Analysis of Solutions to a Parabolic System with Absorption
Abstract
:1. Introduction and Main Results
- (i)
- If , and a and b are sufficiently large, then all non-negative solutions are global and uniformly bounded.
- (ii)
- If or , then all non-negative solutions are global.
- (iii)
2. Comparison Principle
3. Global Existence and Blow-Up
4. Blow-Up Rate
5. Conclusions and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bedjaoui, N.; Souplet, P. Critical blowup exponents for a system of reaction-diffsion equations with absorption. Z. Angew. Math. Phys. 2002, 53, 197–210. [Google Scholar] [CrossRef]
- Bebernes, J.; Eberly, D. Mathematical Problems From Combustion Theory. In Applied Mathematical Sciences; Springer: Berlin, Germany, 1989. [Google Scholar]
- Pao, C.V. Nonlinear Parabolic and Elliptic Equations; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- Rothe, F. Global Solutions of Reaction-diffusion Systems, Lecture Notes in Mathematics 1072; Springer: Berlin, Germany, 1984. [Google Scholar]
- Smoller, J. Shock Waves and Reaction-Diffusion Equations; Springer: Berlin, Germany, 1983. [Google Scholar]
- Escobedo, M.; Herrero, M.A. A semilinear parabolic system in a bounded domain. Ann. Mat. Pura Appl. 1993, 165, 315–336. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Kurdyumov, S.P.; Samarskii, A.A. A parabolic system of quasi-linear equations I. Differ. Equ. 1983, 19, 1558–1571. [Google Scholar]
- Galaktionov, V.A.; Kurdyumov, S.P.; Samarskii, A.A. A parabolic system of quasi-linear equations II. Differ. Equ. 1985, 21, 1049–1062. [Google Scholar]
- Levine, H.A. The role of critical exponents in blowup theorems. SIAM Rev. 1990, 32, 262–288. [Google Scholar] [CrossRef] [Green Version]
- Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P. Blow-Up in Quasilinear Parabolic Equations; Walter de Gruyter: New York, NY, USA, 1995. [Google Scholar]
- Wang, M.X. Note on a quasilinear parabolic system. Nonlinear Anal. 1997, 29, 813–821. [Google Scholar] [CrossRef]
- Deng, W.B. Global existence andfinite time blow up for a degenerate reaction-diffusion system. Nonlinear Anal. 2005, 60, 977–991. [Google Scholar] [CrossRef]
- Du, W.; Li, Z. Asymptotic analysis for reaction-diffusion equations with absorption. Bound. Value Probl. 2012, 2012, 84. Available online: https://link.springer.com/content/pdf/10.1186/1687-2770-2012-84.pdf (accessed on 25 May 2022). [CrossRef] [Green Version]
- Xiang, Z.Y.; Chen, Q.; Mu, C.L. Blow-up rate estimates for a system of reaction-diffusion equations with absorption. J. Korean Math. Soc. 2007, 44, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yin, J.; Wang, L. Complicated asymptotic behavior of solutions for the fourth-order parabolic equation with absorption. Appl. Math. Lett. 2021, 2, 107278. [Google Scholar] [CrossRef]
- Liu, D.; Yang, L. Extinction phenomenon and decay estimate for a quasilinear parabolic equation with a nonlinear source. Adv. Math. Phys. 2021, 2021, 5569043. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, T. Extinction for a p-Laplacian equation with gradient source and nonlinear boundary condition. Appl. Anal. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Gladkov, A. Initial boundary value problem for a semilinear parabolic equation with absorption and nonlinear nonlocal boundary condition. Lith. Math. J. 2017, 57, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Dao, N. Instantaneous shrinking of the support of solutions to parabolic equations with a singular absorption. Rev. Real Acad. Cienc. Exactas FÍSicas Nat. Ser. MatemÁTicas 2020, 114, 165. [Google Scholar] [CrossRef]
- Palencia, J. Invasive-invaded system of non-Lipschitz porous medium equations with advection. J. Biomath. Engl. Ed. 2021, 14, 29. [Google Scholar] [CrossRef]
- Fila, M.; Quittner, P. The blowup rate for a semilinear parabolic system. J. Math. Anal. Appl. 1999, 238, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Gmira, A.; Veron, L. Large time behavior of the solutions of a semilinear parabolic equation in Rn. J. Differ. Equ. 1984, 53, 258–276. [Google Scholar] [CrossRef]
- Souplet, P. Blow-up in nonlocal reaction-diffusion equations. SIAM J. Math. Anal. 1998, 29, 1301–1334. [Google Scholar] [CrossRef]
- Wang, L.W. The blowup for weakly coupled reaction-diffusion systems. Proc. Am. Math. Soc. 2000, 129, 89–95. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.X.; Xie, C.H. A nonlinear degenerate diffusion equation not in divergence form. Z. Angew. Math. Phys. 2000, 51, 149–159. [Google Scholar] [CrossRef]
- Xu, X.H.; Fang, Z.B.; Yi, S. Extinction and decay estimates of solutions for a porous medium equation with nonlocal source and strong absorption. Bound. Value Probl. 2013, 2013, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, Y. Extinction for the super diffusion equation with a nonlocal absorption and a gradient source. Appl. Math. Lett. 2016, 61, 163–166. [Google Scholar] [CrossRef]
- Zheng, S.N. Global existence andglobal nonexistence of solutions to a reaction-diffusion system. Nonlinear Anal. 2000, 39, 327–340. [Google Scholar] [CrossRef]
- Anderson, J.R. Local existence and uniqueness of solutions of degenerate parabolic equations. Commun. Partial Differ. Equ. 1991, 16, 105–143. [Google Scholar] [CrossRef]
- Aronson, D.G.; Crandall, M.G.; Peletier, L.A. Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal. 1982, 6, 1001–1022. [Google Scholar] [CrossRef]
- Anderson, J.R.; Deng, K. Global existence for degenerate parabolic equations with a non-local forcing. Math. Methods Appl. Sci. 1997, 20, 1069–1087. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Wu, J.; Liu, W. Analysis of Solutions to a Parabolic System with Absorption. Symmetry 2022, 14, 1274. https://doi.org/10.3390/sym14061274
Lu H, Wu J, Liu W. Analysis of Solutions to a Parabolic System with Absorption. Symmetry. 2022; 14(6):1274. https://doi.org/10.3390/sym14061274
Chicago/Turabian StyleLu, Haihua, Jiayuan Wu, and Wenjun Liu. 2022. "Analysis of Solutions to a Parabolic System with Absorption" Symmetry 14, no. 6: 1274. https://doi.org/10.3390/sym14061274
APA StyleLu, H., Wu, J., & Liu, W. (2022). Analysis of Solutions to a Parabolic System with Absorption. Symmetry, 14(6), 1274. https://doi.org/10.3390/sym14061274