorem 5. Suppose that (K, H) is an an edge-partition of a 1-planar graph G. If χ′(H) = k,
then χ′st(G) ≤ χ′st(F) + 14k.

Proof. By Lemma 7, χ′st(G) ≤ χ′st(F) + χ′s(H|G). To estimate χ′s(H|G), we first give an
edge-k-coloring φ of H by using the colors 1, 2, . . . , k. For 1 ≤ i ≤ k, let Ei denote the set of
edges in H having the color i. Then Ei is a matching of H. By Lemma 6, ρG(Ei) ≤ 14. So it
follows easily that χ′s(H|G) ≤ ρG(E1) + ρG(E2) + · · ·+ ρG(Ek) ≤ 14k.
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The celebrated Vizing theorem says that every simple graph G is edge-(∆ + 1)-
colorable. That is, the following result holds.

Lemma 8. ([22]) For a simple graph G, ∆ ≤ χ′(G) ≤ ∆ + 1.

Now, by using the previously preliminary results, we start with proving one of the
main results in this paper, i.e., Theorem 6. This theorem tells us that the star chromatic
index of some special 1-planar graphs is at most 2.75∆ plus a absolute constant.

Theorem 6. Let G be a 1-planar graph.
(1) If G is 3-connected, then χ′st(G) ≤ 2.75∆ + 116.
(2) If G is optimal, then χ′st(G) ≤ 2.75∆ + 88.
(3) If G is NIC-planar, then χ′st(G) ≤ 2.75∆ + 74.
(4) If G is IC-planar, then χ′st(G) ≤ 2.75∆ + 32.

Proof. (1) Because G is 3-connected, Lemma 3 claims that G has an edge-partition into two
planar graphs G1 and G2 such that ∆(G2) ≤ 6. By Theorem 1(1), χ′st(G1) ≤ 2.75∆(G1) +
18 ≤ 2.75∆ + 18. By Lemma 8, χ′(G2) ≤ ∆(G2) + 1 ≤ 6 + 1 = 7. By Theorem 5, χ′st(G) ≤
χ′st(G1) + 14χ′(G2) ≤ 2.75∆ + 18 + 14× 7 = 2.75∆ + 166.

By using Lemmas 1 and 2, we can similarly show (2) and (3). For (4), it suffices to
notice that the chromatic index of a matching is at most 1.

The following Theorem 7 gives actually an almost optimal upper bound (away from a
constant) for the star chromatic index of 1-planar graphs without 4-cycles. To show it, we
need to introduce two known results.

Lemma 9 ([11]). Every forest F has χ′st(F) ≤ b1.5∆c; and the upper bound is tight.

Lemma 10 ([23]). Every 1-planar graph G with ∆ ≥ 10 has χ′(G) = ∆.

Theorem 7. Every 1-planar graph G without 4-cycles has χ′st(G) ≤ b1.5∆c+ 500.

Proof. If ∆ ≤ 40, then by Theorem 2(1) we derive that χ′st(G) ≤ χ′s(G) ≤ 14∆ ≤ b1.5∆c+
500. If ∆ ≥ 41, then Theorem 4 claims that G can be edge-partitioned into a forest F and
a subgraph H such that ∆(F) = ∆− 39 and ∆(H) = 39. By Lemma 10, χ′(H) = ∆(H).
It follows from Theorem 5 and Lemma 9 that χ′st(G) ≤ χ′st(F) + 14χ′(H) ≤ b1.5∆(F)c+
14∆(H) = b1.5(∆− 39)c+ 14× 39 < b1.5∆c+ 500.

Finally, we consider the star chromatic index of general 1-planar graphs by giving a
linear upper bound about ∆. It is unknown whether or not this upper bound is tight.

Theorem 8. Let G be a 1-planar graph. Then χ′st(G) ≤ 7.75∆ + 166.

Proof. If ∆ ≤ 25, then it is easy to derive by Theorem 2(1) that χ′st(G) ≤ χ′s(G) ≤ 14∆ <
7.75∆ + 166. Otherwise, ∆ ≥ 26. By Corollary 1, G can be edge-partitioned into a forest F
and a graph H such that ∆(F) ≤ d∆−23

2 e and ∆(H) ≤ d∆+25
2 e. Because ∆ ≥ 26, we deduce

that χ′(H) ≤ d∆+25
2 e by Lemmas 8 and 10. Hence, by Theorem 5 and Lemma 9, we have

the following:

χ′st(G) ≤ χ′st(F) + 14χ′(H)

≤ b1.5∆(F)c+ 14
⌈∆ + 25

2

⌉
≤

⌊
1.5
⌈∆− 23

2

⌉⌋
+ 14

⌈∆ + 25
2

⌉
≤ 7.75∆ + 166.
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4. Concluding Remarks

In this paper, we prove that the star chromatic index of 1-planar graphs G is at most
7.75∆ + 166, but when G is 3-connected, χ′st(G) ≤ 2.75∆ + 116. We feel that these results
are not best possible, and hence put forward the following problem:

Problem 1. Determine the smallest constants a1 and b1 such that every 1-planar graph G has
χ′st(G) ≤ a1∆ + b1.

Because there exists a tree T such that χ′st(T) = b1.5∆c, we infer that a1 ≥ 1.5.
Theorem 7 asserts that if a 1-planar graph G does not contain 4-cycles, then χ′st(T) ≤

b1.5∆c+ 500. Here the constant 500 seems not best possible.

Problem 2. Determine the smallest constants c1 such that every 1-planar graph G without 4-cycles
has χ′st(G) ≤ b1.5∆c+ c1.

In fact, Theorem 4 extends a result in [24], which says that every planar graph G
without 4-cycles has an edge-partition (F, H) such that F is a forest and ∆(H) ≤ 5. About
other results regarding the vertex-partition of graphs, one can refer to [25,26].

It is unknown whether Theorem 4 is the best possible with respect to the maximum
degree of the graph H. Naturally, we raise the following problem.

Problem 3. Determine the smallest constant c2 such that every 1-planar graph G without 4-cycles
can be edge-partitioned into a forest F and a graph H such that ∆(F) = ∆− c2 and ∆(H) = c2.

By Theorem 4, we see that c2 ≤ 39 when ∆ ≥ 41. On the other hand, to discuss
the lower bound of c2, we depict the graphs P and G∗ in Figure 5, either of which is of
symmetry with respect to vertices and edges. Note that P is the well-known Petersen graph
and is a 1-planar graph without 3-cycles and 4-cycles. If P has an edge-partition (F, H) such
that F is a forest; then it is easy to derive that ∆(H) ≥ ∆(P)− 1 = 2 because the minimum
degree of F is at most one. Observe that G∗ is a 4-regular planar graph without 4-cycles (of
course, it is also 1-planar), and if it has an edge-partition (F, H) such that F is a forest, then
∆(H) ≥ 4− 1 = 3. These two examples show that c2 ≥ 3.

GP

Figure 5. Petersen graph P and planar graph G∗.
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