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Abstract: This paper introduces a novel variational inference (VI) method with Bayesian and gradient
descent techniques. To facilitate the approximation of the posterior distributions for the parameters
of the models, the Stein method has been used in Bayesian variational inference algorithms in recent
years. Unfortunately, previous methods fail to either explicitly describe the influence of its history in
the tracing of particles (Q(x) in this paper) in the approximation, which is important information in
the search for particles. In our paper, Q(x) is considered in design of the operator Bp, but the chance
of jumping out of the local optimum may be increased, especially in the case of complex distribution.
To address the existing issues, a modified Stein variational inference algorithm is proposed, which can
make the gradient descent of Kullback–Leibler (KL) divergence more random. In our method, a group
of particles are used to approximate target distribution by minimizing the KL divergence, which
changes according to the newly defined kernelized Stein discrepancy. Furthermore, the usefulness
of the suggested technique is demonstrated by using four data sets. Bayesian logistic regression is
considered for classification. Statistical studies such as parameter estimate classification accuracy, F1,
NRMSE, and others are used to validate the algorithm’s performance.

Keywords: Stein method; Bayesian variational inference; KL divergence; Bayesian logistic regression

1. Introduction

In the area of inference issues, variational approaches [1] have lately gained popularity
as a way to find a symmetric or asymmetric distribution that is close to the correct posterior
from a simple class of distributions. The roots of variational inference (VI) can be traced
back to the 1980s, describing mean-field methods, and play a key role in statistical mechanics.
Variational approaches have a wide range of applications in Bayesian inference on asymmetric
distribution [2], parameter-learning research [3–7], neural networks [8,9], and probabilistic
graphical models [10]. To approximate the entire posterior, variational approaches try to
reduce the Kullback–Leibler divergence [11] between the genuine posterior and a preset
factorized distribution on the same variables. This method aims to find an approximation
distribution Q(x; θ) over variables x to estimate the actual distribution P(x), and to describe
the “degree of similarity” as the KL divergence KL[Q(x; θ)‖P(x)] [12].

The VI method belongs to the optimization-based techniques category of approximate
Bayesian inference. Methods are also available in this aspect of the research work, such
as loopy belief propagation [13] and expectation propagation [14,15]. These optimization
methods are typically faster, but they can suffer from a local optimum in posterior approximations.
As we all know, the sampling method can effectively simplify the calculation program. The
Markov chain Monte Carlo (MCMC) method [16–18] is generally unbiased in design, so it
converges to the true posterior in the upper limit, but the process is slow. There has been
significant development in both disciplines [19–21], focusing on closing the gap between
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these methodologies [22,23]. Indeed, recent success in scalable VI is based on combining
optimization and sampling methods.

These years, the availability of enormous data sets has sparked interest in scalable
methods. Different new VI methods have been proposed that differ significantly from
earlier formulations. In reference [24], SVI is presented for models belonging to the
conditionally conjugate exponential family. In reference [25], the BBVI framework is
proposed, which focuses primarily on a single framework that is implemented in a black
box form to allow scalability and ease of use. In reference [26], the latent variables are
estimated as functions of inference networks, allowing DGPs to expand to larger data
sets, accelerating the convergence rate. In references [27,28], the Gumbel-max trick and
substituting the argmax operation with a softmax operator are used to approximate the
categorical distribution.

Stein’s method is a particle approximation strategy [29,30] and a smart optimization
method that can avoid the local posterior. It is a criterion for determining how well one
approximate distribution matches another one. The Stein discrepancy method has been
used in modern VI [31,32]. There are two representative methods: the Stein variational
gradient descent (SVDG) [32] and operator VI [33]. Although both strategies have the same
goal, they are optimized differently. However, these optimization-based approaches are
often quicker, but they may be afflicted with a local optimum in posterior approximations.
To deal with this issue, it is necessary to propose an modified Stein discrepancy method.
The contribution of this paper can be summarized as follows:

(1) The modified Stein variational gradient descent method (MSVGD) algorithm is
proposed, in which an improved Stein method is used in a gradient increment
calculation of KL divergence. A set of particles are used to approximate target
distribution by minimizing the KL divergence;

(2) The SVGD algorithm can keep the KL value reduced in the gradient descent theory.
K(x, ·) is only in the unit ball of a reproducing kernel Hilbert space (RKHS). The SVGD
algorithm will become slow in searching for the parameter distribution because of
the limitation of local optimization. It is quite hard to jump out of the local optimum
using the SVGD algorithm. In the referece [31], Stein’s operator is based on K(x, ·).
Considering Q(x) in the design of the Bp operator can increase the chance to jump
out of the local optimum, especially in the case of complex distribution.

The rest of this paper is organized as follows. Section 2 describes model formulation
and preliminaries. In Section 3, a modified Stein variational inference method is introduced
for posteriori probability selection. In Section 4, experiments are carried out utilizing
synthetic and publicly available data. The suggested method’s performance is analyzed
and compared with that of various other popular methodologies.

2. Model Formulation and Preliminaries
2.1. Stein Method

The Stein approach can be described as follows for a target distribution P. Select a
suitable Stein operator B := BP and a suitable Stein class of functions FB = F (BP) so
that Z has distribution P, denoted Z ∼ P. X has distribution Q, denoted X ∼ Q. For all
functions f ∈ FB , we obtain the expectation

E[B f (Z)] = 0.

Stein presents a metric for determining how close the rules of distribution P and Q are
in reference [29]. For a measure class of functions in Hilbert space(H), ∀ r ∈ FH, a solution
f ∈ FB can be found

r(X)−E[r(Z)] = B f (X). (1)

Taking expectations of (1), we have

E[r(X)]−E[r(Z)] = E[B f (X)].
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Probability distances r(X) and r(Z) can be written as

S(X, Z) = sup
r∈FH

|E[r(X)]−E[r(Z)]|

see reference [29] for an overview. Hence, we get

S(X, Z) ≤ sup
f∈FB

|E[B f (X)]|,

where f is the solutions of (1) for functions inFB . The primary idea behind Stein’s technique
is to select an appropriate S(X, Z).

2.2. Variational Inference

In variational inference, the Kullback–Leibler (KL) divergence is utilized for two
distributions, P(x) and Q(x). VI is the process of minimizing the difference between two
distributions, also known as relative entropy or information gain.

DKL(Q(x)‖P(x)) = −
∫

Q(x) log
P(x)
Q(x)

dz

= −EQ(x)

[
log

P(x)
Q(x)

]
.

By reducing the KL divergence, the target distribution P(x) is approximated by VI
with proposal distribution Q(x). A more straightforward distribution Q∗(x) comes from a
predetermined set Q = {Q(x)} of proposal distributions. Q∗(x) can be written as

Q∗(x) = arg min
q∈Q

{
DKL(Q(x)‖P(x)) ≡ EQ[log Q(x)]−EQ[log P(x)]

}
. (2)

According to the above formula, our main work is to solve the formula EQ[log Q(x)].
However, from the formula, we can not perform this directly. The selection of set Q is
crucial, as it determines the types of variational methods that can be used. The optimal Q
should strike a compromise between P(x) accuracy, Q(x) tractability, and KL minimization
solvability.

We need to identify a set Q of distributions derived from a tractable reference distribution
using smooth transformations. Assume Q is a set of random variable distributions of the
form z = F(x), and F is a measurable smooth linear function. x is selected from a tractable
reference distribution Q(x). z can be written as

z = Q
(

F−1(z)
)
·
∣∣∣∇zF−1(z)

∣∣∣,
where ∇zF−1 is the Jacobian matrix of F−1.

3. Modified Stein Variational Inference Using KL Minimizing
3.1. Stein Operators Selection

There are various ways of constructing a Stein operator [31,32]. Our model is based
on Stein’s identity and the kernelized Stein discrepancy. Assume that P(x) and Q(x) are all
smooth density, where Q(x) = [Q1(x), · · · , Qd(x)]

>, x ⊆ Rd. According to characteristics
of the Stein method, we get suitably regular φ(x) = [φ1(x), · · · , φd(x)]

>, and suitably

Ex∼P[BPφ(x)Q(x)] = 0, (3)

where

BPφ(x)Q(x) = Q(x)>φ(x)>∇x log P(x) +∇xφ(x)Q(x) +∇xQ(x)φ(x).
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Bp has an effect on the function φ(x)Q(x) and produces the zero mean function
BPφ(x)Q(x). φ(x) is in the Stein class of distribution P. ∀x ⊆ ∂A, set A ⊂ Rd is compact,
P(x)Q(x)φ(x) ≈ 0. It is obviously that the expectation of BPφ(x)Q(x) is not equivalent to
0 any longer. The magnitude of Ex∼Q[BPφ(x)Q(x)] is related with the probability distances
between P and Q. The probability distances of Q, P are referred to as follows:

S(Q, P) = max
φ∈FB

{[
Ex∼Q trace(BPφ(x)Q(x))

]2},

where FB is a set of functions with bounded Lipschitz norms. However, optimization leads
to the unsolvable challenge of S(Q, P) in calculation. We need to come up with a solution
that is both reasonable and feasible.

In (4), the kernelized Stein discrepancy (KSD) and variational inference method is used
that select Q(x) and φ(x) in the unit ball of a reproducing kernel Hilbert space (RKHS). In
RKHS, S(Q, P) is written as

S(Q, P) = max
φ∈Hd

{[
Ex∼Q(trace(BPφ(x)Q(x)))

]2, s.t. ‖φ(x)Q(x)‖Hd ≤ 1
}

. (4)

Let ψ(x) = φ(x)Q(x), and the optimal solution of (4) can be represented by ψ(x) =
ψ∗(x)/‖ψ∗(x)‖Hd , ψ∗Q,P(·) = Ex∼Q[BPK(x, ·)Q(x)]. K(x, x′) is the function of FB in RKHS.
Obviously, S(Q, P) can written as

S(Q, P) =
∥∥∥ψ∗Q,P

∥∥∥2

Hd
. (5)

According to the above information, when P equals to Q, S(Q, P) = 0, ψ∗Q,P(x) ≡ 0.
We aim to find a distribution that is close to P. In other words, S(Q, P) approximates to zero.

3.2. Stein Transform for Differential Computing of KL

Add a small disturbance to the linear transform in (2) to reduce the KL divergence:
F(x) = ωx + εψ(x), where ω is a constant, ε is the magnitude of the disturbance, and ψ(x)
is a continuously differentiable function that describes the direction of the disturbance. The
Jacobian matrix of F(x) is non-singular when ε is small enough, so the inverse function
theorem guarantees that F is a linear function. The following conclusion, as the basis for
our method, establishes a useful link between the BP and the differential of KL.

Theorem 1. Define F(x) = ωx + εψ(x). Q[F](z) is the probability density function (pdf) of
z = F(x). The pdf of x is Q(x). We will prove that

∇εKL
(

Q[F]‖P
)

ε=0
= −Ex∼Q

[
trace

(
ω−1BPψ(x)

)]
, (6)

where BPψ(x) = φ(x)Q(x)∇x log P(x)>+∇xφ(x)Q(x)+∇xQ(x)φ(x) is a differential operator
(called Stein operator). From (4) and (5), BPψ(x) can be used to show how fast KL divergence is
deteriorating in RKHS.

Proof. From the definition, Q and P are all smooth pdf, and z = F(x), a linear transform
with parameter ε, which is differentiable with respect to both x and ε. Q[F] is the pdf of z ;
Q(x) is the pdf of x; and Q[F−1](x) is the pdf of x = F−1(z) and can also be represented as

Q[F−1](x) = Q(F(x)) · |det(∇xF(x))|.

From the KL definition, it is very obvious that

KL
(

Q[F]‖P
)
= KL

(
Q‖P[F−1]

)
,
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∇εKL
(

Q[F]‖P
)
= −Ex∼Q

[
∇ε log P[F−1](x)

]
.

We can easily obtain

∇ε log P[F−1](x) =
1

P(F(x))
∇F(x)P(F(x))∇εF(x) + trace

(
(∇xF(x))−1 · ∇ε∇xF(x)

)
.

Let sP(F(x)) = ∇F(x) log P(F(x)), and we get

∇ε log P[F−1](x) = sP(F(x))>∇εF(x) + trace
(
(∇xF(x))−1 · ∇ε∇xF(x)

)
.

When F(x) = ωx + εφ(x)Q(x) and ε = 0, the result is obtained is as follows:

F(x) = ωx, ∇εF(x) = ψ(x), ∇xF(x) = ωI, ∇ε∇xF(x) = ∇xψ(x).

Based on Theorem 1, the KSD −S(Q, P) is equal to

∇εKL
(

Q[F]‖P
)

ε=0
,

and ψ∗Q,P(·) can also be written as

ψ∗Q,P(·) = Ex∼Q[K(x, ·)Q(x)∇x log P(x) +∇x(K(x, ·)Q(x))]. (7)

With the conclusion drawn from above, ∇εKL
(

Q[F]‖P
)

ε=0
is the decreasing direction

of KL divergence. F(x) is a linear transform, so F(x) = ωx + ε · ψ∗Q,P(x) is selected as a
method which can decrease the KL divergence, where ε is a small constant.

According to the gradient descent theory, the decreasing direction of∇εKL
(

Q[F]‖P
)

ε=0
is fastest, and the local or global optimal Q must be found. Q is initialized as Q0. Repeating
the (8) steps, a distribution set {Q`}n

`=1 is generated

Q`+1 = Q`[Fi ],, where F∗` (x) = ωx + ε` · ψ∗Q,P(x). (8)

From (8), we see that Q` can converge to distribution P with arbitrarily small ε` and a
given ω. When `→ ∞, Q` = P and ψ∗P,Q∞

(x) ≡ 0.

3.3. Modified Stein Variational Gradient Descent Method with Particle Swarm Optimization

To compute ∇εKL
(

Q[F]‖P
)

e=0
, we would need to calculate ψ∗Q,P(x) in (7). Particle

swarm optimization is used to approximate the target distribution P(x) with the stochastic
gradient descent method.

To begin, we will need to create a collection of particles
{

x0
i
}n

i=1 from the initial
distribution Q. ψ∗Q,P(x) and Q are approximated by the empirical mean of particles at
the last iteration of Formula (8). The value of parameter ω can also affect Algorithm
1’s effectiveness, but the emphasis of the algorithm lies in the application of the Stein
variational inference in system identification, so ω = 1 is selected for the moment, and
other values of ω are not discussed for the time being. As n increases,

{
x0

i
}n

i=1 becomes a
better approximation for Qi.

For any fixed i0, the distribution of each particle x`i0 , tends to Qi, and is unaffected by
any other finite group of particles.

In Algorithm 1, the first part in ψ∗Q,P(·) pushes the particles towards the direction
where the probability P(x) increases rapidly with the kernel function K(x, x′) and distribution
Qi. The second part prevents any of the particles from collapsing into local maximization.
The radial basis function (RBF) kernel K(x, x′) = exp

(
− 1

ρ‖x− x′‖2
)

is considered in our

paper. As ∑j∇xj Q(xj)K
(
xj, x

)
reaches zero, the second term
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Algorithm 1 Modified Stein Variational Gradient Descent Method (MSVGD)

Input:
A group of random particles

{
x0

i
}n

i=1 and target pdf P(x)
Set the initial state of particles xt

i , constant parameter ω, step size εt.
1: for iteration t do
2: xt+1

i ← ωxt
i + εtψ̂

∗(xt
i
)

where

ψ̂∗(x) =
1
n

n

∑
j=1

[
K
(

xt
j, x
)

Q(xt
j)∇xt

j
log P

(
xt

j

)
+∇xt

j
K
(

xt
j, x
)

Q(xt
j)

]
(9)

3: break
4: end for

Output:
The particles {xi}n

i=1 that tries to match the goal distribution P(x).

∑
j

2
τ

(
x− xj

)
k
(
xj, x

)
Q(xj) + ∑

j
∇xj Q(xj)k

(
xj, x

)
(10)

decreases . Clearly, the second term pushes x away from neighboring points xj with high
K
(
xj, x

)
. When the cumbersome term is weakened in the bandwidth ρ → 0, the local

optimum will be swiftly reached by all of the particles.
Our method is different to that of reference [32] in that the Q(x) is considered in the

Stein operator design, which reflects the influence of distribution change on the results.
This attribute sets our method apart from traditional Monte Carlo methods. Obtaining a
diverse set of points for distributional approximation is a random process.

3.4. MSVGD Algorithm and Its Computational Difficulty

Algorithm 1 is where the MSVGD algorithm’s core procedure takes place. The inertia
weight ω in this technique can fluctuate depending on the previous particle position.
However, the value of ω is limited to 1, which is neither too big or small. For all the points
{xi}n

i=1, the main work in this algorithm is to determine the gradient Q(x)∇x log P(x) for
all of the points. P(x) ∝ P0(x)∏N

k=1 P(Dk | x) is accompanied by a broad N. Approximating
Q(x)∇x log P(x) with a small piece of sampled data Λ ⊂ {1, . . . , N} is a convenient way to
deal with this issue. The formula is written as

Q(x)∇x log P(x) ≈ Q0(x)∇x log P0(x) +
N
|Λ|Q((Dk | x) ∑

k∈Λ
∇x log P(Dk | x).

The computational complexity of the original VI algorithm is easy to obtain, represented
by O(n · n).

In the MSVGD algorithm, the entire computational difficulty caused by the computation
of the K(x, ·)Q(x), which is denoted as O(n · n · K(x, ·)Q(x)). K(x, ·) is the RBF kernel, and
Q(x)is the approximation function of P(x). Assume τ = K(x, ·)Q(x), which is less than a
constant τ0. n ∗ n is the same order of magnitude with τ0 ∗ n ∗ n, so the total computational
difficulty and runtime of MSVGD have no obvious difference with the original VI algorithm.

4. Numerical Examples

All empirical experiments using the MSVGD algorithm and other algorithms are
conducted on the same platform in this study. Furthermore, we use the same software
(Python 3.0 ) in the program running. The MSVGD algorithm can be used in other
classification models (e.g., the neural network model, support vector machine, etc.). The
framework of these methods is very similar to that of our example. In this study, we
exclusively use the MSVGD algorithm to perform classification experiments with logistic
regression. Following that, we will go into the specifics of the experiments. We create the
data sets and methods that will be used in the comparison.
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4.1. Experimental Setups

We use four data sets from UCI’s repository for logistic regression, including the Iris,
Covertype, Pima, and heart disease data sets [34]. R.A. Fisher’s landmark paper employed
the Iris data set. Multiple measures are used in taxonomic difficulties. Tree observations
from four locations of Colorado’s Roosevelt National Forest are contained in the covertype
data set. All of the data is derived from forest cartographic variables. The Pima data set
contains medical records for Pima Indians, and whether each patient will develop diabetes
in the next five years. Although the heart disease database has 76 features, a subset of 14
of them is used in all published trials. In particular, the Iris database is the only source
of data with many classifications. In Section 4.1, we perform some tests on the MSVGD
algorithm. Variational inference with the bound and Laplace’s approach [35] are two
further methods for posterior approximation that we compare. We perform experiments
for different corpus sizes.

The following MSVGD settings are used: (1) 6000 runs; (2) 50 particles in the population.
(3) The MSVGD parameter w is increased from 0.7 to 1.3, with a 0.1 step length. In the
two experiments, the RBF kernel K(x, x′) = exp

(
− 1

ρ‖x− x′‖2
2

)
is used with parameter ρ.

The contribution point x′ to x, which changes adaptively over iterations, is balanced by
the value of ρ. Unless otherwise stated, for step size, we use AdaGrad, and for particle
initialization, we use the prior distribution.

The selection behavior and prediction performance of each algorithm were our main
concerns. For the former, we used the F1 score (described below) to attain our goal.

F1 =
2× Precision × Recall

Precision + Recall
, Precision =

TP
TP + FP

, Recall =
TP

TP + FN

The number of true positives, false positives, and false negatives is represented as TP,
FP, and FN, respectively. The classification accuracy (Acc) is used to evaluate one method’s
prediction ability. In general, F1 and Acc have a range of 0 to 1, with larger values being
desired. The normalized root mean square error (NRMSE) of logistic parameters is also
taken into account.

NRMSE =

√√√√ 1
Tσ2

T

∑
t=1

(θt − θ)2,

where T is the total number of tests, θ is the mean parameter value, θt is the result of every
experiment, and σ2 denotes the variance of the results. In the following trials, we used
a training data to learn the parameters in each model and presented the F1 and NRMSE
results for selection evaluation.

A test set of size 10,000 is independently produced with the goal of testing the inferred
model’s prediction accuracy. In the case of each test instance x, p(y = 1 | x) is estimated in
the logistic model. Setting threshold = 0.5, we obtain p(y = 1 | x) ≥ 0.5. On the test set, we
then estimated the average accuracy to evaluate the prediction behavior of a method.

4.2. Comparison with Different VI Models in Five Data Sets

Bayesian logistic regression is considered for classification (binary and multi-) using
the setting so that regression weights w have Gaussian prior p0(η | α) = N

(
η, α−1) and

p0(α) = Gamma (α, 1, 0.01) in the posterior p(x | D), x = [η, log α]. The accuracy of our
model’s categorization on each data set is shown in Table 1. Since all methods yield an
approximation of the posterior distribution on the vector x, this comparison is meaningful
and provides a measure of parameter estimation.

For each data set, 80% of the data is chosen at random for training, and the rest is used
for testing. The procedure is repeated 10 times, and the average accuracy is provided in
Table 1. The results reveal that, compared with the latest method, our proposed method
improves the performance by an average of 5%, which not only proves the effectiveness
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and efficiency of the proposed model, but also successfully finds the correlation and
information adaptability.

Taking the Covertype data set as an example, we show performance details of the
MSVGD algorithm in Figure 1, which is the results of the Bayesian logistic regression at
different iterations. In Figure 2, the average classification accuracy of our model is best
on Iris, Covertype, Pima, and heart disease for Bayesian logistic regression. In Table 1,
we find that our method outperforms the other similar methods: SV-DKL [3], NPV [5],
DSVI [6], and SVGD [31]. Although NRMSE values in the two-test data (Covertype and
heart disease) are not much different from our method, the value of F1 and Acc in the
MSVGD method is bigger than the others. The independent sample T-test method is used
to examine the significance of data accuracy differences in Table 1. From Table 1, the
p-values are all less than 0.05. In the four data sets, the average runtime of the MSVGD
algorithm is 15 s, 16 s, 34 s, and 18 s, which is the shortest in all models. Based on these
advantages, we can say that our method is better than the others.

1000 2000 3000 4000 5000 6000
Number of Epoches

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu
ra
cy

Figure 1. Results of Bayesian logistic regression on Covertype data set at t iteration (t = 1000, 2000,
3000, 4000, 5000, and 6000). Particle size is 50.

Figure 2. Average classification accuracy of Bayesian logistic regression on Iris, Covertype, Pima, and
heart disease at all iterations. Particle size is 50.
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Table 1. Accuracy comparison of different VI methods.

Model Data Iris Pima Covertype Heart Disease p-Value

SV-DKL [3] Acc 0.6601 0.6702 0.6832 0.6104 0.010
F1 0.2662 0.2134 0.2361 0.2415
NRMSE 0.6234 0.5915 0.6183 0.6453
Average runtime (s) 29 28 72 34

NPV [5] Acc 0.6102 0.5802 0.6034 0.6105 0.000
F1 0.3562 0.2536 0.2824 0.2713
NRMSE 0.5235 0.5115 0.6355 0.5425
Average runtime (s) 30 32 70 30

DSVI [6] Acc 0.5901 0.5802 0.6132 0.6151 0.000
F1 0.2634 0.2456 0.2631 0.2514
NRMSE 0.7235 0.6415 0.6883 0.7456
Average runtime (s) 26 32 67 30

SVGD [31] Acc 0.6471 0.6701 0.6323 0.6422 0.001
F1 0.4150 0.4456 0.4632 0.3815
NRMSE 0.7136 0.7416 0.6114 0.7324
Average runtime (s) 25 30 55 27

our model Acc 0.7471 0.7702 0.7322 0.7423 0.000
F1 0.5151 0.5452 0.5634 0.5814
NRMSE 0.6132 0.6414 0.6117 0.7345
Average runtime (s) 15 16 34 18

4.3. Comparison with Different Non-VI Classification Models

For classification tasks, the Stein method is applied to Bayesian inference. In the
comparative analysis, we explore two prediction approaches in order to better investigate
the benefits of the MSVGD algorithm in Bayesian logistic regression. The methods include
the support vector machine (SVM) [36] and back propagation (BP) network [37]. From
Table 2, the Bayesian logistic regression outperforms the other approaches in terms of
prediction accuracy. We concluded that the proposed strategy produces the best prediction
performance after a brief visual evaluation. The results of the Bayesian logistic regression
are superior to those of BP. The results of BP are inferior to SVM.

Table 2. Accuracy comparison of different non-VI methods.

Model Data Iris Pima Covertype Heart Disease

SVM [3] 0.7212 0.7545 0.7221 0.7332
BP [5] 0.7061 0.7134 0.7124 0.7026
our model 0.7471 0.7702 0.7322 0.7423

4.4. Analysis of Parameters ω and Function Q(x) in MSVGD Algorithm

Because of the adaptive nature of MSVGD, it outperforms other algorithms. In the
MSVGD of the four data sets, the process of inertia weight swings around one, as seen in
Table 3. We set the value of ω as an arithmetic sequence with a step size of 0.1, from 0.1
to 2. We can observe that approaching 1 has a similar or better performance than the rest.
Table 3 is part of our result, where ω is between 0.7 and 1.3. ω mainly affects the particle
positions at random, which control the convergence rate.

In the MSVGD, Q(x) is the past particle information. It is a function that influences
the convergence rate, which can accelerate or slow the convergence of particles to the
high-probability zones of p(x). In formula φ̂∗(x), the two terms are not only weighted by
the kernel function, but also by Q(x). From the table, a smaller Q(x) means that the particles
have more chances to change, but less information about previous particle positions is
employed. Particle positions are less likely to change as Q(x) increases, and more previous
particle position information is referenced. As a result, determining the suitable value
for Q(x) in the MSVGD is crucial. In Table 4, we endeavor to select a function of Q(x) in
our algorithm.
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Table 3. Accuracy comparison of different ω values.

ω
Accuracy

Iris Pima Covertype Heart Disease

0.7 0.5514 0.5644 0.5431 0.5322
0.8 0.5764 0.5631 0.5624 0.5521
0.9 0.6562 0.6531 0.6721 0.6620
1.0 0.7061 0.7134 0.7124 0.7026
1.1 0.6762 0.6920 0.6811 0.6825
1.2 0.5861 0.5833 0.5922 0.5924
1.3 0.5471 0.5732 0.5621 0.5470

Table 4. Accuracy comparison of different Q(x).

Q(x)
Accuracy

Iris Pima Covertype Heart Disease

0.8 0.7212 0.7545 0.7421 0.7332
0.9 0.7061 0.7134 0.7124 0.7026
1 0.7471 0.7702 0.7322 0.7423

5. Conclusions

A novel method for Bayesian inference via a variational gradient descent is proposed
in this paper. In the method, the KL divergence is minimized by using a set of particles to
approximate the target distribution. The Stein method is applied to the Bayesian variational
inference. Q(x) is considered in the Stein method at the same time. Our novel VI method
lies in approximate a posterior with a simpler variational distribution, but also lies in
particle distribution Q(x). To demonstrate the usefulness of the proposed technique, four
data sets are supplied. Furthermore, the results of the statistical analysis are used to validate
the algorithm’s performance.

There are many potential applications of the proposed method, such as PH process
identification, time series prediction, and deep learning models. These applications will be
included in the next research work. However, there is a limitation of the proposed method.
For all the points {xi}n

i=1, if the training data is large, the main work is to calculate the
gradient Q(x)∇x log P(x) in the algorithm, which is a difficult task.
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