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Abstract: Voltage sag is the most serious power quality problem in the three-phase symmetrical
power system. The influence of multiple factors on the voltage sag level and low computational
efficiency also pose challenges to the prediction of residual voltage amplitude of voltage sag. This
paper proposes a voltage sag amplitude prediction method based on data fusion. First, the multi-
dimensional factors that influence voltage sag residual voltage are analyzed. Second, these factors
are used as input, and a model for predicting voltage sag residual voltage based on data fusion is
constructed. Last, the model is trained and debugged to enable it to predict the voltage sag residual
voltage. The accuracy and feasibility of the method are verified by using the actual power grid data
from East China.

Keywords: voltage sag; residual voltage prediction; data fusion

1. Introduction

Voltage sag is an inevitable short-term disturbance phenomenon that appears dur-
ing power system operation, and it has become the most serious power quality problem.
Voltage sag affects voltage quality and causes considerable economic losses [1,2]. The influ-
encing degree of voltage sag mainly depends on the residual voltage amplitude. Accurate
prediction of the residual voltage of the voltage sag can help in clearly understanding the
impact of voltage dip on equipment and users. Furthermore, it can provide the basis for
users to prevent or control voltage sag, which is very important for reducing the impact of
voltage sag [3].

In refs. [4,5], the authors used the Monte Carlo method to express the uncertainty of
fault occurrence, including fault type, fault location, etc., and subsequently predicted the
probability distribution of voltage sag residual voltage amplitude. The Monte Carlo method
cannot consider the influence of the actual environment on the prediction.The authors in [6]
pointed out that the influences of generator scheduling and time-varying failure rate on the
random prediction of voltage sag should be considered during the voltage sag prediction
process. In ref. [7], the authors proposed an online algorithm for residual voltage amplitude
prediction based on the harmonic footprint and constructed a general prediction function
suitable for all voltage disturbances.

A few methods use monitoring data to predict the voltage sag index. In ref. [8], the
authors used the monitoring data to analyze and discuss the randomness of voltage sag.
Furthermore, the authors described the voltage sag as a random process and predicted a
sag event. In ref. [9], the authors used measured data to predict the voltage sag frequency
index of non-monitoring points. The authors in [10] used homologous aggregation and
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fuzzy c-means theory to reduce the redundancy of the measured data and predict the
residual voltage. The aforementioned prediction methods based on monitoring data need
long monitoring times and low amounts of monitoring data, which lead to poor prediction
accuracies.

This paper proposes a data-driven method for voltage sag residual voltage prediction
based on data fusion. The original contributions of this study are summarized as follows:

(1) This paper comprehensively considers the factors influencing the grid and user sides
in order to predict voltage sag residual voltage. The corresponding input parameters
are selected from different kinds of data and the factors that influence the residual
voltage are considered more comprehensively than the Monte Carlo-based method.

(2) This paper builds a prediction method based on data fusion to predict the residual
voltage. The amount of data is increased through data fusion, and the problems of
low prediction accuracy and low amount of available monitoring data are improved.

(3) This paper presents a residual voltage prediction method for voltage sag based on
data fusion, which can be integrated into power-quality-monitoring systems and
used for the prevention, evaluation, and treatment of voltage sag. This method can
provide users with residual voltage information and help them avoid voltage sag and
formulate reasonable voltage sag prevention or treatment measures. The accuracy
and efficiency of the method are verified using actual data, which gives it a strong
engineering application value.

The remainder of this paper is organized as follows. The data sources of voltage sag
residual voltage are described in Section 1. The residual voltage prediction method based
on the improved gradient descent method is presented in Section 2. Case studies and
analyses based on real power system data are shown in Section 3. The paper is concluded
in Section 4.

2. Factors and Data Sources of Voltage Sag Residual Voltage
2.1. Influencing Factors of Voltage Sag Residual Voltage

Motor startup and other factors can cause voltage sag; however, these types of voltage
sag are often not serious and existing measures can effectively eliminate their impact [11].
The main cause of voltage sag is a power grid fault [12]. Therefore, this paper mainly
considers the impact of power grid faults during the voltage sag residual voltage prediction
process.

After a grid fault occurs, the residual voltages at different nodes have varying ampli-
tudes under different grid operation modes, and the impacts on different nodes are also
different. Therefore, the influence of grid operation mode should also be considered in
the prediction of the residual voltage of voltage sag. In addition, voltage sags are closely
related to users. Different users are affected differently depending on the types of sags
transmitted to them. Therefore, the influence of the user side should be considered in the
prediction of voltage sag residual voltage amplitude. In summary, voltage sag residual
voltage is related to fault conditions, grid operation mode, and the influence of the user
side. The above factors are considered as the factors influencing the voltage sag residual
voltage and used for selecting relevant data for voltage sag residual voltage prediction.

2.2. Data Sources

Voltage sag data can be obtained by the Monte Carlo random fault simulation method
as follows: First, the fault parameters, such as fault type, fault distance, fault line, etc., are
used as random variables and the simulation calculation is carried out by the Monte Carlo
method. Second, the sag level of each bus in the area is obtained. Last, the simulated data
are obtained. The simulated data can reflect the influence of system operation mode and
fault on residual voltage, but cannot directly reflect the influence of external factors such as
weather.

When a voltage sag occurs in the power grid, the power quality monitoring system,
energy management system, user power consumption information collection system, and
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other systems collect a large number of records. There are many kinds of data related to
voltage sag, and the relationship between them is complicated. In this paper, the relevant
factors affecting the voltage sag residual voltage are obtained from the above multi-source
system. The monitoring data not only reflect the influence of system operation mode
and power grid faults, but also reflect the influence of external environmental factors and
user-side influence. However, the data require long-term monitoring and consist of a small
number of samples.

In summary, for the voltage sag residual voltage prediction, the data attributes re-
flecting the factors that influence the voltage sag residual voltage are selected from the
simulated and measured data. These factors are shown in Table A1 of Appendix A.

3. Voltage Sag Residual Voltage Prediction Method
3.1. Multiple Regression Model and Gradient Descent Method

Voltage sag residual voltage is affected by many factors. Therefore, this paper uses
the multiple regression model to characterize the effects of various factors on voltage sag
residual voltage. This model can be expressed as follows:

y = f (x1, x2, x3 . . . , θ1, θ2, θ3 . . . ) (1)

where y is the dependent variable, x1, x2, x3 . . . denote the independent variables, and θ1,
θ2, θ3 . . . represent the regression coefficients corresponding to x1, x2, x3 . . . , respectively.

The gradient descent method is a type of line search framework algorithm with
negative gradient as the search direction [13]. In order to minimize the loss function, the
optimization model parameters are obtained iteratively until convergence is attained, and
the best-matching target task is obtained.

The basic calculation process is as follows: Solving the model parameters for the loss
function H(x1, x2 . . . ) can transform it into an optimization problem of min H(x1, x2 . . . ).
The calculation of the gradient g(x1, x2 . . . ) is shown in (2). It is straightforward to conclude
that the negative gradient direction −∇H is the fastest direction of decrease of the loss
function. The iterative format of the gradient descent method is given by (3). Equations (2)
and (3) shown below are iteratively used to reduce the loss function and approach the
minimum point, and the parameters of the optimization model can be obtained after
convergence.

g(x1, x2, x3 · · ·) = ∇H (2)

xk+1 = xk − skgk (3)

In (3), k is the number of iterations, sk is the kth iteration step size, and gk is the kth
iteration gradient size.

3.2. Multiple Regression Model Based on Improved Gradient Descent Method
3.2.1. Model Parameters

In order to realize the voltage sag residual voltage prediction using data fusion, this
paper constructs a multiple regression model based on the improved gradient descent
method. This improvement requires the construction of multiple regression models for the
two types of data. The simulated data model is represented by Ds = f (x), and the input
parameter is the attribute name corresponding to the simulated data in Table A1, including
the common part of the two types of data. The model of the measured data is represented
by Dm = g(y), and the input parameter is the attribute name corresponding to the measured
data in Table A1, including the common part of the two types of data. The output results of
Ds and Dm are the residual voltage amplitudes, expressed by Vs and Vm, respectively.

As the duration of sag mainly depends on the setting value of the protection device [10],
it is not predicted in this paper. It can be observed from Table A1 that there is a common
input data attribute with a consistent description in the simulated and measured data.
This part is represented by the set Ashared in this paper, and the corresponding regression
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coefficient is represented by θshared. The non-common part attributes of the two types
of data are represented by As and Am, and the corresponding regression coefficients are
represented by θs and θm, respectively. The subscripts s and m represent the simulated
and measured data models, respectively. During the process of searching for the optimal
model parameters using the improved gradient descent method, the loss functions Hs(x)
and Hm(z) of the two models are given as

Hs(x) =
1

2n ∑n
i=1 ( f (xi)−Vs(i))

2 (4)

Hm(z) =
1

2h ∑h
j=1 (g

(
zj
)
−Vm(j))2 (5)

where n and h are the simulated and measured data sample capacities, respectively; xi and
Vs(i) correspond to the input and output of the ith simulation data sample, respectively;
and zj and Vm(j) correspond to the input and output of the jth measured data sample,
respectively.

3.2.2. Model Update Strategy

This paper presents an improved gradient descent method. When the output of the
two models is the residual voltage amplitude, the functions of Ashared in both Ds and Dm are
identical. Therefore, considering the simulated and measured data as the source and target
domains, respectively, the prior knowledge obtained by simulation in Ds is migrated to
Dm for updating θshared. After completing the migration, the updated θshared is substituted
back into the original model and the updated θs and θm are recalculated to complete the
single-learning process. At this time, Dm not only reflects the role of the factors influencing
the voltage sag residual voltage from the information point of view, but also reveals the
impacts of relevant factors on the voltage sag residual voltage from the physical point of
view. The model realizes physical–information integration through knowledge migration
and improves its information space and learning performance.

The traditional gradient descent method uses a constant, sk, whose value is obtained
through trial and error. This method has the following problems: (1) The learning degree
of the model is different in different stages of training; and (2) It takes a certain amount of
time to obtain the ideal value of sk by multiple attempts.

In view of the above problems, this paper considers improving the step update strategy
of the model. The Armijo–Goldstein criterion is introduced into the step size update process.
There are two formulas for the Armijo–Goldstein criterion, which can be expressed by (6)
and (7). The value of sk satisfying (6) and (7) is called an acceptable step size factor. After
the introduction of the Armijo–Goldstein criterion, sk can be automatically updated to an
acceptable step size factor and the algorithm will have superlinear convergence.

f (xk + skdk) ≤ f (xk) + skρgk
Tdk (6)

f (xk + skdk) ≥ f (xk) + sk(1− ρ)gk
Tdk (7)

In (6) and (7), f (x) is the objective function, dk is the search direction, gk is the gradient
size, and ρ ∈ (0, 0.5) to ensure the superlinear convergence of the algorithm.

3.3. Overall Process

To summarize, the process of voltage sag residual voltage prediction based on data
fusion is as follows:

(1) Acquire the measured data that can reflect the factors influencing the residual voltage
from the multi-source system. The simulated data are obtained by a random sag
simulation calculation based on the Monte Carlo method.

(2) Carry out data preprocessing on the simulated and measured data to adapt them to
the model, and use the above data as the model input.
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(3) Build a multiple regression model based on the improved gradient descent method.
During the iterative process of the gradient descent method, the model updates the
model parameters and adaptively adjusts the step size based on knowledge transfer
and the Armijo–Goldstein criterion until convergence is reached.

(4) After the training is completed, the model learns the knowledge from the physical
and information aspects and can predict the residual voltage amplitude.

Figure 1 shows the overall flow chart of the voltage sag residual voltage prediction
method proposed in this paper.
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4. Case Study
4.1. Data Source and Input

This paper selects 57 voltage sag measured data samples from January 2021 to Decem-
ber 2021 in a city in eastern China. The simulated data are obtained using Monte Carlo
random simulations. The simulation calculation process is mainly realized by Bonnevillr
Power Administration (BPA) [14], which is power system simulation software commonly
used by power companies. The region selected for study has long been affected by volt-
age sags, and there are many industrial users that have a large proportion of sensitive
equipment in the region, which is representative for this study.

4.2. Residual Voltage Prediction
4.2.1. Prediction Results

The simulated and measured data are obtained according to Table 1 and are subse-
quently preprocessed. In the measured data, 44 samples are randomly selected as the
training set, and the remaining 13 samples are used as the test set. The simulation dataset
for knowledge transfer consists of 5280 data points obtained from the BPA-based Monte
Carlo random simulation calculation.

The model uses root-mean-square error (RMSE) and mean absolute error (MAE) as
the evaluation metrics. A total of 44 measured training data points and 5280 simulated
training data points are input into the model for training. After training, the RMSE of the
model on the training set is 0.1678, the MAE is 0.1377, and the model is able to predict the
residual voltage amplitude.

RMSE =

√
1
n ∑n

i=1 (xi − x′i)
2 (8)

MAE =
1
n ∑n

i=1

∣∣xi − x′i
∣∣ (9)

In (8) and (9), i is the number of samples, xi is the actual value, and xi
′

is the predicted
value.
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Table 1. Evaluation metric for each method on the test set.

Proposed Method M1 M2

RMSE 0.1475 0.4228 0.2526
MAE 0.1379 0.3646 0.1801

After the training, the method is tested on the test set data to verify its generalization
ability. In order to evaluate the model performance, it is compared with the following
methods: 1. The traditional gradient descent method [13], denoted as M1 here; and 2. A
support vector machine [15] (SVM, rbf-kernel, ε = 0.0198), denoted as M2 here. Figure 2
shows the prediction results of each method, Table 1 shows the evaluation indices of each
method and Table 2 shows the relative error between the predicted and actual values of
each method.
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Table 2. Relative error between the predicted and real values of each method.

Sample

Method
Proposed Method (%) M1 (%) M2 (%)

1 24.43 −63.86 117.10
2 −19.35 −100.00 −4.25
3 5.34 5.53 16.42
4 −9.67 13.90 2.72
5 90.67 −100.00 136.10
6 −17.48 −69.65 −4.33
7 33.31 −100.00 116.63
8 −24.24 −68.46 −4.31
9 89.75 218.50 188.14
10 33.82 130.08 11.42
11 22.46 28.67 −6.15
12 −17.15 15.24 −3.86
13 49.25 207.83 154.51

The above results show that the RMSE and MAE of the proposed method are better
than those of the other two methods. In addition, it can be observed from Table 2 that
the relative prediction error of the method proposed in this paper is smaller than those
of the other two methods. The method M1 has a large overall error and a large deviation
from the error. At the same time, many output results of the method exceed the upper
and lower limits of voltage amplitude and are limited by the threshold, indicating its poor
convergence. Compared with M1, the output results obtained by the proposed method
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do not exceed the voltage amplitude limit. The convergence is improved and the error is
considerably reduced.

The model structure of M2 is more complex than that of the proposed method. How-
ever, its evaluation metric is still slightly inferior compared to that of the proposed method.
Although the complex model structure adopted in M2 can improve the error to a certain
extent, the problem of small sample space still significantly impacts the model performance.
The method proposed in this paper uses data fusion to improve the updating strategy
of the model in M1 and enhance the data mining performance. Therefore, the proposed
method achieves better results compared to M2.

4.2.2. Number of Iterations

Under the same convergence conditions, the numbers of iterations between the pro-
posed method and M1 are compared in Table 3. The number of iterations of M2 is not
compared here because of the different training methods.

Table 3. Duration and the number of iterations of single training.

Method Iterations

Proposed method 16,101
M1 310,780

Compared with M1, the number of iterations of the proposed method is significantly
reduced. This is because the proposed method modifies the update mode of the model
parameters and step size through data fusion. This modification improves the learning
performance of the training process and accelerates the learning process. Thus, the number
of iterations is significantly reduced.

In summary, the accuracy of this method is better than that of the other two meth-
ods, and the convergence performance is also significantly improved compared with M1.
Therefore, in the actual power system, this method can predict the residual voltage of the
possible voltage sag at fixed intervals by collecting relevant data. This prediction can help
users to prevent and control the voltage sag and reduce economic losses.

5. Conclusions

In this paper, a voltage sag residual voltage data-driven prediction method based on
data fusion was proposed and verified. The following conclusions were obtained:

(1) This method analyzed the relevant factors affecting the residual voltage of voltage
sag from multiple dimensions. The relevant influencing factors were selected as input
in order to consider the factors influencing the residual voltage of voltage sag more
comprehensively.

(2) This method considered different data characteristics and realized the prediction
of voltage sag residual voltage through data fusion. Consequently, the prediction
accuracy and convergence rate were improved.

(3) The method was convenient and practical, which was verified by examples. In the
future, it can be used to predict the residual voltage of voltage sag and assist the
analysis of voltage sag level and consequences.
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Abbreviations

BPA Bonnevillr Power Administration
RMSE Root-mean-square error
MAE Mean absolute error
SVM Support vector machine

Nomenclature

The subscript ‘s’ represents the simulation data model and the subscript ‘m’ represents
the measured data model.

Ds Simulated data model
Dm Measured data model
As Unique parameters of simulated data model
Am Unique parameters of measured data model
Ashared Common parameters of simulated and measured data model
θs Unique regression coefficient of simulated data model
θm Unique regression coefficient of measured data model
θshared Common regression coefficient of simulated and measured data model
Hs(x) Loss function of simulated data model
Hm(z) Loss function of measured data model
gk Gradient of the kth iteration
sk Step size of the kth iteration

Appendix A

Table A1. Influencing factors of voltage sag residual voltage.

Data Sources Attribute Name

Simulated data
Total load

Fault impedance

Measured data

Weather
Season
Time

Power user type
Proportion of sensitive load

Line status
Fault cause

Common part of simulated and measured data

Monitoring bus
Monitoring bus voltage level

Duration of voltage sag
Fault type

Fault phase
Fault location

Distance-to-fault
Residual Voltage
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