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Abstract: A subgraph H of an edge-colored graph G is called rainbow if all of its edges have different
colors. Let ar(G, H) denote the maximum positive integer t, such that there is a t-edge-colored graph
G without any rainbow subgraph H. We denote by kK2 a matching of size k and On the class of
all maximal outer-planar graphs on n vertices, respectively. The outer-planar anti-Ramsey number
of graph H, denoted by ar(On, H), is defined as max{ar(On, H)| On ∈ On}. It seems nontrivial to
determine the exact values for ar(On, H) because most maximal outer-planar graphs are asymmetry.
In this paper, we obtain that ar(On, kK2) ≤ n + 3k− 8 for all n ≥ 2k and k ≥ 6, which improves the
existing upper bound for ar(On, kK2), and prove that ar(On, kK2) = n + 2k− 5 for n = 2k and k ≥ 5.
We also obtain that ar(On, 6K2) = n + 6 for all n ≥ 29.

Keywords: maximal outer-planar graph; rainbow subgraph; matching; outer-planar anti-Ramsey
number

1. Introduction

In this paper, all graphs considered are finite, simple and undirected. Let G be a graph
with vertex set V(G) and edge set E(G). Let e(G), v(G) and δ(G) denote the number of
edges, number of vertices and minimum degree of G, respectively. The circumference of
graph G, denoted by `(G), is the length of a longest cycle in G. Denote by dG(v) and NG(v)
the degree and neighborhood of the vertex v in G respectively. For any subset A ⊆ V(G),
let G[A] denote the subgraph of G induced by A, and NG(A) = {v ∈ V(G)\A| uv ∈
E(G), u ∈ A}. For a set B, we denote the cardinality of B by |B|. For two disjoint subsets
A1, A2 of V(G), let eG (A1, A2) denote the number of edges in G satisfying one end in A1
and the other in A2. A graph G is called a planar graph if it can be drawn in the plane such
that its edges intersect only at their ends, and such a drawing is called a planar embedding
of G. For convenience, a planar embedding of G is still represented by G. A graph G is
outer-planar if it admits a planar embedding such that all vertices lie on the boundary
of its outer face. An outer-planar graph G is maximal if G + uv is not outer-planar for
any two non-adjacent vertices u and v of G. A graph G is bipartite if its vertex set can be
partitioned into two subsets X and Y so that every edge has one end in X and the other in
Y. We denote a bipartite graph G with bipartition (X, Y) by G[X, Y]. If any two edges of
M are not adjacent in G, where M ⊆ E(G), then M is called a matching of graph G. The
number of edges in a maximum matching of a graph G is called the matching number of
G, denoted by α(G). Let M be a matching of graph G, if v(G) = n and |M| = n

2 , then M is
called a perfect matching of G. A graph G is called factor-critical if G− v contains a perfect
matching for every vertex v ∈ V(G). We call a graph G an H-minor if H may be obtained
from G by means of a sequence of vertex deletions, edge deletions or edge contractions. A
component of a graph G is odd component (even component) if the order of the component
is odd (even). The number of odd components in G is denoted by o(G). Let G ∪ H denote
the vertex disjoint union of graphs G and H. Denote by G + H the graph obtained from
G ∪ H by adding all edges joining each vertex of G and each vertex of H. For a positive
integer k and a graph G, denote by kG the vertex disjoint union of k copies of G. For any
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positive integer t, let [t] := {1, 2, . . . , t}. The terminology and notation used but undefined
in this paper can be found in [1].

If a subgraph H of an edge-colored graph G contains no two edges of the same color,
then we say that G contains a rainbow H. Let Kn, Pn and Cn be the complete graph, path and
cycle on n vertices, respectively. The anti-Ramsey number of H, denoted by ar(Kn, H), is the
maximum positive integer t such that there is a t-edge-colored Kn without any rainbow H.
In 1975, Erdős et al. [2] introduced anti-Ramsey numbers, and showed that these are closely
related to Turán numbers. In the following discussion, the subgraph induced by a matching
is still called a matching, and let kK2 denote a matching of size k. In 2004, Schiermeyer [3]
considered the anti-Ramsey number of matchings and determined the exact values of
ar(Kn, kK2) for all k ≥ 2 and n ≥ 3k + 3. Chen et al. [4] also studied ar(Kn, kK2) and
completely determined the exact values of the anti-Ramsey number of matchings. When
replacing Kn by other graph G, let ar(G, H) denote the maximum positive integer t such
that there is a t-edge-colored G without any rainbow H. The researchers studied ar(G, kK2)
when G is a bipartite graph [5–7], complete split graph [8], hypergraph [9] and so on. For
more results on anti-Ramsey numbers, we refer the readers to [10–17].

Let Tn be the family of all plane triangulations on n vertices. The planar anti-
Ramsey number of H is denoted by ar(Tn, H) = max{ar(Tn, H)| Tn ∈ Tn}. In 2014,
Jendrol’ et al. [18] investigated the planar anti-Ramsey number of kK2, in which the upper
and lower bounds of ar(Tn, kK2) for all k ≥ 5 and n ≥ 2k were established, and the exact
values of ar(Tn, kK2) for 2 ≤ k ≤ 4 and n ≥ 2k were determined. Qin et al. [19] improved
the upper bound of ar(Tn, kK2) in [18] and determined the exact value of ar(Tn, 5K2) for
all n ≥ 11. Later, Chen et al. [20] improved the upper and lower bounds of ar(Tn, kK2) for
k ≥ 6 and n ≥ 3k− 6 existing in [18,19], and determined the exact value of ar(Tn, 6K2) for
all n ≥ 30. Recently, Qin et al. [21] determined the exact values of ar(Tn, kK2) for all k ≥ 7
and n ≥ 9k + 3.

Let On be the family of all maximal outer-planar graphs on n vertices. For n ≥ 3, let
O−n (O=

n ) denote the family of all outer-planar graphs with n vertices and 2n− 4 (2n− 5) edges.
The outer-planar anti-Ramsey number of H is denoted by ar(On, H) = max{ar(On, H)|On ∈
On}. It seems non-trivial to determine the exact values for ar(On, H) because most maximal
outer-planar graphs are asymmetry. There are two lemmas about the properties of maximal
outer-planar graphs as follows.

Lemma 1 ([22]). Let On be a maximal outer-planar graphs on n vertices. If n ≥ 3, then e(On) =
2n− 3 and δ(On) ≥ 2.

Lemma 2 ([22]). Any maximal outer-planar graph contains neither a K2,3-minor nor a K4-minor.

In 2018, Jin et al. [23] studied the outer-planar anti-Ramsey numbers of kK2, which
were further studied by Pei et al. [24] in 2022. We summarize their results as follows.

Theorem 1 ([23]). Let n and k be positive integers. Then

(1) ar(On, 2K2) =

{
3, n = 4;
1, n ≥ 5.

(2) ar(On, 3K2) =

{
7, n = 6;
n, n ≥ 7.

(3) ar(On, 4K2) =

{
11, n = 8;

n + 2, n ≥ 9.
(4) for all k ≥ 5 and n ≥ 2k, we have n + 2k− 6 ≤ ar(On, kK2) ≤ n + 14k− 25.

Theorem 2 ([24]). Let n and k be positive integers. Then

(1) for all k ≥ 2 and n ≥ 3k− 3, we have ar(On, kK2) ≤ n + 4k− 9.
(2) for all n ≥ 15, we have ar(On, 5K2) = n + 4.
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By Theorem 1, when 3 ≤ k ≤ 4, if n = 2k, then ar(On, kK2) is the lower bound given
by Theorem 1(4) plus 1; if n ≥ 2k + 1, then ar(On, kK2) is exactly the lower bound given by
Theorem 1(4). By Theorem 2, ar(On, kK2) is exactly the lower bound given by Theorem 1(4)
when k = 5 and n ≥ 2k + 5.

2. Main Results

It is non-trivial to determine the exact values for ar(On, kK2) for all n ≥ 2k. The
previous best upper bound for ar(On, kK2) is n + 4k− 9. Here, we improve the existing
upper bound of ar(On, kK2) to n + 3k− 8.

Theorem 3. For all n ≥ 2k and k ≥ 6, we have ar(On, kK2) ≤ n + 3k− 8.

Also, we obtain that the exact value of ar(On, kK2) when n = 2k, which is equal to the
lower bound given by Theorem 1(4) plus 1.

Theorem 4. For all k ≥ 5 and n = 2k, we have ar(On, kK2) = n + 2k− 5.

Finally, we attain that the exact value of ar(On, kK2) for k = 6 and n ≥ 2k + 17, which
is exactly the lower bound given by Theorem 1(4).

Theorem 5. For all n ≥ 29, we have ar(On, 6K2) = n + 6.

The following two lemmas are useful in the proofs of Theorems 3 and 5.

Lemma 3. (Tutte-Berge Lemma [25]). If G is a graph with n vertices, then there exists a subset
S ⊂ V(G) satisfying |S| ≤ α(G), such that α(G) = 1

2 (n− o(G− S) + |S|). Furthermore, each
odd component of G− S is factor-critical and each even component of G− S has a perfect matching.

Lemma 4 ([24]). Let G = G[X, Y] be a bipartite outer-planar graph on n vertices. If |Y| ≥ |X| ≥ 1,
then e(G) ≤ n + |X| − 2.

3. Proof of Theorem 3

The outer-planar anti-Ramsey number is closely related to the outer-planar Turán
number of graphs. The outer-planar Turán number of H, denoted by exop(n, H), is the
maximum number of edges of an outer-planar graph on n vertices that does not contain H
as a subgraph. To get Theorem 3, we first prove the following two lemmas.

Lemma 5. For all n ≥ v(H), ar(On, H) ≤ exop(n, H).

Proof. Let ar(On, H) = t. Then there exists an On ∈ On, such that On does not contain any
rainbow H under a given t-edge-coloring. Let G ⊂ On be a rainbow spanning subgraph
with t edges. Thus G is an outer-planar graph on n vertices that does not contain H as
a subgraph. It follows that exop(n, H) ≥ t. Therefore, ar(On, H) ≤ exop(n, H) for all
n ≥ v(H).

Lemma 6. For all n ≥ 2k and k ≥ 6, exop(n, kK2) ≤ min{2n− 3, n + 3k− 8}.

Proof. The proof will be conducted by induction on n. Since n ≥ 12, then exop(n, kK2) ≤
2n− 3 by Lemma 1. Thus exop(n, kK2) ≤ 2n− 3 = min{2n− 3, n + 3k− 8}when 2k ≤ n ≤
3k− 6. Now we assume that n ≥ 3k− 5. Next we will prove that exop(n, kK2) ≤ n + 3k− 8
for k ≥ 6 and n ≥ 3k− 5 by contradiction. Suppose exop(n, kK2) ≥ n + 3k− 7. Then there
exists an outer-planar graph G such that v(G) = n and e(G) ≥ n + 3k− 7, and G does not
contain kK2 as a subgraph. Notice that α(G) ≤ k− 1. By Lemma 3, there exists a subset
S ⊂ V(G) satisfying |S| ≤ α(G) ≤ k− 1, such that o(G− S) = n + |S| − 2α(G). Let s = |S|
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and p = o(G− S). Then s ≤ k− 1 and p ≥ n + s + 2− 2k. Denote by B1, B2, . . . , Bp all the
odd components of G− S. We may assume that v(B1) ≥ v(B2) ≥ · · · ≥ v(Bp). Let w = 0
when v(B1) = 1, otherwise let w = max{i| v(Bi) > 1}. Let V(Bj) = {vj} for any j > w.
Let I = {vw+1, vw+2, . . . , vp}. Since n = v(G) ≥ |S| + v(B1) + v(B2) + · · · + v(Bp) ≥
s + 3w + p− w = 2w + s + p ≥ 2w + s + (n + s + 2− 2k) = n + 2s + 2w− 2k + 2, then
w ≤ k− s− 1.

We first prove that s ≤ 1. Suppose s ≥ 2. Then |I| = p− w ≥ (n + s + 2− 2k)−
(k − s − 1) = n + 2s − 3k + 3 ≥ (3k − 5) + 2s − 3k + 3 = 2s − 2 ≥ s = |S|. Therefore,
eG (S, I) ≤ (|S|+ |I|)+ |S| − 2 = 2s+ p−w− 2 by Lemma 4. Since s ≥ 2, then v(G− I) ≥ 2.
So e(G− I) ≤ 2(n− (p− w))− 3 = 2n− 2p + 2w− 3. Therefore, e(G) = eG (S, I) + e(G−
I) ≤ (2s + p− w− 2) + (2n− 2p + 2w− 3) = 2n + 2s− p + w− 5 ≤ 2n + 2s− (n + s +
2− 2k) + (k− s− 1)− 5 = n + 3k− 8. But e(G) ≥ n + 3k− 7, a contradiction. Thus s ≤ 1.

Let H1, H2, . . . , H` be all components of G − S, where ` ≥ 1. Then v(Hi) ≥ 1 for
any i ∈ [`]. We next prove that ` = 1. Suppose ` ≥ 2. If there exists j ∈ [`], such that
v(Hj) = 1, then eG (S, V(Hj)) ≤ 1 since s ≤ 1. Therefore, G − V(Hj) is an outer-planar
graph with n− 1 vertices containing no kK2, and e(G−V(Hj)) = e(G)− eG (S, V(Hj)) ≥
n + 3k− 7− 1 = n + 3k− 8 > min{2(n− 1)− 3, (n− 1) + 3k− 8}. But exop(n− 1, kK2) ≤
min{2(n− 1)− 3, (n− 1) + 3k− 8} by induction hypothesis, a contradiction. Therefore,
we have v(Hi) ≥ 2 for any i ∈ [`]. Then p = w, and e(G[S ∪ V(Hi)]) ≤ 2(s + v(Hi))− 3
for any i ∈ [`]. Thus, e(G) = e(G[S ∪V(H1)]) + · · ·+ e(G[S ∪V(H`)]) ≤ 2(s + v(H1))−
3 + · · · + 2(s + v(H`)) − 3 = 2(n − s) + 2`s − 3`. Since ` ≥ 2 and s ≤ 1, then e(G) ≤
2(n− s) + 2`s− 3` = 2n− 3 + (2s− 3)(`− 1) ≤ 2n− 3 + (2s− 3) = 2n + 2s− 6. On the
other hand, we have n ≤ 3k − 2s − 3 since n + s + 2− 2k ≤ p = w ≤ k − s − 1. Thus
e(G) ≤ 2n + 2s − 6 ≤ n + 2s − 6 + (3k − 2s − 3) = n + 3k − 9. But e(G) ≥ n + 3k − 7,
a contradiction. Therefore, ` = 1. Then G − S has only one component H1. Since k ≥
6, then n ≥ 3k − 5 > 2k. Combining s ≤ 1, we have v(H1) ≥ 2k. Thus, H1 must
contain a kK2 by Lemma 3, which contradicts to the fact that G contains no kK2. Thus,
exop(n, kK2) ≤ n+ 3k− 8 = min{2n− 3, n+ 3k− 8}when n ≥ 3k− 5 and k ≥ 6. Therefore,
exop(n, kK2) ≤ min{2n− 3, n + 3k− 8} for all n ≥ 2k and k ≥ 6.

Now we prove Theorem 3.

Proof of Theorem 3. Since n ≥ 2k, then ar(On, kK2) ≤ exop(n, kK2) by Lemma 5. By
Lemma 6, exop(n, kK2) ≤ n + 3k− 8 for all n ≥ 2k and k ≥ 6. Therefore, ar(On, kK2) ≤
n + 3k− 8 for all n ≥ 2k and k ≥ 6.

4. Proof of Theorem 4

By Theorem 1(1–3), we observe that the outer-planar anti-Ramsey number of kK2
when n = 2k is different from the case when n ≥ 2k + 1. It is not hard to see that the
outer-planar anti-Ramsey number of kK2 when n = 2k is equal to the lower bound given in
Theorem 1(4) plus 1 for 2 ≤ k ≤ 4. In this section, we will prove that it is also equal to the
lower bound given in Theorem 1(4) plus 1 when k ≥ 5.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. We will first prove ar(On, kK2) ≥ n + 2k− 5 for k ≥ 5 and n = 2k.
Construct a graph G∗ as follows: choose a maximal outer-planar graph G on k vertices,
and the vertices of the outer face in a planar embedding of G are v1, v2, . . . , vk in order; add
vertex set {u1, u2, . . . , uk} such that ui is only adjacent to vi and vi+1 for each i ∈ [k] (here
vk+1 is identified as v1). Then G∗ is an outer-planar graph with 2k vertices, and e(G∗) =
e(G) + 2k = (2k− 3) + 2k = 4k− 3 combining Lemma 1. Therefore, by the definition of
maximal outer-planar graphs, G∗ is a maximal outer-planar graph on n vertices, where
n = 2k.

Suppose that H is any matching kK2 of G∗. Then we have v ∈ V(H) for any v ∈ V(G∗)
since v(G∗) = 2k. Note that NG∗(ui) = {vi, vi+1} for each i ∈ [k]. Then for uk ∈ V(G∗), we
have ukvk ∈ E(H) or ukv1 ∈ E(H). If ukvk ∈ E(H), then uivi ∈ E(H), i ∈ [k− 1]; If ukv1 ∈
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E(H), then uivi+1 ∈ E(H), i ∈ [k− 1]. Therefore, either E(H) = {u1v1, u2v2, . . . , ukvk} or
E(H) = {u1v2, u2v3, . . . , uk−1vk, ukv1}.

Let ϕ be an edge-coloring of G∗ as follows: ϕ(u1v1) = ϕ(u2v2) = 1, ϕ(u1v2) =
ϕ(u2v3) = 2, and color all the remaining edges of G∗ with different new colors. Then the
number of colors used for ϕ is (4k− 3)− 2 = 4k− 5 = n + 2k− 5. Since H is not a rainbow
kK2 under the (n + 2k− 5)-edge-coloring ϕ, then G∗ does not contain any rainbow kK2.
Therefore, ar(On, kK2) ≥ n + 2k− 5. The graph G∗ and the edges of coloring 1 and 2 under
its (n + 2k− 5)-edge-coloring ϕ when k = 6 are depicted in Figure 1.

Figure 1. The graph G∗ and the edges of coloring 1 and 2 under its (n + 2k− 5)-edge-coloring ϕ

when k = 6.

Next we will prove ar(On, kK2) ≤ n + 2k− 5 for k ≥ 5 and n = 2k by contradiction.
Suppose ar(On, kK2) ≥ n + 2k− 4. Then there exists an On ∈ On, such that On does not
contain any rainbow kK2 under a given t-edge-coloring, where t ≥ n + 2k− 4 = 2n− 4.
Let G′ be a rainbow spanning subgraph of On and e(G′) = t. By Lemma 1, e(On) = 2n− 3.
Then 2n− 4 ≤ t ≤ 2n− 3. Thus either G′ ∈ O−n or G′ ∈ On. Note that On contains a cycle
Cn, which means that G′ contains a Pn. It follows that On must contain a rainbow kK2,
a contradiction.

This completes the proof of Theorem 4.

5. Proof of Theorem 5

It is easy to see, from the previous results, that the exact value of the outer-planar
anti-Ramsey number of kK2 is equal to the lower bound given in Theorem 1(4) when n is
large and 3 ≤ k ≤ 5. It is natural to ask for whether it is also equal to the lower bound
given in Theorem 1(4) when k ≥ 6. We verify it is true when k = 6.

Now we shall prove Theorem 5.
By Theorem 1(4), ar(On, 6K2) ≥ n + 6. Next it suffices to prove that ar(On, 6K2) ≤ n +

6. By contradiction, suppose that ar(On, 6K2) ≥ n + 7. Then there exists an On ∈ On, such
that On contains no rainbow 6K2 under an edge-coloring c with k colors, where k ≥ n + 7.
It follows from Theorem 2(2) that On contains a rainbow 5K2. Now let G ⊂ On be a rainbow
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spanning subgraph with k edges which contains a 5K2. Then α(G) = 5. Thus by Lemma 3,
there exists a subset S ⊂ V(G) satisfying |S| ≤ 5 such that o(G− S) = n + |S| − 10. Let
s = |S| and p = o(G− S), we have 0 ≤ s ≤ 5 and p = n + s− 10. Denote by B1, B2, . . . , Bp
all the odd components of G − S. We may assume that v(B1) ≥ v(B2) ≥ · · · ≥ v(Bp).
Let w = 0 when v(B1) = 1, otherwise let w = max{i| v(Bi) > 1}. Let V(Bj) = {vj} for
any j > w. Without loss of generality, we assume that dG(vw+1) ≥ · · · ≥ dG

(
vp

)
. Let

I = {vw+1, vw+2, . . . , vp}. Let Q = V(B1) ∪V(B2) ∪ · · · ∪V(Bw), where w ≥ 1; otherwise

let Q = ∅. Let R = V(G)− (S∪ I ∪Q). Let nq
I = |{v ∈ I : dG(v) = q}| and nq+

I = |{v ∈ I :
dG(v) ≥ q}|. For convenience, we replace eG (A1, A2) by e(A1, A2) in the following proof.
We first present several useful claims, which shall be proved in Section 6.

Claim 1. If M1 and M2 are two edge-disjoint 5K2 of G, then

E(On[V(G)−V(M1 ∪M2)]) = ∅.

Claim 2. s ≥ 1. Especially, s ≥ 2 when R 6= ∅.
Claim 3. R = ∅.
Claim 4. If G[S] is a connected graph, e(On[I′]) = 0 and |I′| > 2b, then On contains a

K2,3-minor.
Claim 5. s ≥ 2.
Claim 6. v(B1) ≤ 5.
Claim 7. v(B1) ≥ 3.

By Claim 3, we get n = v(G) = v(B1) + · · ·+ v(Bp) + s = v(B1) + · · ·+ v(Bw) + n +
2s− w− 10 when w ≥ 1. So the following result holds for any w ≥ 1:

v(B1) + · · ·+ v(Bw) = w + 10− 2s. (1)

Let b = w + n2+
I

, and I′ = {vb+1, vb+2, . . . , vp}. By Claims 6 and 7, 3 ≤ v(B1) ≤ 5. If
v(Bi) = 3, then Bi

∼= K3 by Lemma 3. Since w ≥ 1, then by (1), v(B1) + · · ·+ v(Bw) =
w + 10− 2s. Combining 3w ≤ v(B1) + · · ·+ v(Bw) ≤ 5w, we have (5− s)/2 ≤ w ≤ 5− s.
It follows from Claims 5 and 7 that 2 ≤ s ≤ 4. We next distinguish the following three cases
to finish the proof of Theorem 5.

5.1. s = 2

In this case, p = n− 8 and n3+
I

= 0. Since (5− s)/2 ≤ w ≤ 5− s, we see 2 ≤ w ≤ 3.
We consider the following two situations according to w.

Case A.1. w = 2.
Then v(B1) = 5, v(B2) = 3 and |I| = p− 2 = n− 10. Since n2

I
≤ 2, then b ≤ 4. By

Lemma 1, we have e(G− I) ≤ 2× 10− 3 = 17. By Lemma 4, e(S, I) ≤ (|I|+ |S|)+ |S| − 2 =
n− 8, which implies that e(G− I) = e(G)− e(S, I) ≥ 15. Therefore, 15 ≤ e(G− I) ≤ 17.

If e(G− I) = 17, then G− I ∈ O10. Thus NG(V(B1)) = NG(V(B2)) = S. Therefore,
G[S] is connected and G− I contains two edge-disjoint 5K2.

If e(G − I) = 16, then e(S, I) = e(G)− e(G − I) ≥ n − 9. Thus dG(v3) = 2. Then
G[S ∪ Q ∪ {v3}] ∈ O−11, which implies that G[S ∪ Q ∪ {v3}] contains P11. Therefore, G−
I′ contains two edge-disjoint 5K2. On the other hand, combining dG(v3) = 2, we get
|NG(V(Bi))| ≤ 1 for some i ∈ [2], then G[S] is connected.

If e(G − I) = 15, then e(S, I) ≥ n− 8. Thus dG(v3) = dG(v4) = 2. Then G[S ∪ Q ∪
{v3, v4}] ∈ O=

12, which implies that G− I′ contains two edge-disjoint 5K2. On the other
hand, combining dG(v3) = dG(v4) = 2, we get |NG(V(Bi))| ≤ 1 for each i ∈ [2], then G[S]
is connected.

From the above discussion of e(G− I) and combining Claim 1, we have e(On[I′]) = 0.
Since n ≥ 29 and b ≤ 4, then |I′| = p− b ≥ (n− 8)− 4 > 2b. Therefore, by Claim 4, On
contains a K2,3-minor, which contradicts to Lemma 2.

Case A.2. w = 3.
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Then v(B1) = v(B2) = v(B3) = 3 and |I| = p − 3 = n − 11. Since n2
I
≤ 2, then

b ≤ 5. By Lemma 2, there exists at least one i ∈ [3] such that |NG(V(Bi))| ≤ 1. Thus
combining Lemma 1, we have e(G− I) ≤ 2(|Q|+ s)− 4 = 2× 11− 4 = 18. By Lemma 4,
we have e(S, I) ≤ (|I|+ |S|) + |S| − 2 = n− 9, which implies that e(G− I) ≥ 16. Therefore,
16 ≤ e(G− I) ≤ 18.

If e(G− I) = 18, then G− I ∈ O−11, which implies that G− I contains P11. Therefore,
G − I contains two edge-disjoint 5K2. On the other hand, since there exists at least one
i ∈ [3] such that |NG(V(Bi))| ≤ 1, we have G[S] is connected.

If e(G− I) = 17, then e(S, I) = e(G)− e(G− I) ≥ n− 10. Thus dG(v4) = 2. Therefore,
G[S ∪Q ∪ {v4}] ∈ O=

12, which implies that G− I′ contains two edge-disjoint 5K2. On the
other hand, combining dG(v4) = 2, we get that there exist at least two i ∈ [3] such that
|NG(V(Bi))| ≤ 1, thus G[S] is connected.

If e(G − I) = 16, then e(S, I) ≥ n − 9. Thus dG(v4) = dG(v5) = 2. Therefore,
G[S ∪ Q ∪ {v4, v5}] is the graph obtained from a maximal outer-planar graph with 13
vertices by deleting 3 edges, then G − I′ contains two edge-disjoint 5K2. On the other
hand, combining dG(v4) = dG(v5) = 2, we get |NG(V(Bi))| ≤ 1 for each i ∈ [3], thus G[S]
is connected.

From the above discussion of e(G− I) and combining Claim 1, we have e(On[I′]) = 0.
Since n ≥ 29 and b ≤ 5, then |I′| = p− b ≥ (n− 8)− 5 > 2b. Therefore, by Claim 4, On
contains a K2,3-minor, which contradicts to Lemma 2.

5.2. s = 3

In this case, p = n− 7 and n4+
I

= 0. Since (5− s)/2 ≤ w ≤ 5− s, then 1 ≤ w ≤ 2. We
consider the following two situations according to w.

Case B.1. w = 1.
Then v(B1) = 5 and |I| = p− 1 = n− 8. By Lemma 1, we have e(G− I) ≤ 2× 8− 3 =

13. By Lemma 4, e(S, I) ≤ (|I|+ |S|) + |S| − 2 = n− 4, which implies that e(G− I) ≥ 11.
Therefore, 11 ≤ e(G− I) ≤ 13.

If e(G − I) = 13, then G − I ∈ O8. Thus dG(v2) ≤ 2 and |NG(V(B1))| ≥ 2. Since
e(S, I) = e(G) − e(G − I) ≥ n − 6, then dG(v2) = dG(v3) = 2. Thus G[S ∪ V(B1) ∪
{v2, v3}] ∈ O10, which means that G − I′ contains two edge-disjoint 5K2. On the other
hand, we have e(S, V(B1)) ≤ 4 because dG(v2) = dG(v3) = 2. So e(G[S]) = e(G − I)−
e(S, V(B1))− e(B1) ≥ 13− 4− 7 = 2, which implies that G[S] is connected.

If e(G − I) = 12, then e(S, I) ≥ n − 5. Thus either dG(v2) = 3 and dG(v3) = 2 or
dG(v2) = dG(v3) = dG(v4) = 2. Therefore, we have G[S ∪ V(B1) ∪ {v2, v3}] ∈ O10; or
G[S ∪ V(B1) ∪ {v2, v3, v4}] ∈ O−11. Then we always get that G − I′ contains two edge-
disjoint 5K2. From the degree situation of the vertices of I in G, we have e(S, V(B1)) ≤ 3.
So e(G[S]) = e(G − I)− e(S, V(B1))− e(B1) ≥ 12− 3− 7 = 2, which implies that G[S]
is connected.

If e(G− I) = 11, then e(S, I) ≥ n− 4. Thus either dG(v2) = 3 and dG(v3) = dG(v4) =
2 or dG(v2) = dG(v3) = · · · = dG(v5) = 2. Therefore, we have G[S∪V(B1)∪{v2, v3, v4}] ∈
O−11; or G[S ∪V(B1) ∪ {v2, v3, . . . , v5}] ∈ O=

12. Then we always get that G− I′ contains two
edge-disjoint 5K2. From the degree situation of the vertices of I in G, we have e(S, V(B1)) ≤
2. So e(G[S]) = e(G− I)− e(S, V(B1))− e(B1) ≥ 11− 2− 7 = 2, which implies that G[S]
is connected.

From the above discussion of e(G− I) and combining Claim 1, we have e(On[I′]) = 0.
Since s = 3, then n2

I
≤ 4. So b ≤ 5. Then |I′| = p− b ≥ (n− 7)− 5 > 2b because n ≥ 29

and b ≤ 5. Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.
Case B.2. w = 2.
Then v(B1) = v(B2) = 3 and |I| = p− 2 = n− 9. By Lemma 1, we have e(G− I) ≤

2× 9− 3 = 15. By Lemma 4, e(S, I) ≤ (|I|+ |S|) + |S| − 2 = n− 5, which implies that
e(G− I) = e(G)− e(S, I) ≥ 12. Therefore, 12 ≤ e(G− I) ≤ 15.

If e(G − I) = 15, then G − I ∈ O9. Thus dG(v3) ≤ 2, |NG(V(B1))| ≥ 2 and
|NG(V(B2))| ≥ 2. Since e(S, I) = e(G) − e(G − I) ≥ n − 8, then dG(v3) = 2. Thus



Symmetry 2022, 14, 1252 8 of 14

G[S ∪Q ∪ {v3}] ∈ O10, which implies that G− I′ contains two edge-disjoint 5K2. On the
other hand, we have e(S, Q) ≤ 7 because dG(v3) = 2. Therefore, e(G[S]) = e(G − I)−
e(S, Q)− e(B1)− e(B2) ≥ 15− 7− 3− 3 = 2, which means that G[S] is connected.

If e(G− I) = 14, then e(S, I) ≥ n− 7. Thus either dG(v3) = 3 or dG(v3) = dG(v4) = 2.
Therefore, we have G[S ∪Q ∪ {v3}] ∈ O10; or G[S ∪Q ∪ {v3, v4}] ∈ O−11. Then we always
get that G− I′ contains two edge-disjoint 5K2. From the degree situation of the vertices of
I in G, we have e(S, Q) ≤ 6. So e(G[S]) = e(G− I)− e(S, Q)− e(B1)− e(B2) ≥ 14− 6−
3− 3 = 2, which means that G[S] is connected.

If e(G − I) = 13, then e(S, I) ≥ n − 6. Thus either dG(v3) = 3 and dG(v4) = 2 or
dG(v3) = dG(v4) = dG(v5) = 2. Therefore, we have G[S ∪ Q ∪ {v3, v4}] ∈ O−11; or G[S ∪
Q ∪ {v3, v4, v5}] ∈ O=

12. Then we always get that G − I′ contains two edge-disjoint 5K2.
From the degree situation of the vertices of I in G, we have e(S, Q) ≤ 5. So e(G[S]) = e(G−
I)− e(S, Q)− e(B1)− e(B2) ≥ 13− 5− 3− 3 = 2, which means that G[S] is connected.

If e(G− I) = 12, then e(S, I) ≥ n− 5. Thus either dG(v3) = 3 and dG(v4) = dG(v5) =
2 or dG(v3) = dG(v4) = · · · = dG(v6) = 2. Therefore, we have G[S ∪ Q ∪ {v3, v4, v5}] ∈
O=

12; or G[S∪Q∪ {v3, v4, . . . , v6}] is the graph obtained from a maximal outer-planar graph
with 13 vertices by deleting 3 edges. Then we always get that G− I′ contains two edge-
disjoint 5K2. From the degree situation of the vertices of I in G, we have e(S, Q) ≤ 4. So
e(G[S]) = e(G− I)− e(S, Q)− e(B1)− e(B2) ≥ 12− 4− 3− 3 = 2, which means that G[S]
is connected.

From the above discussion of e(G− I) and combining Claim 1, we have e(On[I′]) = 0.
Since n2

I
≤ 4, we have b ≤ 6. Then |I′| = p− b ≥ (n− 7)− 6 > 2b because n ≥ 29 and

b ≤ 6. Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.

5.3. s = 4

In this case, p = n− 6, w = 1 and n5+
I

= 0. Then v(B1) = 3 and |I| = p− 1 = n− 7.
Since s = 4, we see n2

I
≤ 6. So b ≤ 7. Then we get |I′| = p − b ≥ (n − 6) − 7 > 2b

because n ≥ 29 and b ≤ 7. By Lemma 1, e(G − I) ≤ 2 × 7 − 3 = 11. By Lemma 4,
e(S, I) ≤ (|I|+ |S|) + |S| − 2 = n− 1, which implies that e(G − I) = e(G)− e(S, I) ≥ 8.
Therefore, 8 ≤ e(G − I) ≤ 11. We consider the following four situations according to
e(G− I).

Case C.1. e(G− I) = 11.
Then G − I ∈ O7. Thus dG(v2) ≤ 2. Since e(S, I) = e(G)− e(G − I) ≥ n− 4, then

dG(v2) = dG(v3) = dG(v4) = 2. Thus G[S ∪ V(B1) ∪ {v2, v3, v4}] ∈ O10, which implies
that G − I′ contains two edge-disjoint 5K2. Therefore, by Claim 1, e(On[I′]) = 0. On
the other hand, we have e(S, V(B1)) ≤ 5 because dG(v2) = dG(v3) = dG(v4) = 2. Thus
e(G[S]) = e(G − I)− e(S, V(B1))− e(B1) ≥ 11− 5− 3 = 3. We next prove that G[S] is
connected. If e(G[S]) = 3 and G[S] contains a cycle, then n3+

I
= 0 and n2

I
≤ 2 because

S ∪V(B1) ∈ O7. So e(S, I) ≤ n− 5, which contradicts to e(S, I) ≥ n− 4. Therefore, either
e(G[S]) ≥ 4 or e(G[S]) = 3 and G[S] contains no cycle. Then we clearly get that G[S] is
connected. Thus, by Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.

Case C.2. e(G− I) = 10.
Then dG(v2) ≤ 3 and e(S, I) = e(G) − e(G − I) ≥ n − 3. Thus either dG(v2) = 3

and dG(v3) = dG(v4) = 2 or dG(v2) = dG(v3) = · · · = dG(v5) = 2. Therefore, we
have G[S ∪V(B1) ∪ {v2, v3, v4}] ∈ O10; or G[S ∪V(B1) ∪ {v2, v3, . . . , v5}] ∈ O−11. Then we
always get that G− I′ contains two edge-disjoint 5K2. Thus, by Claim 1, e(On[I′]) = 0. We
next prove that G[S] is connected. If `(G[S]) = 4, then it is obvious that G[S] is connected.
If `(G[S]) = 3, then we have |NG(V(B1))| ≤ 2 combining Lemma 2, thus e(S, V(B1)) ≤ 3.
Then e(G[S]) = e(G− I)− e(S, V(B1))− e(B1) ≥ 10− 3− 3 = 4, which implies that G[S]
is connected. If `(G[S]) ≤ 2, that is, G[S] contains no cycle, then we get |NG(V(B1))| ≤ 3
by Lemma 2. Thus e(S, V(B1)) ≤ 4. So e(G[S]) = e(G − I) − e(S, V(B1)) − e(B1) ≥
10− 4− 3 = 3, which means that G[S] is connected.

Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.
Case C.3. e(G− I) = 9.
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Then e(S, I) ≥ n− 2. Combining Lemma 2, the degree situation of the vertices of I in G
satisfies one of the following: (1) dG(v2) = 4, dG(v3) = dG(v4) = 2; (2) dG(v2) = dG(v3) =
3, dG(v4) = 2; (3) dG(v2) = 3, dG(v3) = dG(v4) = dG(v5) = 2; (4) dG(v2) = dG(v3) =
· · · = dG(v6) = 2. Thus, we have G[S ∪ V(B1) ∪ {v2, v3, v4}] ∈ O10; or G[S ∪ V(B1) ∪
{v2, v3, . . . , v5}] ∈ O−11; or G[S ∪V(B1) ∪ {v2, v3, . . . , v6}] ∈ O=

12. Obviously, we always get
that G− I′ contains two edge-disjoint 5K2. Thus, by Claim 1, we have e(On[I′]) = 0.

We first claim that `(G[S]) ≤ 3. Since otherwise combining Lemma 2, we have n3+
I

= 0
and n2

I
≤ 4, which means e(S, I) ≤ n − 3. Next we will prove G[S] is connected. If

`(G[S]) = 3, then one of (3)–(4) above is satisfied. By Lemma 2, we have |NG(V(B1))| ≤ 1.
Thus e(S, V(B1)) ≤ 2. So e(G[S]) = e(G− I)− e(S, V(B1))− e(B1) ≥ 9− 2− 3 = 4, which
implies that G[S] is connected. If `(G[S]) ≤ 2, that is, G[S] contains no cycle, then one of (1)–
(4) above is satisfied. Thus by Lemma 2, we have |NG(V(B1))| ≤ 2. Then e(S, V(B1)) ≤ 3.
So e(G[S]) = e(G − I) − e(S, V(B1)) − e(B1) ≥ 9 − 3 − 3 = 3, which means that G[S]
is connected.

Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.
Case C.4. e(G− I) = 8.
Then e(S, I) ≥ n− 1. Combining Lemma 2, the degree situation of the vertices of

I in G satisfies one of the following: (1) dG(v2) = 4, dG(v3) = dG(v4) = dG(v5) = 2;
(2) dG(v2) = dG(v3) = 3, dG(v4) = dG(v5) = 2; (3) dG(v2) = 3, dG(v3) = dG(v4) =
· · · = dG(v6) = 2; (4) dG(v2) = dG(v3) = · · · = dG(v7) = 2. Therefore, we have G[S ∪
V(B1)∪ {v2, v3, . . . , v5}] ∈ O−11; or G[S∪V(B1)∪ {v2, v3, . . . , v6}] ∈ O=

12; or G[S∪V(B1)∪
{v2, v3, . . . , v7}] is the graph obtained from a maximal outer-planar graph with 13 vertices
by deleting 3 edges. Then we always get that G− I′ contains two edge-disjoint 5K2. Thus,
by Claim 1, e(On[I′]) = 0.

We claim that G[S] is connected. If G[S] contains a cycle, then e(S, I) ≤ n− 7 + 5 =
n− 2, a contradiction. Thus G[S] does not contain any cycle. Then one of (1)–(4) above is
satisfied. Thus e(S, V(B1)) ≤ 2. So e(G[S]) = e(G− I)− e(S, V(B1))− e(B1) ≥ 8− 2− 3 =
3, which means that G[S] is connected.

Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.
This completes the proof of Theorem 5.

6. Proof of Claims 1–7

In this section, we shall prove the seven claims used in the proof of Theorem 5.

6.1. Proof of Claim 1

Suppose that there exists some e ∈ E(On[V(G)−V(M1 ∪M2)]). If there exists an
e′ ∈ E(M1) such that c(e) = c(e′), then M2 ∪ {e} is a rainbow 6K2 in On, a contradiction.
Thus, c(e) 6= c(e′) for any e′ ∈ E(M1). But then M1 ∪ {e} is a rainbow 6K2 in On, a
contradiction. This completes the proof of Claim 1.

6.2. Proof of Claim 2

We first prove s ≥ 1. Suppose that s = 0. Then p = n − 10. Hence, combin-
ing Lemma 1, we have e(G) = ∑w

i=1 e(Bi) + e(G[R]) ≤ ∑w
i=1(2v(Bi)− 3) + (2|R| − 3) =

2(∑w
i=1 v(Bi) + |R|)− 3(w + 1) = 2(n− (p−w))− 3(w + 1) ≤ 17−w. Therefore, we have

e(G) < n + 7 because w ≥ 0 and n ≥ 29, a contradiction.
We next prove s ≥ 2 when R 6= ∅. Suppose that s ≤ 1 when R 6= ∅. Since s ≥ 1,

then s = 1. So p = n − 9. Hence, combining Lemma 1, we have e(G) = ∑w
i=1 e(G[S ∪

V(Bi)]) + e(G[S ∪ R]) + e(S, I) ≤ ∑w
i=1(2(1 + v(Bi))− 3) + (2(1 + |R|)− 3) + (p− w) =

2(∑w
i=1 v(Bi) + |R|) + p − 2w − 1 = 2(n − (p − w) − 1) + p − 2w − 1 = n + 6 < n + 7,

a contradiction. This completes the proof of Claim 2.
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6.3. Proof of Claim 3

Suppose that R 6= ∅. Since |R| ≤ n− s− p and p = n + s− 10, we have 2 ≤ |R| ≤
10− 2s. Then s ≤ 4. Thus combining Claim 2, we have 2 ≤ s ≤ 4. We distinguish the
following three cases to finish the proof of this claim.

Case 3.1. s = 4.
In this case, p = n − 6 and |R| = 2. Then |I| = p. By Lemma 1, e(G − I) ≤

2(v(G)− |I|)− 3 = 9. Since |I ∪ R| = n− 4 > |S|, then e(S, I ∪ R) ≤ n + 4− 2 = n + 2
by Lemma 4. Note that e(G[R]) = 1. Thus, e(G[S]) = e(G) − e(S, I ∪ R) − e(G[R]) ≥
n + 7− (n + 2)− 1 = 4. Therefore, G[S] must contain a cycle, that is, 3 ≤ `(G[S]) ≤ 4. We
consider the following two subcases.

Subcase 3.1.1. `(G[S]) = 4.
By Lemma 2, n3+

I
= 0 and n2

I
≤ 4. Thus, e(S, I) ≤ n− 6 + 4 = n− 2. If e(S, I) < n− 2,

then e(G) = e(S, I) + e(G− I) < n− 2 + 9 = n + 7, a contradiction. If e(S, I) = n− 2, then
n2

I
= 4, which implies that e(S, R) ≤ 2. Therefore, e(G− I) = e(G[S])+ e(S, R)+ e(G[R]) ≤

5 + 2 + 1 = 8. But e(G− I) = e(G)− e(S, I) ≥ 9, a contradiction.
Subcase 3.1.2. `(G[S]) = 3.
Then e(G[S]) = 4. By Lemma 2, n4+

I
= 0, n3

I
= 1 and n2

I
≤ 3; or n3+

I
= 0 and n2

I
≤ 5.

Therefore, e(S, I) ≤ n − 6 + 5 = n − 1. If e(S, I) = n − 1, then n4+
I

= 0, n3
I
= 1 and

n2
I
= 3; or n3+

I
= 0 and n2

I
= 5. So e(S, R) ≤ 2, which implies that e(G− I) = e(G[S]) +

e(S, R) + e(G[R]) ≤ 4 + 2 + 1 = 7. But e(G− I) = e(G)− e(S, I) ≥ 8, a contradiction. If
e(S, I) ≤ n− 2, because e(S, I) = e(G)− e(G− I) ≥ n + 7− 9 = n− 2, then e(S, I) = n− 2.
Thus combining Lemma 2, we have n4+

I
= 0, n3

I
= 1 and n2

I
≥ 2; or n3+

I
= 0 and n2

I
≥ 4.

Then e(S, R) ≤ 3. Therefore, e(G− I) = e(G[S]) + e(S, R) + e(G[R]) ≤ 4 + 3 + 1 = 8. But
e(G− I) = e(G)− e(S, I) ≥ 9, a contradiction.

Case 3.2. s = 3.
In this case, p = n− 7 and n4+

I
= 0. Then w ≤ 1 because |R| ≥ 2. We consider the

following two subcases based on w.
Subcase 3.2.1. w = 0.
Then |I| = p and |R| = 4. By Lemma 1, we have e(G− I) ≤ 11.
If e(G− I) = 11, then G− I ∈ O7. So n3

I
= 0 and |NG(R)| ≥ 2. When |NG(R)| = 2,

we have G[S] ∼= K3. Combining Lemma 2, we have n2
I
≤ 2. Thus e(S, I) ≤ n− 5. But

e(S, I) = e(G)− e(G− I) ≥ n− 4, a contradiction.
If e(G − I) = 10, then G − I ∈ O−7 and |NG(R)| ≥ 1. When |NG(R)| = 1, we have

G[S] ∼= K3. Combining Lemma 2, we have n3
I
= 0 and n2

I
≤ 3. Thus e(S, I) ≤ n− 4. But

e(S, I) = e(G)− e(G− I) ≥ n− 3, a contradiction.
If e(G − I) ≤ 9, then e(S, I) = e(G)− e(G − I) ≥ n− 2. But by Lemma 4, we have

e(S, I) ≤ (|I|+ |S|) + |S| − 2 = n− 3, a contradiction.
Subcase 3.2.2. w = 1.
Then v(B1) = 3, |R| = 2 and |I| = p − 1 = n − 8. Clearly, we have B1

∼= K3 by
Lemma 3. By Lemma 1, we have e(G− I) ≤ 13.

If e(G− I) = 13, then G− I ∈ O8. Then n3
I
= 0, |NG(V(B1))| ≥ 2 and |NG(R)| ≥ 2.

When both of the above equalities hold, we have G[S] ∼= K3. Combining Lemma 2, we have
n2

I
≤ 1. Therefore, e(S, I) ≤ n− 7. But e(S, I) = e(G)− e(G− I) ≥ n− 6, a contradiction.

If e(G − I) = 12, then G − I ∈ O−8 . Combining Lemma 2, if e(G[S]) = 3, then
|NG(V(B1))| + |NG(R)| ≥ 3, n3

I
= 0 and n2

I
≤ 2; if e(G[S]) ≤ 2, then |NG(V(B1))| +

|NG(R)| ≥ 4, and either n3
I
= 1 and n2

I
= 0, or n3

I
= 0 and n2

I
≤ 2. In both cases of e(G[S]),

we have e(S, I) ≤ n− 6. But e(S, I) = e(G)− e(G− I) ≥ n− 5, a contradiction.
If e(G− I) = 11, then G− I ∈ O=

8 . If e(G[S]) = 3, then |NG(V(B1))|+ |NG(R)| ≥ 2.
If e(G[S]) ≤ 2, then |NG(V(B1))|+ |NG(R)| ≥ 3. In both cases of e(G[S]) and combining
Lemma 2, we have n3

I
= 1 and n2

I
≤ 1; or n3

I
= 0 and n2

I
≤ 3. Thus e(S, I) ≤ n− 5. But

e(S, I) = e(G)− e(G− I) ≥ n− 4, a contradiction.
If e(G− I) ≤ 10, then e(S, I) = e(G)− e(G− I) ≥ n− 3. But by Lemma 4, we have

e(S, I) ≤ (|I|+ |S|) + |S| − 2 = n− 4, a contradiction.
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Case 3.3. s = 2.
In this case, p = n− 8 and n3+

I
= 0. Since |R| ≥ 2, we see w ≤ 2. We consider the

following two subcases based on w.
Subcase 3.3.1. w = 0.
Then |I| = p and |R| = 6. By Lemma 1, we have e(G − I) ≤ 13. If e(G − I) = 13,

then G− I ∈ O8. Combining Lemma 2, we have n2
I
≤ 1. Therefore, e(S, I) ≤ n− 7. But

e(S, I) = e(G)− e(G− I) ≥ n− 6, a contradiction. If e(G− I) ≤ 12, then e(S, I) = e(G)−
e(G− I) ≥ n− 5. But e(S, I) ≤ (|I|+ |S|) + |S| − 2 = n− 6 by Lemma 4, a contradiction.

Subcase 3.3.2. w = 1.
Then |I| = p− 1 = n− 9. By Lemma 1, e(G− I) ≤ 15.
If 14 ≤ e(G− I) ≤ 15, then G− I is the graph obtained from a maximal outer-planar

graph with 9 vertices by deleting 15− e(G− I) edges. Hence, when e(G− I) = 14, we have
at least one of NG(V(B1)) and NG(R) is S; when e(G − I) = 15, we have NG(V(B1)) =
NG(R) = S. Then n2

I
≤ 15− e(G − I). Therefore, e(S, I) ≤ n− 9 + 15− e(G − I). Then

e(G) = e(G− I) + e(S, I) ≤ n + 6, a contradiction.
If e(G − I) ≤ 13, then e(S, I) = e(G)− e(G − I) ≥ n− 6. But e(S, I) ≤ (|I|+ |S|) +

|S| − 2 = n− 7 by Lemma 4, a contradiction.
Subcase 3.3.3. w = 2.
Then v(B1) = v(B2) = 3, |R| = 2 and |I| = p − 2 = n − 10. Obviously, we have

B1
∼= B2 ∼= K3 by Lemma 3. By Lemma 1, e(G− I) ≤ 17.

If e(G− I) = 17, then G− I ∈ O10. Thus, NG(V(B1)) = NG(V(B2)) = NG(R) = S.
But then G contains a K2,3-minor, one part of which is S, and the other part is {V(B1), V(B2), R}.
This contradicts to Lemma 2.

If 15 ≤ e(G− I) ≤ 16, then G− I is the graph obtained from a maximal outer-planar
graph with 10 vertices by deleting 17− e(G− I) edges. Hence, when e(G− I) = 15, we
have at least one of NG(V(B1)), NG(V(B2)) and NG(R) is S; when e(G − I) = 16, we
have at least two of NG(V(B1)), NG(V(B2)) and NG(R) are S. Then n2

I
≤ 16− e(G − I).

Therefore, e(S, I) ≤ n − 10 + 16 − e(G − I). Then e(G) = e(G − I) + e(S, I) ≤ n + 6,
a contradiction.

If e(G − I) ≤ 14, then e(S, I) = e(G)− e(G − I) ≥ n− 7. But e(S, I) ≤ (|I|+ |S|) +
|S| − 2 = n− 8 by Lemma 4, a contradiction. This completes the proof of Claim 3.

6.4. Proof of Claim 4

Clearly, dG(v) ≤ 1 for any v ∈ I′. Since e(On[I′]) = 0, δ(On) ≥ 2, and combining
Claim 3, we have NOn(v) ∩ V(Bi) 6= ∅ for some i ∈ [b] and any v ∈ I′. Since |I′| > 2b,
then I′ contains at least three vertices, say vb+1, vb+2 and vb+3, such that dG(vb+j) =
1, NOn(vb+j) ∩ V(B`) 6= ∅ for any j ∈ [3] and some ` ∈ [b]. Since G[S] is connected,
then On contains a K2,3-minor, one part of which is {S, V(B`)}, and the other part is
{vb+1, vb+2, vb+3}. This contradicts to Lemma 2. This completes the proof of Claim 4.

6.5. Proof of Claim 5

By Claim 2, we just need to prove that s ≥ 2 when R = ∅. Suppose that s ≤ 1
when R = ∅. Again combining Claim 2, we have s = 1. Then p = n− 9 and n2+

I
= 0.

Thus b = w. If w = 0, then n = v(G) = v(B1) + · · · + v(Bp) + s = p + s = n − 8 by
Claim 3, a contradiction. So w ≥ 1. Hence, by Claim 3 and Lemma 1, n + 7 ≤ e(G) =

∑w
i=1 e(G[S ∪V(Bi)]) + e(S, I) ≤ ∑w

i=1(2(1 + v(Bi))− 3) + (p−w) = 2(n− (p−w)− 1) +
p − 2w = n + 7, which implies that G[S ∪ V(Bi)] is a maximal outer-planar graph for
each i ∈ [w]. By (1), we get v(B1) + · · ·+ v(Bw) = w + 8. Then we have w ≤ 4 because
v(B1) + · · · + v(Bw) ≥ 3w. So 1 ≤ w ≤ 4. If w = 1, then v(B1) = 9. If w = 2, then
either v(B1) = 7 and v(B2) = 3, or v(B1) = v(B2) = 5. If w = 3, then v(B1) = 5 and
v(B2) = v(B3) = 3. If w = 4, then v(B1) = v(B2) = · · · = v(B4) = 3. From the above four
cases of w, we always get that G[S ∪Q] contains two edge-disjoint 5K2. Thus by Claim 1,
e(On[I′]) = 0. Since n ≥ 29 and b = w ≤ 4, then |I′| = p− b ≥ (n− 9)− 4 > 2b. Therefore,
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On contains a K2,3-minor by Claim 4, which contradicts to Lemma 2. This completes the
proof of Claim 5.

6.6. Proof of Claim 6

Suppose that v(B1) ≥ 7. Then w ≥ 1. Thus by (1) and v(B1) + · · · + v(Bw) ≥
7 + 3(w− 1) = 3w + 4, we have s + w ≤ 3. Then w = 1 and s = 2 by Claim 5. Therefore,
v(B1) = 7, p = n− 8 and |I| = p− 1 = n− 9. By Lemma 2, n3+

I
= 0 and n2

I
≤ 2. Then

e(S, I) ≤ n− 9+ 2 = n− 7. Thus e(G− I) ≥ 14. On the other hand, we have e(G− I) ≤ 15
by Lemma 1. So 14 ≤ e(G− I) ≤ 15.

If e(G− I) = 14, then e(S, I) = e(G)− e(G− I) ≥ n− 7. Thus dG(v2) = dG(v3) = 2.
Then |NG(V(B1))| ≤ 1. Since e(S ∪V(B1)) = 14, then G[S ∪V(B1) ∪ {v2, v3}] ∈ O−11. On
the other hand, combining |NG(V(B1))| ≤ 1, we can obtain that G[S] is connected.

If e(G − I) = 15, then S ∪ V(B1) ∈ O9. Thus NG(V(B1)) = S. Since e(S, I) =
e(G)− e(G− I) ≥ n− 8, then dG(v2) = 2. Therefore, G[S ∪V(B1) ∪ {v2}] ∈ O10 and G[S]
is connected.

From the above two cases of e(G− I), we always get that G− I′ contains two edge-
disjoint 5K2. Thus by Claim 1, e(On[I′]) = 0. Since n2

I
≤ 2, we see b ≤ 3. Then |I′| =

p− b ≥ (n− 8)− 3 > 2b because n ≥ 29 and b ≤ 3. Therefore, by Claim 4, On contains a
K2,3-minor, which contradicts to Lemma 2. This completes the proof of Claim 6.

6.7. Proof of Claim 7

Suppose that v(B1) < 3. Then |I| = p. Combining Claim 3, we have p + s = n. Then
s = 5 because p = n + s− 10. Thus n6+

I
= 0 and p = n− 5. In the following proof, let U1

denote the graph obtained by hanging a path of length 2 at one vertex of C3; let U2 denote
the graph obtained by hanging an edge at each of two vertices of C3; let T1 denote the tree
with 5 vertices and diameter 3.

We will prove that G[S] does not contain any cycle. Suppose not, that is, 3 ≤ `(G[S]) ≤ 5.
We consider the following three cases according to `(G[S]).

If `(G[S]) = 5, then G[S] is clearly connected, and we have n3+
I

= 0 and n2
I
≤ 5

by Lemma 2. Thus e(S, I) ≤ n. By Lemma 1, we have e(G[S]) ≤ 7, which implies that
e(S, I) = e(G)− e(G[S]) ≥ n. Therefore, e(S, I) = n. Then n2

I
= 5 and e(G[S]) = 7. It

follows that b = 5 and G[S] ∈ O5. Thus, G[S ∪ {v1, v2, . . . , v5}] ∈ O10, which means that
G[S ∪ {v1, v2, . . . , v5}] contains two edge-disjoint 5K2. Then we obtain e(On[I′]) = 0 by
Claim 1. Then |I′| = p− b = (n− 5)− 5 > 2b because n ≥ 29 and b = 5. Therefore, by
Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.

If `(G[S]) = 4, then e(G[S]) ≤ 6. By Lemma 2, n4+
I

= 0, n3
I
= 1 and n2

I
≤ 4; or n3+

I
= 0

and n2
I
≤ 6. So e(S, I) ≤ n + 1. Since n + 7 ≤ e(G) = e(S, I) + e(G[S]) ≤ n + 7, then

e(G[S]) = 6 and e(S, I) = n + 1. Therefore, G[S] is connected, and either n3
I
= 1 and n2

I
= 4

or n2
I
= 6. Thus, 5 ≤ b ≤ 6 and G[S∪ {v1, v2, . . . , vb}] contains two edge-disjoint 5K2. Then

by Claim 1, e(On[I′]) = 0. Since n ≥ 29 and b ≤ 6, then |I′| = p− b ≥ (n− 5)− 6 > 2b.
Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to Lemma 2.

If `(G[S]) = 3, then we also have e(G[S]) ≤ 6. If e(G[S]) = 6, then e(S, I) = e(G)−
e(G[S]) ≥ n+ 1 and G[S] ∼= K1 + 2K2. By Lemma 2, n4+

I
= 0, n3

I
= 1 and n2

I
= 4; or n3+

I
= 0

and n2
I
= 6. It follows that 5 ≤ b ≤ 6 and G[S ∪ {v1, v2, . . . , vb}] contains two edge-disjoint

5K2. Then by Claim 1, e(On[I′]) = 0. We have |I′| = p− b ≥ (n− 5)− 6 > 2b because
n ≥ 29 and b ≤ 6. Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to
Lemma 2. Therefore, e(G[S]) ≤ 5. By Lemma 2, n5

I
= 0, n4

I
= 1 and n2

I
≤ 4; or n4+

I
= 0,

n3
I
= 2 and n2

I
≤ 3; or n4+

I
= 0, n3

I
= 1 and n2

I
≤ 5; or n3+

I
= 0 and n2

I
≤ 7. From the

degree situation of the vertices of I in G, we can obtain e(S, I) ≤ n− 5 + 7 = n + 2. Since
n + 7 ≤ e(G) = e(S, I) + e(G[S]) ≤ n + 7, e(G[S]) = 5 and e(S, I) = n + 2. It follows
that G[S] is connected, and G[S] ∈ {U1, U2, (K2 ∪ 2K1) + K1}. On the other hand, we can
also get that the degree situation of the vertices of I in G satisfies one of the following:
(1) n5

I
= 0, n4

I
= 1 and n2

I
= 4; (2) n4+

I
= 0, n3

I
= 2 and n2

I
= 3; (3) n4+

I
= 0, n3

I
= 1
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and n2
I
= 5; (4) n3+

I
= 0 and n2

I
= 7. If G[S] ∈ {U1, U2}, then one of (1)–(4) is satisfied.

If G[S] ∼= (K2 ∪ 2K1) + K1, then one of (2)–(4) is satisfied. Thus, from the above three
structures of G[S], we always find that b ≤ 7 and G[S ∪ {v1, v2, . . . , vb}] contains two edge-
disjoint 5K2. Then by Claim 1, e(On[I′]) = 0. Then |I′| = p− b ≥ (n− 5)− 7 > 2b because
n ≥ 29 and b ≤ 7. Therefore, by Claim 4, On contains a K2,3-minor, which contradicts to
Lemma 2.

From the above discussion of `(G[S]), we get that G[S] contains no cycle. Then
e(G[S]) ≤ 4. By Lemma 4, we have e(S, I) ≤ (|I| + |S|) + |S| − 2 = n + 3 because
|I| > |S|, which implies that e(G[S]) ≥ 4. Thus e(G[S]) = 4. Then G[S] is connected,
and G[S] ∈ {P5, T1, K1,4}. Since e(G) ≥ n + 7, we have e(S, I) = e(G)− e(G[S]) ≥ n + 3.
Combining e(S, I) ≤ n + 3, we have e(S, I) = n + 3 and e(G) = n + 7. Thus by Lemma 4,
we have dG(vi) ≥ 1 for each v ∈ I′. Then the degree situation of the vertices of I in G
satisfies one of the following: (1) n5

I
= 1 and n2

I
= 4; (2) n5

I
= 0, n4

I
= 1, n3

I
= 1 and n2

I
= 3;

(3) n5
I
= 0, n4

I
= 1 and n2

I
= 5; (4) n4+

I
= 0, n3

I
= 3 and n2

I
= 2; (5) n4+

I
= 0, n3

I
= 2 and

n2
I
= 4; (6) n4+

I
= 0, n3

I
= 1 and n2

I
= 6; (7) n3+

I
= 0 and n2

I
= 8. If G[S] ∼= P5, then one

of (1)–(7) is satisfied. If G[S] ∼= T1, then one of (2)–(7) is satisfied. If G[S] ∼= K1,4, then one
of (4)–(7) is satisfied. From the above three structures of G[S], we can get that b ≤ 8 and
G[S ∪ {v1, v2, . . . , vb}] contains two edge-disjoint 5K2. Then by Claim 1, e(On[I′]) = 0.

Note that b ≤ 8 and n ≥ 29. If b < 8 and n ≥ 29, or b = 8 and n > 29, then it can be
found that |I′| = p− b ≥ (n− 5)− 8 > 2b. Then by Claim 4, On contains a K2,3-minor,
which contradicts to Lemma 2. So we only need to consider the case of b = 8 and n = 29.
If there exists some i ∈ [b] such that |NOn(vi) ∩ I′| ≥ 3, without loss of generality, we
assume that NOn(vi) ∩ I′ = {vb+1, vb+2, vb+3}. Then On contains a K2,3-minor, one part
of which is {S, {vi}}, and the other part is {vb+1, vb+2, vb+3}. It contradicts to Lemma 2.
If |NOn(vi) ∩ I′| ≤ 2 for each i ∈ [b], then eOn

({v1, v2, . . . , vb}, I′) ≤ 2b. It follows that
e(On) = e(G) + eOn

({v1, v2, . . . , vb}, I′) ≤ n + 7 + 2b < 2n − 3, which contradicts to
Lemma 1. This completes the proof of Claim 7.

7. Concluding Remarks

Theorem 4 determines the exact value of ar(On, kK2) for n = 2k. It seems non-trivial
to determine the exact value of ar(On, kK2) when n ≥ 2k + 1. Theorem 3 gives a better
upper bound of ar(On, kK2) for all n ≥ 2k + 1. However, we conjecture that the exact value
of ar(On, kK2) for n ≥ 2k + 1 is equal to the lower bound given in Theorem 1(4). In [23,24],
the authors proved that the conjecture holds when 3 ≤ k ≤ 4, and k = 5 and n ≥ 2k + 5.
Theorem 5 verifies the conjecture holds when n ≥ 2k + 17 and k = 6. The conjecture is
wide open when k ≥ 7.
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