Discrete and Continuous Symmetries of Stratified Flows Past a Sphere
Abstract
:1. Introduction
2. A Brief History of Flow around a Sphere Studies
3. System of Stratified Fluid Mechanics Equations
4. Visualization of a Stratified Flow around a Sphere
5. Laboratory Experiment Technique
6. Laboratory Studies of Stratified Flows
7. Rectangular Cross-Section of the Density Wake Past a Sphere at Low Froude Number
8. Cylindrical Shape of the Wake Past a Sphere at High Froude Number
9. Results and Discussion
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Popov, N.I.; Fedorov, K.N.; Orlov, V.M. Sea Water; Nauka: Moscow, Russia, 1979; 330p. (In Russian) [Google Scholar]
- Franklin, B. Behavior of oil on water. Letter to J. Pringle. In Experiments and Observations on Electricity; R. Cole: London, UK, 1769; pp. 142–144. [Google Scholar]
- Vasiliev, L.A. Shadow Methods; Nauka: Moscow, Russia, 1968; 400p. (In Russian) [Google Scholar]
- Settles, G.S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media; Springer Science & Business Media: Berlin, Germany, 2001; 376p. [Google Scholar]
- Chashechkin, Y.D.; Prokhorov, V.E. Visualization and echo sounding of stratified fluid disturbances in front of and behind a vertical plate. Dokl. Phys. 2020, 65, 178–182. [Google Scholar] [CrossRef]
- Pao, H.-P.; Lai, R.Y.; Schemm, C.E. Vortex trails in stratified fluids. J. Hopkins APL Techn. Digest 1982, 3, 12–18. [Google Scholar]
- Strutt, J.W.; Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 1883, 4, 170–177. [Google Scholar]
- Chashechkin, Y.D. Foundations of engineering mathematics applied for fluid flows. Axioms 2021, 10, 286. [Google Scholar] [CrossRef]
- Prandtl, L. The Essentials of Fluid Dynamics; Blackie & Son Ltd.: London, UK, 1953; 452p. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics. V.6. Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1987; 560p. [Google Scholar]
- Mossa, M. The recent 500th anniversary of Leonardo da Vinci’s death: A reminder of his contribution in the field of fluid mechanics. Environ. Fluid Mech. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Van Dyke, M. An Album of Fluid Motion; Parabolic Press, Inc.: Stanford, CA, USA, 1982; 176p. [Google Scholar]
- Kochin, N.E.; Kibel, I.A.; Rose, N.V. Theoretical Hydromechanics. Part 1; OGIZ. Gostekhizdat: Leningrad-Moscow, USSR, 1948; 728p. (In Russian) [Google Scholar]
- Birkhoff, G. Hydrodynamics. A Study in Logic, Fact and Similitude, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1960; 184p. [Google Scholar]
- Bernoulli, D. Hydrodynamica, Sive de Viribus et Motibus Fluidorum Commentarii, Opus Academicum; Sumptibus, J.R., Ed.; Argentorati: Dulseckeri, The Netherlands, 1738; 304p. [Google Scholar]
- Robins, B. New Principles of Gunnery; J. Nourse: London, UK, 1742; 160p. [Google Scholar]
- Euler, L. Neue Grundsätze der Artillerie. Aus dem Englischen des Herrn Benjamin Robins Übersetzt und mit Vielen Anmerkungen Versehen; Haude Königl. und der Academie der Wissenschaften: Berlin, Germany, 1753; 480p. [Google Scholar]
- D’Alembert, J.-L.R.; la Marquis de Condorcet, J.M.A.; l’abbe Bossut, C. Nouvelles Expériences sur la Résistance des Fluids; C.-A. Jombert: Paris, France, 1777; 232p. [Google Scholar]
- D’Alembert, J.-L.R. Réflexions sur la Cause Générale des Vents; David: Paris, France, 1747; 372p. [Google Scholar]
- Euler, L. Principes généraux du mouvement des fluids. Mémoires L’académie Des. Sci. Berl. 1757, 11, 274–315. [Google Scholar]
- Fourier, J.B.J. Théorie Analytique de la Chaleur; Firmin Didot Père et Fils: Paris, France, 1822; 639p. [Google Scholar]
- Navier, C.-L.-M.-H. Mémoire sur les Lois du Mouvement des Fluids. Mém. l’Acad. Sci. 1822, 6, 389–417. [Google Scholar]
- Stokes, G.G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic bodies. Trans. Camb. Philos. Soc. 1845, 8, 287–305. [Google Scholar]
- Stokes, G.G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Philos. Soc. 1850, 9, 1–141. [Google Scholar]
- Chashechkin, Y.D. Schlieren visualization of stratified flow around a cylinder. J. Visualiz. 1999, 1, 345–354. [Google Scholar] [CrossRef]
- Müller, P. The Equations of Oceanic Motions; CUP: Cambridge, UK, 2006; 302p. [Google Scholar]
- Chashechkin, Y.D.; Zagumennyi, I.V. 2D hydrodynamics of a plate: From creeping flow to transient vortex regimes. Fluids 2021, 6, 310. [Google Scholar] [CrossRef]
- Monin, A.C.; Yaglom, A.M. Statistical Fluid Mechanics–Vol. 1: Mechanics of Turbulence, 1st ed.; The MIT Press: Boston, MA, USA, 1971; 782p. [Google Scholar]
- Chashechkin, Y.D.; Kistovich, A.V. Classification of three-dimensional periodic fluid flows. Dokl. Phys. 2004, 49, 183–186. [Google Scholar] [CrossRef]
- Lighthill, J. Waves in Fluids; CUP: Cambridge, UK, 2001; 524p. [Google Scholar]
- Makarov, S.A.; Chashechkin, Y.D. Apparent internal waves in a fluid with exponential density distribution. J. Appl. Mech. Tech. Phys. 1981, 22, 772–779. [Google Scholar] [CrossRef]
- Smirnov, S.A.; Chashechkin, Y.D. Internal lee(joined) waves at an arbitrary orientation of the incident flow. Izv. Atmos. Ocean. Phys. 1998, 43, 475–482. [Google Scholar]
- Scase, M.; Dalziel, S. Internal wave fields generated by a translating body in a stratified fluid: An experimental comparison. J Fluid Mech. 2006, 564, 305–331. [Google Scholar] [CrossRef] [Green Version]
- Chashechkin, Y.D.; Gumennik, E.V.; Sysoeva, E.Y. Transformation of a density field by a three-dimensional body moving in a continuously stratified fluid. J. Appl. Mech. Tech. Phys. 1995, 36, 19–29. [Google Scholar] [CrossRef]
- Phillips, O.M. On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. 1970, 17, 435–443. [Google Scholar] [CrossRef]
- Chashechkin, Y.D. Hydrodynamics of a sphere in a stratified fluid. Fluid Dyn. 1989, 24, 1–7. [Google Scholar] [CrossRef]
- Greenslade, M. Drag on a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 2000, 418, 339–350. [Google Scholar] [CrossRef]
- Scase, M.; Dalziel, S. Internal wave fields and drag generated by a translating body in a stratified fluid. J Fluid Mech. 2004, 498, 289–313. [Google Scholar] [CrossRef] [Green Version]
- Mason, P.J. Forces on spheres moving horizontally in a rotating stratified fluid. Geoph. Astrophys. Fluid Dyn. 1977, 8, 137–154. [Google Scholar] [CrossRef]
- Lofquist, K.; Purtell, L. Drag on a sphere moving horizontally through a stratified liquid. J. Fluid Mech. 1984, 148, 271–284. [Google Scholar] [CrossRef]
- Cocetta, F.; Gillard, M.; Szmelter, J.; Smolarkiewicz, P.K. Stratified flow past a sphere at moderate Reynolds numbers. Comp. Fluids 2021, 226, 104998. [Google Scholar] [CrossRef]
- Madison, T.; Xiang, X.; Spedding, G. Laboratory and numerical experiments on the near wake of a sphere in a stably stratified ambient. J. Fluid Mech. 2022, 933, A12. [Google Scholar] [CrossRef]
- Shirayama, S.; Kuwahara, K. Patterns of Three-Dimensional Boundary Layer Separation. In Proceedings of the AIAA 25th Aerospace Sciences Meeting, Reno, NV, USA, 12–15 January 1987. Preprint AIAA-87-0461, 10p. [Google Scholar]
- Gushchin, V.A.; Matyushin, P.V. Numerical simulation of separated flow past a sphere. Comp. Math. Math. Phys. 1997, 37, 1086–1100. [Google Scholar]
- Li, J.; Zhou, B. The symmetry and stability of the flow separation around a sphere at low and moderate reynolds numbers. Symmetry 2021, 13, 2286. [Google Scholar] [CrossRef]
- Nakamura, I. Steady wake behind a sphere. Phys. Fluids 1976, 19, 5–8. [Google Scholar] [CrossRef]
- Karyagin, V.P.; Lopatkin, A.I.; Shvets, A.I.; Shilin, N.M. Experimental investigation of the separation of flow around a sphere. Fluid Dyn. 1991, 26, 126–129. [Google Scholar] [CrossRef]
- Gerasimov, S.I.; Faikov, Y.I. Shadow Photography in a Divergent Beam of Light; FSUE RFSC-VNIIEF: Sarov, Russia, 2010; 344p. (In Russian) [Google Scholar]
- Fortuin, J. Theory and application of two supplementary methods of constructing density gradient columns. J. Polym. Sci. 1960, 44, 505–515. [Google Scholar] [CrossRef]
- Oster, G. Density gradients. Sci. Am. 1965, 217, 70–75. [Google Scholar] [CrossRef]
- Mowbray, D. The use of schlieren and shadowgraph techniques in the study of flow patterns in density stratified liquids. J. Fluid Mech. 1967, 27, 595–608. [Google Scholar] [CrossRef]
- Chashechkin, Y.D. Colour Schlieren method. In Optical Methods in Dynamics of Fluids and Solids; IUTAM Symposium; Springer-Verlag: Berlin, Germany, 1985; pp. 275–282. [Google Scholar]
- Sakai, S. Visualization of internal gravity waves by Moire-method. Kashika-Joho 1990, 10, 65–68. [Google Scholar]
- Dalziel, S.B.; Hughes, G.O.; Sutherland, B.R. Whole-field density measurements by “synthetic schlieren”. Exp. Fluid. 2000, 28, 322–335. [Google Scholar] [CrossRef]
- Honji, H. Near wakes of a sphere in a stratified flows. Fluid Dyn. Res. 1987, 2, 75–76. [Google Scholar] [CrossRef]
- Honji, H. Vortex Motions in the Stratified Wake Flows. Fluid Dyn. Res. 1988, 3, 425–430. [Google Scholar] [CrossRef]
- Hydrophysical Complex for Modeling Hydrodynamic Processes in the Environment and Their Impact on Underwater Technical Objects, as Well as the Distribution of Impurities in the Ocean and Atmosphere, Institute for Problems in Mechanics RAS. Available online: http://ipmnet.ru/uniqequip/gfk (accessed on 15 June 2022).
- Smirnov, S.A.; Chashechkin, Y.D.; Il’inykh, Y.S. High-accuracy method for measuring profiles of buoyancy periods. Meas. Techn. 1998, 41, 514–519. [Google Scholar] [CrossRef]
- Il’inykh, A.Y.; Il’inykh, Y.S.; Chashechkin, Y.D. Measuring transducers of electrical conductivity of liquids. Meas. Techn. 2016, 58, 1336–1340. [Google Scholar] [CrossRef]
- Linden, P.F.; Weber, J.E. The formation of layers in a double-diffusive system with a sloping boundary. J. Fluid Mech. 1977, 81, 757–773. [Google Scholar] [CrossRef]
- Kistovich, A.V.; Chashechkin, Y.D. The structure of transient boundary flow along an inclined plane in a continuously stratified medium. J. Appl. Maths. Mech. 1993, 57, 633–639. [Google Scholar] [CrossRef]
- Zagumennyi, I.V.; Chashechkin, Y.D. Diffusion induced flow on a strip: Theoretical, numerical and laboratory modeling. Procedia IUTAM 2013, 8, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Baidulov, V.G.; Matyushin, P.V.; Chashechkin, Y.D. Evolution of the diffusion-induced flow over a sphere submerged in a continuously stratified fluid. Fluid Dyn. 2007, 42, 255–267. [Google Scholar] [CrossRef]
- Kistovich, A.V.; Chashechkin, Y.D. Dissipative-gravity waves in subcritical regimes of multicomponent convection. Izv. Atmosph. Ocean. Phys. 2001, 37, 476–481. [Google Scholar]
- Allshouse, M.; Barad, M.; Peacock, T. Propulsion generated by diffusion-driven flow. Nat. Phys. 2010, 6, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Dimitrieva, N.F.; Chashechkin, Y.D. Fine structure of stratified flow around a fixed and slow moving wedge. Oceanology 2018, 58, 340–349. [Google Scholar] [CrossRef]
- Levitsky, V.V.; Dimitrieva, N.F.; Chashechkin, Y.D. Visualization of the self-motion of a free wedge of neutral buoyancy in a tank filled with a continuously stratified fluid and calculation of perturbations of the fields of physical quantities putting the body in motion. Fluid Dyn. 2019, 54, 948–957. [Google Scholar] [CrossRef]
- Makarov, S.A.; Chashechkin, Y.D. Coupled internal waves in a viscous incompressible fluid. Izv. Atmos. Ocean. Phys. 1982, 18, 758–764. [Google Scholar]
- Sysoeva, E.Y.; Chashechkin, Y.D. Spatial structure of a wake behind a sphere in a stratified liquid. J. Appl. Mech. Tech. Phys. 1988, 29, 655–660. [Google Scholar] [CrossRef]
- Sysoeva, E.Y.; Chashechkin, Y.D. Vortex structure of a wake behind a sphere in a stratified fluid. J. Appl. Mech. Tech. Phys. 1986, 27, 190–196. [Google Scholar] [CrossRef]
- Chashechkin, Y.D. Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation. Mathematics 2021, 9, 586. [Google Scholar] [CrossRef]
- Sysoeva, E.Y.; Chashechkin, Y.D. Vortex systems in the stratified wake of a sphere. Fluid Dyn. 1991, 26, 544–551. [Google Scholar] [CrossRef]
- Belyaev, V.S.; Savinkov, A.M.; Chashechkin, Y.D. Dynamics of laminar vortex rings in a stratified liquid. J. Appl. Mech. Tech. Phys. 1987, 28, 34–43. [Google Scholar] [CrossRef]
- Turner, J.S. Buoyancy Effects in Fluids; CUP: Cambridge, UK, 1980; 412p. [Google Scholar]
- Lin, Q.; Lindberg, W.R.; Boyer, D.L.; Fernando, H.J.S. Stratified flow past a sphere. J. Fluid Mech. 1992, 240, 315–354. [Google Scholar] [CrossRef]
- Lin, Q.; Boyer, D.L.; Fernando, H.J.S. Turbulent wakes of linearly stratified flow past a sphere. Phys. Fluids 1992, 4, 1687–1696. [Google Scholar] [CrossRef]
- Lin, Q.; Boyer, D.L.; Fernando, H.J.S. Internal waves generated by the turbulent wake of a sphere. Exps. Fluids 1993, 15, 147–154. [Google Scholar] [CrossRef]
- Lin, Q.; Boyer, D.L.; Fernando, H.J.S. The vortex shedding of a stream-wise-oscillating sphere translating through a linearly stratified fluid. Phys. Fluids 1994, 6, 239–252. [Google Scholar] [CrossRef]
- Hopfinger, E.J.; Flor, J.B.; Chomaz, J.M.; Bonneton, P. Internal waves generated by a moving sphere and its wake in a stratified fluid. Exps. Fluids 1991, 11, 255–261. [Google Scholar] [CrossRef]
- Chomaz, J.-M.; Bonneton, P.; Butet, A.; Perrier, M.; Hopfinger, E.J. Froude number dependence of the flow separation line on a sphere towed in a stratified fluid. Phys. Fluids A Fluid Dyn. 1992, 4, 254–258. [Google Scholar] [CrossRef]
- Chomaz, J.-M.; Bonneton, P.; Hopfinger, E.J. The structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 1993, 254, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Bonnier, M.; Bonneton, P.; Eiff, O. Far-wake of a sphere in a stably stratified fluid: Characterization of the vortex structures. Appl. Sci. Res. 1998, 59, 269–281. [Google Scholar] [CrossRef]
- Bonnier, M.; Eiff, O.; Bonnetone, P. On the density structure of far-wake vortices in a stratified fluid. Dyn. Atm. Oceans 2000, 31, 117–137. [Google Scholar] [CrossRef]
- Bonneton, P.; Chomaz, J.; Hopfinger, E. Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified. J. Fluid Mech. 1993, 254, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Spedding, G.R.; Browand, F.K.; Fincham, A.M. Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech. 1996, 314, 53–103. [Google Scholar] [CrossRef]
- Meunier, P.; Diamessis, P.; Spedding, G.R. Self-preservation in stratified momentum wakes. Phys. Fluids 2006, 18, 106601. [Google Scholar] [CrossRef]
- Voisin, B. Lee waves from a sphere in a stratified flow. J. Fluid Mech. 2007, 574, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Gushchin, V.A.; Matyushin, P.V. Vortex formation mechanisms in the wake behind a sphere for 200 < Re < 380. Fluid Dyn. 2006, 41, 795–809. [Google Scholar] [CrossRef]
- Gushchin, V.A.; Matyushin, P.V. Numerical simulation and visualization of vortical structure transformation in the flow past a sphere at an increasing degree of stratification. Comput. Math. Math. Phys. 2011, 51, 251–263. [Google Scholar] [CrossRef]
- Gushchin, V.A.; Matyushin, P.V. Simulation and study of stratified flows around finite bodies. Comput. Math. Math. Phys. 2016, 56, 1034–1047. [Google Scholar] [CrossRef]
- Orr, T.S.; Domaradzky, J.A.; Spedding, G.R.; Constantinescu, G.S. Numerical simulations of the near wake of a sphere moving in a steady, horizontal motion through a linearly stratified fluid at Re = 1000. Phys. Fluids 2015, 27, 035113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chashechkin, Y.D. Discrete and Continuous Symmetries of Stratified Flows Past a Sphere. Symmetry 2022, 14, 1278. https://doi.org/10.3390/sym14061278
Chashechkin YD. Discrete and Continuous Symmetries of Stratified Flows Past a Sphere. Symmetry. 2022; 14(6):1278. https://doi.org/10.3390/sym14061278
Chicago/Turabian StyleChashechkin, Yuli D. 2022. "Discrete and Continuous Symmetries of Stratified Flows Past a Sphere" Symmetry 14, no. 6: 1278. https://doi.org/10.3390/sym14061278
APA StyleChashechkin, Y. D. (2022). Discrete and Continuous Symmetries of Stratified Flows Past a Sphere. Symmetry, 14(6), 1278. https://doi.org/10.3390/sym14061278