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Abstract: A topological index is a number generated from a molecular structure (i.e., a graph)
that indicates the essential structural properties of the proposed molecule. Indeed, it is an al-
gebraic quantity connected with the chemical structure that correlates it with various physical
characteristics. It is possible to determine several different properties, such as chemical activity,
thermodynamic properties, physicochemical activity, and biological activity, using several topolog-
ical indices, such as the geometric-arithmetic index, arithmetic-geometric index, Randić index, and
the atom-bond connectivity indices. Consider G as a group and H as a non-empty subset of G. The
commuting graph C(G, H), has H as the vertex set, where h1, h2 ∈ H are edge connected whenever
h1 and h2 commute in G. This article examines the topological characteristics of commuting graphs
having an algebraic structure by computing their atomic-bond connectivity index, the Wiener index
and its reciprocal, the harmonic index, geometric-arithmetic index, Randić index, Harary index, and
the Schultz molecular topological index. Moreover, we study the Hosoya properties, such as the
Hosoya polynomial and the reciprocal statuses of the Hosoya polynomial of the commuting graphs
of finite subgroups of SL(2,C). Finally, we compute the Z-index of the commuting graphs of the
binary dihedral groups.

Keywords: commuting graphs; chemical graphs; finite groups; molecular structure; topological indices;
Hosoya index

1. Introduction

The quantitative structure–property relationships (QSPR) studies are provided by the
physicochemical characteristics (for example, the stability, boiling point, and strain energy)
and the topological indices; namely, the geometric-arithmetic (GA) index, the atom-bond
connectivity (ABC) index, as well as the Randić index to identify the biocompatibility of
the chemical substances. In fact, a topological index is created by converting a chemical
structure (i.e., a graph) to a numeric value. It is a numeric number that quantifies the
symmetry of a molecular structure, defines its topology, and is unchangeable under a
function that preserves the structure [1]. Certain aspects of chemical compounds with a
molecular structure may be investigated using several kinds of topological indices. In
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1947, Wiener developed the notion of the first topological index, which he termed the path
number while exploring the boiling point of paraffin [2]. As a consequence, the Wiener
index was made, which led to the idea of topological indices. Numerous degree-based and
distance-based topological indices have been presented and deliberated in recent years, see
for instance [3–6].

Well-known chemists utilized Pólya’s [7] approach to calculating polynomials to de-
termine the molecular orbital of unsaturated hydrocarbons. The spectrum of a graph
has been widely investigated in this context. Hosoya [8] developed this concept in 1988
to calculate the polynomials of various important chemical graphs, referred to as the
Hosoya polynomials. Sagan et al. [9] renamed the Hosoya polynomial the Wiener polyno-
mial in 1996. However, most experts keep referring to it as the Hosoya polynomial. The
Hosoya polynomial may be used to gain information on distance-based graph invariants.
In [10], Cash identified a relationship between the hyper Wiener index and the Hosoya
polynomial. Estrada et al. [11] focused on various innovative applications of the extended
Wiener indices.

We discuss simple graphs in this article, that is, graphs that do not include loops or
multiple edges. Consider G as a group and H as a non-empty subset of G . The commuting
graph C(G, H) has H as the vertex set, where h1, h2 ∈ H are edge connected whenever
h1 and h2 commute in G . Throughout the paper, we denote C(G) as the commuting
graph C(G,G) of a group G . Many researchers have examined the commuting graphs
in a variety of contexts, including groups of matrices [12,13], commutative rings with
zero-divisors [14–17], the dihedral groups [18–21], and the authors of [22,23] discuss
several characteristics of the automorphism groups and their associated commuting
graphs.

Iranmanesh and Jafarzadeh presented [24] that, for the commuting graphs of Alt(n)
and Sym(n), respectively, the alternating and symmetric groups of n letters are either
disconnected or have a diameter of at most 5. They conjecture in the same paper that
an absolute upper limit exists on the diameter of a connected commuting graph of a
non-abelian finite group. This conjecture was disproved in [25], which demonstrated
an endless collection of special two-groups having commuting graphs of increasing
diameter. The central notion of the conjecture, on the other hand, is not far off the mark.
Later on, in [26], the authors demonstrated that for every finite group G having a trivial
centre, any connected component of the commuting graph of G has a diameter of no more
than 10. Additionally, several researchers have explored the non-commuting graphs,
the connectedness of the commuting graphs, and their metric dimensions, as shown
by [27–29].

A matched or independent edge set is a group of edges that have no common vertices.
The term “matched” refers to a vertex that is coincident with one of the matching edges.
Otherwise, an unmatched vertex exists. The Z-index or the Hosoya index denotes the great-
est number of matchings in a graph. Hosoya [30] proposed the Hosoya index in 1971 and
later developed it as a general utensil for physical chemistry in [31]. It has now been shown
to be effective in a wide range of molecular chemistry problems, including boiling point
determination, entropy, and the heat of vaporization. The Hosoya index is a well-known
case of a topological index that has considerable importance in combinatorial chemistry.
Various researchers examined extremal difficulties relating to the Hosoya index while
exploring a variety of graph structures. In [32–34], the extreme properties of various graphs,
including unicyclic graphs and trees, were intensively examined.



Symmetry 2022, 14, 1266 3 of 16

As provided bounds, Bates et al. [35] examined the commuting involution graphs
of special linear groups over fields of characteristic 2. The disc diameters of two and
three-dimensional special linear groups are determined. They further presented examples
of unbounded dimension commuting involution graphs. The authors of [36] studied the
Hosoya characteristics of the non-commuting graphs, while the authors of [3] examined
the Hosoya characteristics of the power graphs of finite non-abelian groups. Motivated by
their work, we extended the work in [3,35] and focused our attention on the commuting
graphs of finite subgroups of SL(2,C). This article investigates almost all of the topological
properties of the commuting graphs of finite subgroups of SL(2,C) (as listed in Table 1). It
is very challenging to calculate the (reciprocal) Hosoya polynomial, as well as the Hosoya
index of the commuting graph of a group G. In this regard, we provide both the Hosoya
and the reciprocal statuses of Hosoya polynomials. We also discuss the Hosoya index of
the commuting graph of a finite group G.

There are still gaps in the current literature regarding the determination of several topo-
logical invariants, the Hosoya polynomials, the reciprocal status of Hosoya polynomials, and
the Z-index (Hosoya index) of the commuting graphs of finite subgroups of SL(2,C). The
obvious reason is that neither the structure of the commuting graphs is fully characterized
nor is it possible to establish handy formulae for these graph invariants for general classes of
graphs. In this article, we find all the indices of the commuting graphs as presented in Table 1.
We further make an effort and look at one of these problems in this article.

The rest of the paper is organized as follows: Section 2 contains some relevant results
and useful definitions for this paper. In Section 3, we explore the construction of vertex
and edge partitions. In Section 4, we find numerous topological indices of the commuting
graphs of the binary dihedral groups. Section 5 discusses the construction of finite sub-
groups of SL(2,C), and their Hosoya properties. The conclusion and future work of the
paper is given in Section 7.

2. Basic Notions and Notations

This part reviews several fundamental graph-theoretic properties and well-known
findings that will be important later in the article.

Suppose Γ is a simple finite undirected graph. The vertex and edge sets of Γ are
represented by V(Γ) and E(Γ), respectively. The distance from u1 to u2 in a connected
graph Γ represented by dis(u1, u2) is the shortest distance between u1 and u2. The total
number of vertices denoted by |Γ| is the order of Γ. Two vertices, v1 and v2, are adjacent
if there is an edge between them, and we denote them by v1 ∼ v2; otherwise, v1 � v2.
The neighbourhood of u is a collection of all vertices in Γ that are connected to u is indicated
by N(u). The valency or degree represented by du1 of u1 is the collection of vertices in
Γ, which are adjacent to u1, and Su = ∑u∈N(u) du is the degree sum of u. A u1 − u2 path
having dis(u1, u2) length is known as a u1 − u2 geodesic. The largest distance between a
vertex u1 and any other vertex of Γ is known as the eccentricity, denoted by ec(u1). The
diameter denoted by diam(Γ) of Γ is the largest eccentricity among all the vertices of the
graph Γ. Furthermore, the radius symbolized by rad(Γ) of Γ has the lowest eccentricity
among all the vertices of the graph Γ.

Suppose Γ1 and Γ2 are two connected graphs, then Γ1 ∨ Γ2 is the join of Γ1 and Γ2 whose
vertex and edge sets are V(Γ1)∪V(Γ2) and E(Γ1)∪ E(Γ2)∪{y ∼ z : y ∈ V(Γ1), z ∈ V(Γ2)},
respectively. A complete graph is a graph that has an edge between any single vertex in
the graph, and Kn symbolizes it. A t-partite graph is one in which the vertices are or may
be partitioned into t distinct independent sets, while a complete t-partite graph is one
where any pair of vertices from distinct independent sets has an edge. Other unexplained
terminologies and notations were taken from [37].
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Table 1. A list of potential topological indices is shown below.

The Index’s Name Symbol Formula

Wiener index [2] W(Γ) ∑{v,w}∈V(Γ) dis(v, w)

Randić index [5] R−( 1
2 )
(Γ) ∑v∼w 1/

(√
dv × dw

)
Harary index [38,39] H(Γ) ∑{v 6=w}∈V(Γ) 1/(dis(v, w))

Harmonic index [40] Hr(Γ) ∑v∼w 2/(dv + dw)
General Randić index [41] Rα(Γ) ∑v∼w(dv × dw)

α

Schultz molecular topological index [42] MTI(Γ) ∑{v,w}∈V(Γ)(dv + dw)dis(v, w) + ∑w∈V(Γ) d2/w

Reciprocal complementary Wiener index [43] RCW(Γ) ∑{v,w}∈V(Γ) 1/(diam(Γ) + 1− dis(v, w))

Atomic-bond connectivity (ABC) index [43] ABC(Γ) ∑v∼w
√
(dv + dw − 2)/(dv × dw)

Fourth version of ABC index [1] ABC4(Γ) ∑v∼w
√
(Sv + Sw − 2)/(Sv × Sw)

Geometric-arithmetic (GA) index [44] GA(Γ) ∑v∼w
(
2
√

dv × dw
)
/(dv + dw)

Fifth version of GA index [4] GA5(Γ) ∑v∼w
(
2
√

Sv × Sw
)
/(Sv + Sw)

Hosoya polynomial [8] H(Γ, x) ∑i≥0 dis(Γ, i)xi

Reciprocal status Hosoya polynomial [45] Hrs(Γ, x) ∑vw∈E(Γ) xrs(v)+rs(w), where rs(w) = ∑v∈V(Γ),w 6=v
1

dis(w,v)

Section 2 defines all of the notations used in formulae.

Definition 1. The centre of a group G is specified is given as:

Z(G) = {g1 : g1 ∈ G and g1g2 = g2g1, for all g2 ∈ G}.

The special linear group denoted by SL(2,C) of degree 2 over a field C is the set of
2× 2 matrices whose determinant is 1. We represent the cyclic group of order n by Zn.
Furthermore, the presentation of binary dihedral group BD4n of order 4n, where n ∈ N, is
shown as follows:

BD4n = 〈y, z | y2n = e, yn = z2, zyz−1 = y−1〉.

We now split BD4n as follows:

Ω = {e, yn}, X1 = 〈y〉, X2 =
n−1⋃
i=0

Xi
2, where Xi

2 =
{

yiz, yn+iz
}

and X3 = X1 \Ω.

Since X1 is cyclic, its induced subgraph is complete, and it is denoted by K2n. A remarkable
feature of BD4n is that the involution yn and the identity e are adjacent to every other vertex
in its commuting graph. Moreover,

BT24 = 〈r, s, t | r2 = s3 = t3 = rst〉,

BO48 = 〈r, s, t | r2 = s3 = t4 = rst〉,

BI120 = 〈r, s, t | r2 = s3 = t5 = rst〉,

are respectively the binary tetrahedral group of order 24, the binary octahedral group of
order 48, and the binary icosahedral group of order 120. All these are the finite non-abelian
subgroups of SL(2,C).

We will explore several properties of the aforementioned groups, but the commuting
graph of BD4n is our main focus.

Proposition 1 ([46]). The structure of the commuting graphs of finite subgroups of SL(2,C) are:

C(BD4n) = K2 ∨ (K2n−2 ∪ nK2),

C(BT24) = K2 ∨ (3K2 ∪ 4K4),

C(BO48) = K2 ∨ (6K2 ∪ 4K4 ∪ 3K6),

C(BI120) = K2 ∨ (15K2 ∪ 10K4 ∪ 6K8),

where mK` represents the m copies of K`.
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From the structure of the commuting graph of BD4n, clearly it has 4n vertices, and
the total number of edges of C(BD4n) is n(n+4)

2 . The relevant vertex partition of C(BD4n) is
shown in Table 2 depending on the sum distance number, reciprocal distance, degree and
the distance numbers of any vertex. The usable edge partition for C(BD4n) is presented
in Table 3. It is dependent on the degrees and their sum of the end vertices of every edge.

Table 2. Vertex partition of C(BD4n) for any vertex u ∈ V(C(BD4n)).

du ec(u) D(u|C(BD4n)) Ds(u|C(BD4n)) Dr(u|C(BD4n))
Number of

Vertices

2n− 1 2 6n− 1 1
2 (6n− 1) 3n− 1 2(n− 1)

4n− 1 4n− 1 4n− 1 1
2 (4n− 1) 4n− 1 2

3 8n− 5 8n− 5 1
2 (8n− 5) 2n + 1 2n

Table 3. C(BD4n) is partitioned into edges based on their reciprocal statuses.

Type of Edge Edge Set’s Partition Edges Count

u ∼ u Eu∼u = {ab ∈ E(C(BD4n)) : rs(a) = u, rs(b) = u} |Eu∼u| = (2(n−1)
2 )

u ∼ v Eu∼v = {ab ∈ E(C(BD4n)) : rs(a) = u, rs(b) = v} |Eu∼v| = 4(n− 1)
v ∼ v Ev∼v = {ab ∈ E(C(BD4n)) : rs(a) = v, rs(b) = v} |Ev∼v| = 1
v ∼ w Ev∼w = {ab ∈ E(C(BD4n)) : rs(a) = v, rs(b) = w} |Ev∼w| = 4n
w ∼ w Ew∼w = {ab ∈ E(C(BD4n)) : rs(a) = w, rs(b) = w} |Ew∼w| = n

3. Edge and Vertex Partitions

To begin, we create certain important factors that aid in the analysis of specified
topological indices. These parameters are stated as follows for any vertex u of Γ:

1. The distance number of u in Γ is D(u|Γ) = ∑v∈V(Γ) dis(v, u).
2. The u’s reciprocal distance number in Γ is Dr(u|Γ) = ∑v∈V(Γ)

1
dis(v,u) .

3. The total of u’s distances in Γ is Ds(u|Γ) = ∑v∈V(Γ)\{u}
1

(diam(Γ)+1−dis(u,v)) .

The distance-based topological indices mentioned in Table 1, become

W(Γ) =
1
2 ∑

u∈V(Γ)
D(u | Γ), (1)

RCW(Γ) =
1
2 ∑

u∈V(Γ)
Ds(u | Γ) +

|Γ|
diam(Γ) + 1

, (2)

MTI(Γ) = ∑
u∈V(Γ)

d(u)D(u | Γ) + ∑
u∈V(Γ)

(d(u))2, (3)

H(Γ) =
1
2 ∑

u∈V(Γ)
Dr(u | Γ). (4)

4. Topological Properties

Theorem 1. The commuting graph C(BD4n) of BD4n satisfies:

W(C(BD4n)) = 2n(7n− 4).

Proof. We have obtained the Wiener index by using a vertex partition, as shown in Equa-
tion (1) and Table 2.

W(C(BD4n)) = (n− 1)(6n− 1) + (4n− 1) + n(8n− 5).

After certain simplifications, the necessary Wiener index can be achieved.
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Theorem 2. The commuting graph C(BD4n) of BD4n satisfies:

RCW(C(BD4n)) =
n
3
(21n− 8).

Proof. Given that C(BD4n) has a diameter of 2, we can get the reciprocal complementary
Wiener index by applying the vertex partition described in Equation (2) and Table 2.

RCW(C(BD4n)) =
4n
3

+
1
2
(n(8n− 5) + (4n− 1) + (n− 1)(6n− 1)).

By applying certain simplifications, the appropriate index can be simply determined.

Theorem 3. Assume that C(BD4n) is the commuting graph of BD4n. Then

MTI(C(BD4n)) = 8n(4n− 1)(n + 2).

Proof. By applying the vertex partition from Table 2, apply Equation (3) of the Schultz
molecular topological index.

MTI(C(BD4n)) = 2(n− 1)(2n− 1)2 + 2(4n− 1)2 + 9n + 2(n− 1)(2n− 1)(6n− 1)

+ 2(4n− 1)2 + 6n(8n− 5)

= 8n(4n− 1)(n + 2).

Theorem 4. Let C(BD4n) be the commuting graph of BD4n. Then

H(C(BD4n)) = n(5n + 1).

Proof. We may use the vertex partitions from Table 2, and in Equation (4) of the
Harary index. Then

H(C(BD4n)) = (n− 1)(3n− 1) + (4n− 1) + n(2n + 1).

Some straightforward simplifications result in the desired Harary index.

Theorem 5. Suppose C(BD4n) is the commuting graph of BD4n. We have:

Rα(C(BD4n)) =



(2n− 1)2(2n2 − 5n + 3
)
+ (4n− 1)

(
8n2 + 4n + 3

)
+ 9n, for α = 1,

4(4n−1)(8n3−14n2+5n+1)
2
(16n3+40n2−11n+9)

(2n−1)2(4n−1)2 , for α = −1,

(2n− 1)(n− 1)(2n− 3) + (7n− 1) + 4
√

4n− 1
(
(n− 1)

√
2n− 1 + n

√
3
)

, for α = 1
2 ,

4n(2n−1)(4n−7)+6(5n−2)
3(2n−1)(4n−1) + 4(n−1)

√
3+4n

√
2n−1√

3(4n−1)(2n−1)
, for α = − 1

2 .

Proof. We may get the general Randić index Rα for α = 1,−1, 1
2 ,−( 1

2 ) by using the edge
partition from Table 3.

R1(C(BD4n)) = (n− 1)(2n− 3)(2n− 1)2 + 4(n− 1)(2n− 1)(4n− 1) + (4n− 1)2 + 12n(4n− 1) + 9n;

R−1(C(BD4n)) =
(n− 1)(2n− 3)

(2n− 1)2 +
4(n− 1)

(2n− 1)(4n− 1)
+

1
(4n− 1)2 +

4n
3(4n− 1)

+
n
9

;

R 1
2
(C(BD4n)) = (n− 1)(2n− 3)(2n− 1) + 4(n− 1)

√
(2n− 1)(4n− 1) + (4n− 1) + 4n

√
3(4n− 1) + 3n;

R−( 1
2 )
(C(BD4n)) =

(n− 1)(2n− 3)
(2n− 1)

+
4(n− 1)√

(2n− 1)(4n− 1)
+

1
(4n− 1)

+
4n√

3(4n− 1)
+

n
3

.
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We get the desired result after minor simplification.

Theorem 6. Suppose that C(BD4n) is the commuting graph of BD4n. We have:

GA(C(BD4n)) = 2
(

n2 − 2n + 2
)
+

4(2n2 − n− 1)
√

8n2 − 6n + 1 + 4n(3n− 1)
√

3(4n− 1)
(2n + 1)(3n− 1)

;

GA5(C(BD4n)) = 2
(

n2 − 2n + 2
)
+

4(n− 1)(2n + 1)
√

4n2 + 1
4n2 + 2n + 1

+
4n(2n + 1)

√
8n + 1

2n2 + 6n + 1
.

Proof. By employing the geometric-arithmetic (GA) index formula, its fifth form, as well
as the edge partition specified in Table 3, we obtain

GA(C(BD4n)) = (n− 1)(2n− 3) +
4(n− 1)

√
(2n− 1)(4n− 1)
3n− 1

+ 1 +
4n
√

3(4n− 1)
2n + 1

+ n;

GA5(C(BD4n)) = (n− 1)(2n− 3) +
4(n− 1)

√
(4n2 + 1)(2n + 1)2

4n2 + 2n + 1
+ 1 +

4n
√
(2n + 1)2(8n + 1)
2n2 + 6n + 1

+ n.

After some computations, the required values of GA and GA5 can be derived.

Theorem 7. Assume that C(BD4n) is the commuting graph of BD4n. Then

ABC(C(BD4n)) =
2(n− 1)(2n− 3)

√
n− 1

(2n− 1)
+

8n
√

2n2 − n + 4(n− 1)
√

6(3n− 2)√
3(2n− 1)(4n− 1)

+
2
√

2n− 1
4n− 1

+
2n
3

;

ABC4(C(BD4n)) =
2n(n− 1)(2n− 3)

√
2

4n2 + 1
+

8(n− 1)
2n + 1

√
2n2 + n
4n2 + 1

+
2
√

2n2 + n
(2n + 1)2 +

4n
2n + 1

√
4n(n + 3)

8n + 1
+

4n
√

n
8n + 1

.

Proof. We have achieved this by including the edge partition, as specified in Table 3, into
the ABC and ABC4 index formulas.

ABC(C(BD4n)) =
2(n− 1)(2n− 3)

√
n− 1

2(n− 1)
+ 4(n− 1)

√
2(3n− 2)

(2n− 1)(4n− 1)
+

2n
3

+
2
√

2n− 1
(4n− 1)

+ 8n
√

n
3(4n− 1)

;

ABC4(C(BD4n)) =
(n− 1)(2n− 3)

√
8n2

(4n2 + 1)
+

4(n− 1)
2n + 1

√
4n(2n + 1)

4n2 + 1
+

√
8n(n + 1)
(2n + 1)2 +

4n
2n + 1

√
4n(n + 3)

8n + 1
+

4n
√

n
8n + 1

.

By making a simple simplification, one may get the necessary formulae for both indices.

Theorem 8. Suppose C(BD4n) is the commuting graph of BD4n. We have

Hr(C(BD4n)) =
(n− 1)(6n2 − 3n− 1)

(2n− 1)(3n− 1)
+

3(2n + 1) + n(4n− 1)(2n + 13)
3(2n + 1)(4n− 1)

.

Proof. Using the harmonic index formula and the edge partition specified in Table 3, we obtain

Hr(C(BD4n)) =
1

4n− 1
+

4(n− 1)
3n− 1

+
(n− 1)(2n− 3)

(2n− 1)
+

4n
2n + 1

+
n
3

.

Certain computations resulting the necessary harmonic index.
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5. Hosoya Properties of Finite Subgroups of SL(2,C)
The Hosoya polynomial and its reciprocal status of the commuting graphs C(G) are

determined in this section.
The classification of the commuting graphs of finite subgroups of SL(2,C) have been

given in [46] (see Proposition 1) using GAP [47] calculations.

5.1. Hosoya Polynomial

To establish certain results, we first prove some important results.

Proposition 2. Suppose C(BD4n) is the commuting graph of BD4n . Then

dis(C(BD4n), `) =


4n, for ` = 0;
2n(2n+4)

2 , for ` = 1;
6n(2n−2)

2 , for ` = 2.

Proof. As we know that diam(C(BD4n)) = 2. We need to examine dis(C(BD4n), 0),
dis(C(BD4n), 1) and dis(C(BD4n), 2). Suppose Vk is the collection of all pair of vertices of
C(BD4n), then

|Vk| = 2n(4n + 1).

Suppose

S(C(BD4n), `) = {(j, k); j, k ∈ V(C(BD4n)) | dis(j, k) = `},

and dis(C(BD4n), `) = |S(C(BD4n), `)|. Therefore:

Vk = S(C(BD4n), 0) ∪ S(C(BD4n), 1) ∪ S(C(BD4n), 2). (5)

Since, dis(j, j) = 0, for any j ∈ V(C(BD4n)), so

S(C(BD4n), 0) = {(j, j); j ∈ V(C(BD4n))} = V(C(BD4n)).

Thus, S(C(BD4n), 0) = 4n. Using Proposition 1, and we have

V(K2) = {e, yn}, V(K2n−2) = X3, and V(nK2) = X2 =
n−1⋃
i=0

Xi
2.

Therefore,

S(C(BD4n), 1) = {(j, k); j ∈ Ω, k ∈ X2} ∪
n−1⋃
i=0

{
(j, k); j, k ∈ Xi

2 and j 6= k
}

∪ {(j, k); j ∈ Ω, k ∈ X3} ∪ {(j, k); j, k ∈ X3 and j 6= k}
∪ {(j, k); j, k ∈ Ω and j 6= k}.

Consequently,

S(C(BD4n), 1) = 4n + n(1) + 2(2n− 2) +
(

2n− 2
2

)
+ 1 =

2n(2n + 4)
2

.

Using Equation (5), we get

|Vk| = dis(C(BD4n), 0) + dis(C(BD4n), 1) + dis(C(BD4n), 2).
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Hence,

dis(C(BD4n), 2) = |Vk| − dis(C(BD4n), 0)− dis(C(BD4n), 1)

= 2n(2n + 1)− 4n− 2n(2n + 4)
2

=
3n(2n− 2)

2
.

The following results yield the Hosoya polynomials of the commuting graphs of finite
subgroups of SL(2,C).

Theorem 9. Assume that C(BD4n) is the commuting graph of BD4n. Then

H(C(BD4n), x) = n
(

6(n− 1)x2 + 2(n + 2)x + 4
)

.

Proof. By substituting the coefficients dis(C(BD4n), `) derived in Proposition 2 into the
formula for the Hosoya polynomial, we get.

H(C(BD4n), x) = dis(C(BD4n), 2)x2 + dis(C(BD4n), 1)x1 + dis(C(BD4n), 0)x0

= (6n(n− 1))x2 + (2n(n + 2))x + (4n)x0

= n
(

6(n− 1)x2 + 2(n + 2)x + 4
)

.

We obtain the essential result.

Theorem 10. Suppose C(G) is the commuting graph of a group G. Then

If G = BT24, then H(C(G), x) = 204x2 + 72x + 24.

If G = BO48, then H(C(G), x) = 960x2 + 168x + 48.

If G = BI120, then H(C(G), x) = 6660x2 + 480x + 120.

Proof. Following GAP [47], Proposition 1 and using the similar computations as given in
Theorem 9, we can prove the required result.

5.2. Reciprocal Status Hosoya Polynomial

This section establishes the reciprocal status of the commuting graphs of certain finite
subgroups of SL(2,C). As we know that rs(w) = ∑v∈V(Γ),w 6=v

1
dis(w,v) is the reciprocal status

of a vertex w. So we get the following proposition.

Proposition 3. If z is a vertex of C(BD4n), then:

rs(z) =


4n− 1, when z ∈ Ω;
2n + 1, when z ∈ X2;
3n− 1, when z ∈ X3.

Proof. By applying Proposition 1, the vertex set of C(BD4n) is Ω ∪ X2 ∪ X3. Thus, when
v ∈ Ω, implies ec(v) = 1; additionally, we use the reciprocal status notion, then:

rs(v) =
(

1
1

)
{2n + 1 + 2n− 2} = 4n− 1.
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When v ∈ X2, implying ec(v) = 2, also, we use the reciprocal status concept, which
results in the following:

rs(v) = 3
(

1
1

)
+

(
1
2

){
2n− 2 +

(
4n
2
− 2
)}

= 2n + 1.

When v ∈ X3, then ec(v) = 2, further, we use the idea of reciprocal status, resulting in
the following:

rs(v) =
(

1
1

)
{2− 3 + 2n}+

(
1
2

)
(2n) = 3n− 1.

Theorem 11. Let C(BD4n) be the commuting graph of BD4n, for n ≥ 2. Then:

Hrs(C(BD4n)) =

(
2(n− 1)

2

)
x2(3n−1) + x2(4n−1) + (n)x2(2n+1) + 4(n− 1)x7n−2 + (4n)x6n.

Proof. Using Proposition 3, there are five different kinds of edges (u ∼ u, u ∼ v, v ∼ v,
v ∼ w, w ∼ w) in C(BD4n). As a result, Table 3 illustrates the edge partitioning and the
reciprocal status of its associated end vertices, when u = 6n

2 − 1, v = 4n− 1, w = 2n + 1.
By inserting the edge partition of C(BD4n) presented in Table 3, we get the reciprocal

status Hosoya polynomial.

Hrs(C(BD4n)) = ∑
Eu∼u

xu+u + ∑
Ev∼v

xv+v + ∑
Ew∼w

xw+w ∑
Eu∼v

xu+v + ∑
Ev∼w

xv+w

=

(
2(n− 1)

2

)
x2(3n−1) + (1)x2(4n−1) + (n)x2(2n+1)

+ 4(n− 1)x(3n−1)+(4n−1) + (4n)x(4n−1)+(2n+1)

=

(
2(n− 1)

2

)
x2(3n−1) + x2(4n−1) + (n)x2(2n+1) + 4(n− 1)x7n−2 + (4n)x6n.

Lemma 1. Let C(G) be the commuting graph of G. Then,

If G = BT24, then Hrs(C(BT24)) = x46 + 32x37 + 12x36 + 24x28 + 3x26.

If G = BO48, then Hrs(C(BO48)) = x94 + 72x74 + 32x73 + 24x72 + 45x54 + 24x52 + 6x50.

If G = BI120, then Hrs(C(BI120)) = x238 + 96x183 + 80x181 + 40x180 + 60x124 + 15x122.

Proof. Following GAP [47], Proposition 1 and using the similar computations as given in
Theorem 11, we can prove the required result.

6. Hosoya Index

The Hosoya index of the commuting graphs is examined in this section. On a graph
with n vertices, the complete graph Kn provides the maximum possible value of the Hosoya
index [48]. The Hosoya index of Kn, where n ≥ 2 is generally as follows:

1 +

n
2

∑
i=1

(
1
i

) i−1

∏
k=0

(
n− 2k

2

)
,

this may be observed concerning the whole set of non-void matchings stated in Table 4,
whereas δi refers the cardinality of i matchings, where 1 ≤ i ≤ n

2 .
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Table 4. The total number of non-void matchings in Kn.

Kn δ1 δ2 δ3 δ4 · · · δi

K2 (2
2)

K3 (3
2)

K4 (4
2)

1
2 (

4
2)(

2
2)

K5 (5
2)

1
2 (

5
2)(

3
2)

K6 (6
2)

1
2 (

6
2)(

4
2)

1
3 (

6
2)(

4
2)(

2
2)

K7 (7
2)

1
2 (

7
2)(

5
2)

1
3 (

7
2)(

5
2)(

3
2)

K8 (8
2)

1
2 (

8
2)(

6
2)

1
3 (

8
2)(

6
2)(

4
2)

1
4 (

8
2)(

6
2)(

4
2)(

2
2)

...
...

...
...

...
. . .

...

Kn (n
2)

1
2 (

n
2)(

n−2
2 ) 1

3 (
n
2)(

n−2
2 )(n−4

2 ) 1
4 (

n
2)(

n−2
2 )(n−4

2 )(n−6
2 ) · · · 1

i ∏i−1
k=0 (

n−2k
2 )

Theorem 12. For n ≥ 2, the Hosoya index of C(BD4n) is given as:

1 +
n

∑
i=1

δ1
i +

2

∑
i=1

δ2
i +

n

∑
i=1

δ3
i +

n+1

∑
i=2

δ4
i + δ5

2 +
n

∑
i=2

δ6
i +

2n

∑
i=2

δ7
i ,

where

δ1
i =

1
i

i−1

∏
k=0

(
2(n− k)

2

)
, δ2

1 = 4n, δ2
2 = 4n(n− 1

2
),

δ3
i =

(
n
i

)
, δ4

2 = 4n
(

2(n− 1)
2

)
,

δ4
i = 2n

{
2

i− 1

i−2

∏
k=0

(
2(n− k− 1)

2

)
+

2n− 1
i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)}
,

where 3 ≤ i ≤ n,

δ4
n+1 =

4n(n− 1
2 )

i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)
, δ5

2 = 8n(n− 1
2
), δ6

2 = 4n(n− 1),

δ6
i = 2n

{
2
(

n− 1
i− 1

)
+

(
n− 1
i− 2

)
+ 4(n− 1)

(
n− 2
i− 2

)}
,

where 3 ≤ i ≤ n,

δ7
i =

i−1

∑
j=1

1
j

j−1

∏
k=0

(
2(n− k)

2

)(
n

i− j

)
, where 2 ≤ i ≤ 2n.

Proof. By applying Proposition 1, the vertex set of C(BD4n) is V(C(BD4n)) = Ω ∪ X2 ∪ X3,
where X2 =

⋃n−1
=0 X 

2. Therefore, we have the subsequent kinds of edges in C(BD4n):

Type-1: v1 ∼ v2, for any v1, v2 ∈ X3,

Type-2: v1 ∼ v2, for any v1, v2 ∈ Ω,

Type-3: v1 ∼ v2, for any v1 ∈ X3, v2 ∈ Ω,

Type-4: v1 ∼ v2, for any v1 ∈ X2, v2 ∈ Ω,

Type-5: v1 ∼ v2, for any v1, v2 ∈ X j
2 ⊆ X2, where 0 ≤ j ≤ n− 1.

Therefore, there are seven kinds of matchings among the edges of C(BD4n), which
may be classified into the categories listed as:
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(δ1) Matchings amongst the Type-1, -2 as well as Type-3 edges,

(δ2) Matchings amongst the Type-4 edges,

(δ3) Matchings amongst the Type-5 edges,

(δ4) Matchings amongst the Type-1 and -4 edges,

(δ5) Matchings amongst the Type-3 and -4 edges,

(δ6) Matchings amongst the Type-4 and -5 edges,

(δ7) Matchings amongst the Type-1, -2, -3 and Type-5 edges.

The preceding approach generates all of the above-mentioned forms of matchings:

(δ1) As previously stated, the subgraph induced by X1 is complete, i.e., K2n. Thus, all
Type-1, -2, and Type-3 edges are identical to K2n edges, and all such matchings among
these edges are shown in Table 5, whereas δ1

i means the total number of matchings
having i order, where 1 ≤ i ≤ n.

(δ2) For i = 1, 2, suppose δ2
i denote the number of order i matchings.

For (δ2
1): The number of Type-4 edges, that is, 4n, which is equal to the number of

order 1 matchings. Therefore (δ2
1) = 4n.

For (δ2
2): Let v1 ∼ v2 = e be a Type-4 edge with v2 ∈ Ω and v1 ∈ X j

2 for a fixed
0 ≤ j ≤ n − 1. Additionally, the edge e, any Type-4 edge with one end in
X2 \ {v1} while the other end in Ω \ {v2} creates a matching of order 2. As a
consequence,

(δ2
2) =

1
2

8
(

n− 1
2

)
(n) = 4n

(
n− 1

2

)
.

Hence, in this case, no order greater than two matchings.

(δ3) Type-5 has n edges, none of which share a similar vertex. As a result, for each order i
there is a match such that 1 ≤ i ≤ n. Assume that (δ3

i ) denotes is the number of order
i matchings. Then, (δ3

i ) = (n
i ).

(δ4) Suppose (δ4
i ) refers the number of order i matchings, where 1 ≤ i ≤ n + 1. Then, in

this context, (δ4
1) = 0. There are no Type-1 edges connecting a vertex to any Type-4

edge in C(BD4n). Hence, we may get a matching in this case by joining each matching
of Type-1 edges to every matching of Type-4 edges. The edges of Type-1 are also the
edges of K2n−2, and there are (δ1

` ) matchings of order ` between them. Every (δ1
` )

can be determined in Table 5. Among the edges of Type-4, there are (δ2
1) = 4n and

(δ2
2) = 4n(n− 1

2 ) matchings having orders of 1 and 2, respectively.

As a result of the product rule, we obtain:

δ4
2 = δ2

1 × δ1
1 = 4nδ1

1 .

When 3 ≤ i ≤ n, then

δ4
i = δ2

1 × δ1
i−1 + δ2

2 × δ1
i−2,

= 4nδ1
i−1 + 4n

(
n− 1

2

)
δ1

i−2,

= 2n
(

2δ1
i−1 + 2

(
n− 1

2

)
δ1

i−2

)
.

Additionally, when i = n + 1, then

δ4
i = δ2

2 × δ1
i−2 = 4n

(
n− 1

2

)
δ1

n−1.
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(δ5) For i = 1, 2, (δ5
i ) denotes the total matchings of order i. Then (δ5

1) = 0. We can only
use matchings of order 1 among Type-4 edges in this situation. Otherwise, we will be
unable to use any Type-3 edge, since both types of edges often share vertices. So in this
situation, we can only get matchings having orders of 2. Suppose N = {e = v1 ∼ v2}
is the order 1 matching between the Type-4 edges with v1 ∈ X j

2, for 0 ≤ j ≤ n− 1.
Then, any non-adjacent Type-3 edge to v2 may result in the construction of an order
2 matching. Given the existence of 2n− 2 such Type-3 edges, any of which may be
employed in any of the 4n order 1 matching among Type-4 edges, we get:

(δ5
2) = 8n(n− 1).

(δ6) For 1 ≤ i ≤ n, (δ6
i ) represent the number of order i matchings. Then (δ6

1) = 0, to
identify matching, both matchings of orders 1 and 2 among the edges of Type-4,
and any matching of order ` among the edges of Type-5 will be evaluated, where
1 ≤ ` ≤ n− 1. Thus by counting these matchings using the product rule, we obtain:

δ6
2 = 4× 1× n×

(
n− 1

1

)
= 4n(n− 1),

and for 3 ≤ i ≤ n :

δ6
i = 2n

{
2
(

n− 1
i− 1

)
+

(
n− 1
i− 2

)
+ 4(n− 1)

(
n− 2
i− 2

)}
.

(δ7) Considering that, the Type-1, -2, and Type-3 edges are also the K2n edges generated
by X1, we can use them to detect matchings between the edges of Type-5 and K2n.
Suppose δ7

i is the number of order i matchings. Then, δ7
i = 0. Due to the fact that

no edge of Type-5 shares a vertex with an edge of K2n, this equates to every pair of
Type-5 edges matching. Thus, every matching of the edges of K2n can also be used to
find a match in this case. Since, there exist δ1

κ matchings of the cardinality 1 ≤ κ ≤ n
amongst the K2n edges, as listed in Table 5, also δ3

 = (n
) matchings of order 1 ≤  ≤ n

amongst the Type-5 edges. Therefore, the highest order of a matching in this situation
is 2n. Consequently, we may determine δ7

i , for 2 ≤ i ≤ 2n as follows:

δ7
2 = δ1

1δ3
1 ,

δ7
3 = δ1

1δ3
2 + δ1

2δ3
1 ,

δ7
4 = δ1

1δ3
3 + δ1

2δ3
2 + δ1

3δ3
1 ,

...

δ7
i =

i−1

∑
=1

δ1
 δ3

i−.

As a result, by the sum rule, the Hosoya index of C(BD4n) is as follows:

1 +
7

∑
i=1

(δi) = 1 +
n

∑
i=1

δ1
i +

2

∑
i=1

δ2
i +

n

∑
i=1

δ3
i +

n+1

∑
i=2

δ4
i + δ5

2 +
n

∑
i=2

δ6
i +

2n

∑
i=2

δ7
i ,

where
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δ1
i =

1
i

i−1

∏
k=0

(
2(n− k)

2

)
, δ2

1 = 4n, δ2
2 = 4n

(
n− 1

2

)
, δ3

i =

(
n
i

)
, δ4

2 = 4n
(

2(n− 1)
2

)
,

δ4
i = 2n

{
2

i− 1

i−2

∏
k=0

(
2(n− k− 1)

2

)
+

2n− 1
i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)}
, for 3 ≤ i ≤ n,

δ4
n+1 =

2n(2n− 1)
i− 2

i−3

∏
k=0

(
2(n− k− 1)

2

)
, δ5

2 = 8n(n− 1
2
), δ6

2 = 4n(n− 1),

δ6
i = 2n

{
2
(

n− 1
i− 1

)
+

(
n− 1)
i− 2

)
+ 4(n− 1)

(
n− 2
i− 2

)}
, for 3 ≤ i ≤ n,

δ7
i =

i−1

∑
=1

1


−1

∏
k=0

(
2(n− k)

2

)(
n

i− 

)
, for 2 ≤ i ≤ 2n.

Table 5. The total non-void matchings in K2n.

K2n δ1
1 δ1

2 δ1
3 δ1

4 · · · δ1
i

K2 (2
2)

K4 (4
2)

1
2 (

4
2)(

2
2)

K6 (6
2)

1
2 (

6
2)(

4
2)

1
3 (

6
2)(

4
2)(

2
2)

K8 (8
2)

1
2 (

8
2)(

6
2)

1
3 (

8
2)(

6
2)(

4
2)

1
4 (

8
2)(

6
2)(

4
2)(

2
2)

...
...

...
...

...
. . .

...

K2n−1 (2n
2 )

1
2 (

2n
2 )(

2n−2
2 ) 1

3 (
2n
2 )(

2n−2
2 )(2n−4

2 ) 1
4 (

2n
2 )(

2n−2
2 )(2n−4

2 )(2n−6
2 ) · · · 1

i ∏i−1
k=0 (

2(n−k)
2 )

7. Conclusions

This paper aimed to investigate the structural features of the commuting graphs of the
finite non-abelian subgroups of SL(2,C). The special linear groups and their finite subgroups
are well-known algebraic structures that have contributed significantly to the theory of molec-
ular vibrations and electron structures. We studied an algebraic characteristic, specifically
binary dihedral groups, and their related chemical structure (commuting graphs), in connection
with the finite subgroups of SL(2,C). The precise formulae of the reciprocal complementary
Wiener index, Randić index, Harary index, harmonic index, geometric-arithmetic index and
the arithmetic-geometric index, Schultz molecular topological index, the Hosoya polynomial
and its reciprocal form, the Hosoya index, and the atomic-bond connectivity indices were used
to obtain several degree-based and distance-based characteristics of the respective graphs.

In this study, we attempted to explore numerous topological indices of the commuting
graphs of certain finite groups. Although, the problem of computing the topological indices
of the commuting graph or the commuting involution graph of any finite group remains
open and unsolved. In chemistry, an algebraic structure is critical for forming chemical
structures and investigating different chemical characteristics of chemical compounds
included inside these structures. All indices are numerical values, and this study contributes
a novel chemical structure to the theory of topological indices. This could help predict the
bioactive molecules using the physicochemical parameters examined in QSPR.
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