Noether and Lie Symmetry for Singular Systems Involving Mixed Derivatives
Abstract
:1. Introduction
2. Preliminaries on the Generalized Operators
3. Variational Problems and the Primary Constraints
3.1. The Variational Problem and the Primary Constraint with the Operator
3.2. The Variational Problem and the Primary Constraint with the Operator
4. Constrained Hamiltonian System and Consistency Condition
4.1. Constrained Hamilton Equation with the Operator
4.2. Constrained Hamilton Equation with the Operator
4.3. Consistency Conditions with Generalized Operators
5. Noether Symmetry and Conserved Quantity
5.1. Noether Symmetry with the Operator
5.2. Noether Symmetry with the Operator
6. Lie Symmetry and Conserved Quantity
6.1. Lie Symmetry with the Operator
6.2. Lie Symmetry with the Operator
7. An Example
8. Results and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kusnezov, D.; Bulgac, A.; Dang, G.D. Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 1999, 82, 1136–1139. [Google Scholar] [CrossRef] [Green Version]
- Naber, M. Time fractional Schrdinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Muslih, S.I.; Agrawal, O.P.; Baleanu, D. A fractional Dirac equation and its solution. J. Phys. A Math. Theor. 2010, 43, 055203. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Herrmann, R. Gauge invariance in fractional field theories. Phys. Lett. A 2008, 372, 5515–5522. [Google Scholar] [CrossRef] [Green Version]
- Lazo, M.J. Gauge invariant fractional electromagnetic fields. Phys. Lett. A 2011, 375, 3541–3546. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Huang, J.H. Fractional Calculus; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Klimek, M. Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 2002, 52, 1247–1253. [Google Scholar] [CrossRef]
- Muslih, S.I.; Baleanu, D. Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 2005, 304, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 2007, 40, 6287–6303. [Google Scholar] [CrossRef]
- Luo, S.K.; Xu, Y.L. Fractional Birkhoffian mechanics. Acta Mech. 2015, 226, 829–844. [Google Scholar] [CrossRef]
- Song, C.J.; Agrawal, O.P. Hamiltonian formulation of systems described using fractional singular Lagrangian. Acta Appl. Math. 2021, 172, 9. [Google Scholar] [CrossRef]
- Rabei, E.M.; Nawafleh, K.I.; Hijjawi, R.S.; Muslih, S.I.; Baleanu, D. The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 2007, 327, 891–897. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imp. Coll. Press: London, UK, 2012. [Google Scholar]
- Agrawal, O.P. Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 2010, 59, 1852–1864. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.P. Canonical symmetry and Dirac conjecture for constrained system. In Thirty Years of Nonholonomic Mechanics in China; Chen, B., Mei, F.X., Eds.; Henan University Press: Kaifeng, China, 1994. [Google Scholar]
- Li, Z.P. Classical and Quantal Dynamics of Contrained Systems and Their Symmetrical Properties; Beijing Polytechnic University Press: Beijing, China, 1993. [Google Scholar]
- Cao, S. Canonicalization and Symmetry Theories of the Constrained Hamiltonian System. Master’s Thesis, Zhejiang Sci-Tech University, Hangzhou, China, 2017. [Google Scholar]
- Li, Z.P. Contrained Hamiltonian Systems and Their Symmetrical Properties; Beijing Polytechnic University Press: Beijing, China, 1999. [Google Scholar]
- Li, Z.P.; Jiang, J.H. Symmetries in Constrained Canonical Systems; Science Press: Beijing, China, 2002. [Google Scholar]
- Mei, F.X.; Wu, H.B.; Zhang, Y.F. Symmetries and conserved quantities of constrained mechanical systems. Int. J. Dynam. Control 2014, 2, 285–303. [Google Scholar] [CrossRef] [Green Version]
- Noether, A.E. Invariante Variationsprobleme. Nachr. Akad. Wiss. Gött. Math-Phys. 1918, KI, 235–258. [Google Scholar]
- Song, C.J.; Zhang, Y. Conserved quantities for Hamiltonian systems on time scales. Appl. Math. Comput. 2017, 313, 24–36. [Google Scholar] [CrossRef]
- Song, C.J.; Zhang, Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fract. Calc. Appl. Anal. 2018, 21, 509–526. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X. Conservation laws of nonholonomic nonconservative system based on Herglotz variational problems. Phys. Lett. A 2019, 383, 691–696. [Google Scholar] [CrossRef]
- Zhang, Y. Lie symmetry and invariants for a generalized Birkhoffian system on time scales. Chaos Solitons Fractals 2019, 128, 306–312. [Google Scholar] [CrossRef]
- Ding, J.J.; Zhang, Y. Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type. Chin. Phys. B 2020, 29, 044501. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y. Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mech. 2020, 231, 3017–3029. [Google Scholar] [CrossRef]
- Mei, F.X. Analytical Mechanics (II); Beijing Institute of Technology Press: Beijing, China, 2013. [Google Scholar]
- Mei, F.X. Symmetry and Conserved Quantity of Constrained Mechanical Systems; Beijing Institute of Technology Press: Beijing, China, 2004. [Google Scholar]
- Mei, F.X.; Wu, H.B. Dynamics of Constrained Mechanical Systems; Beijing Institute of Technology Press: Beijing, China, 2009. [Google Scholar]
- Cai, P.P.; Fu, J.L.; Guo, Y.X. Lie symmetries and conserved quantities of the constraint mechanical systems on time scales. Rep. Math. Phys. 2017, 79, 279–298. [Google Scholar] [CrossRef]
- Han, Y.L.; Wang, X.X.; Zhang, M.L.; Jia, L.Q. Lie symmetry and approximate Hojman conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 2013, 71, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.W.; Li, Y.M.; Zhao, Y.H. Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 2005, 337, 274–278. [Google Scholar] [CrossRef]
- Ding, N.; Fang, J.H. Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems. Commun. Theor. Phys. 2006, 46, 265–268. [Google Scholar]
- Zhang, Y.; Xun, Y. Lie symmetries of constrained Hamiltonian system with the second type of constraints. Acta Phys. Sin. 2001, 50, 816–819. [Google Scholar] [CrossRef]
- Song, C.J.; Shen, S.L. Noether symmetry method for Birkhoffian systems in terms of generalized fractional operators. Theor. Appl. Mech. Lett. 2021, 11, 100298. [Google Scholar] [CrossRef]
- Jia, Q.L.; Wu, H.B.; Mei, F.X. Noether symmetries and conserved quantities for fractional forced Birkhoffian systems. J. Math. Anal. Appl. 2016, 442, 782–795. [Google Scholar] [CrossRef]
- Zhou, S.; Fu, H.; Fu, J.L. Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. China Phys. Mech. Astron. 2011, 54, 1847–1853. [Google Scholar]
- Song, C.J.; Cheng, Y. Noether symmetry method for Hamiltonian mechanics involving generalized operators. Adv. Math. Phys. 2021, 2021, 1959643. [Google Scholar] [CrossRef]
- Song, C.J.; Cheng, Y. Noether’s theorems for nonshifted dynamic systems on time scales. Appl. Math. Comput. 2020, 374, 125086. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, X.H. Perturbation to Lie symmetry and adiabatic invariants for Birkhoffian systems on time scales. Commun. Nonlinear Sci. Numer. Simul. 2019, 75, 251–261. [Google Scholar] [CrossRef]
- Song, C.J.; Cheng, Y. Conserved quantity and adiabatic invariant for Hamiltonian system with variable order. Symmetry 2019, 11, 1270. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Herglotz’s variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s Theorem. Symmetry 2020, 12, 845. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.-J. Noether and Lie Symmetry for Singular Systems Involving Mixed Derivatives. Symmetry 2022, 14, 1225. https://doi.org/10.3390/sym14061225
Song C-J. Noether and Lie Symmetry for Singular Systems Involving Mixed Derivatives. Symmetry. 2022; 14(6):1225. https://doi.org/10.3390/sym14061225
Chicago/Turabian StyleSong, Chuan-Jing. 2022. "Noether and Lie Symmetry for Singular Systems Involving Mixed Derivatives" Symmetry 14, no. 6: 1225. https://doi.org/10.3390/sym14061225
APA StyleSong, C. -J. (2022). Noether and Lie Symmetry for Singular Systems Involving Mixed Derivatives. Symmetry, 14(6), 1225. https://doi.org/10.3390/sym14061225