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Abstract: Hyperspectral image (HSI) analysis has become one of the most active topics in the field
of remote sensing, which could provide powerful assistance for sensing a larger-scale environment.
Nevertheless, a large number of high-correlation and redundancy bands in HSI data provide a
massive challenge for image recognition and classification. Hybrid Rice Optimization (HRO) is a
novel meta-heuristic, and its population is approximately divided into three groups with an equal
number of individuals according to self-equilibrium and symmetry, which has been successfully
applied in band selection. However, there are some limitations of primary HRO with respect to the
local search for better solutions and this may result in overlooking a promising solution. Therefore,
a modified HRO (MHRO) based on an opposition-based-learning (OBL) strategy and differential
evolution (DE) operators is proposed for band selection in this paper. Firstly, OBL is adopted in the
initialization phase of MHRO to increase the diversity of the population. Then, the exploitation ability
is enhanced by embedding DE operators into the search process at each iteration. Experimental
results verify that the proposed method shows superiority in both the classification accuracy and
selected number of bands compared to other algorithms involved in the paper.

Keywords: hyperspectral image; band selection; hybrid rice optimization algorithm; opposition-
based learning; differential evolution

1. Introduction

Recently, hyperspectral remote sensing has been broadly and successfully applied in
urban planning [1], precision agriculture [2], environmental monitoring [3] and other fields
with the constantly increased spectral resolution of sensors. Hyperspectral remote sensing
combines spectral features with spatial images that can accurately identify and detect
ground objects, which provides strong technical support for ground feature extraction [4].
However, hyperspectral image (HSI) obtained in hundreds of narrow and contiguous
bands from visible to infrared areas of the electromagnetic spectrum are characterized
by high-dimensional space and a large number of spectral bands [5], which makes the
processing and analysis of HSI a challenging task. Therefore, dimensionality reduction
becomes a crucial task for hyperspectral data analysis [6].

Feature extraction and feature selection are two typical dimension-reduction methods.
The original hyperspectral datasets are transformed into a low-dimensional and less-
redundant feature space by feature extraction and common techniques such as independent
component analysis (ICA) [7], principal component analysis (PCA) [8], and local linear
embedding (LLE) [9]. Although these methods can extract valuable features from HSI
datasets, they often lose physical information of the original data during the process of
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data compression [10]. In contrast, feature selection can select the feature subset with the
most information while preserving the physical meaning of the original data, which is
an important and popular method for reducing dimensions [11]. In the traditional filter
methods, the feature subset is built independently of the classifier or classification algorithm
and can be evaluated based on different measures such as distance measures, correlation
measures and information measures [12], while wrapper methods use the classifier model to
estimate feature subsets. Although filter methods are computationally simple and fast [13],
they are generally less accurate than wrapper methods because they are not guided by
classifiers [14]. In general, feature-selection methods can be divided into supervised and
unsupervised according to the availability of sample tags [15]. Unsupervised methods can
select a subset of bands without class labels, but they tend to be unstable and biased due to
the lack of prior information [16]. In comparison, supervised methods tend to obtain better
feature-selection results with the assistance of class labels.

Supervised feature-selection methods include three search strategies: exhaustive
search, sequential search, and random search [10]. Exhaustive search requires enumerating
all possible combinations of features [17], which results in unacceptable time complexity
for HSI. Sequential search contains sequential forward search (SFS), sequential backward
search (SBS), and sequential floating forward search (SFFS) [18]. These methods require
much computation while tending to get stuck to the local optima, and it is difficult to
perform well for the existence of bands with strong correlation in HSI [19]. By contrast,
random search introduces randomness into the search process to distance from the local
optima and deliver promising results with higher efficiency. Recently, a number of nature-
inspired stochastic search algorithms have been extensively utilized for feature selection
based on their strong search ability in the large-scale space [20]. These include genetic
algorithm (GA) [21], differential evolution (DE) algorithm [22], particle swarm optimization
(PSO) [23], gray wolf optimizer (GWO) [24], cuckoo search (CS) algorithm [25], artificial
bee colony (ABC) algorithm [26] and whale optimization algorithm (WOA) [27], which
may have superior performance in dealing with feature-selection problems.

For HSI band selection, Nagasubramanian et al. [28] used GA to select the optimal
subset of bands and support vector machine (SVM) to classify the infected and healthy
samples. Additionally, the classification accuracy was replaced by F1-Score to alleviate the
skewness caused by unbalanced datasets. The results showed that the bands chosen by
this approach were more informative compared to RGB images. Xie et al. [29] proposed a
band selection method based on ABC algorithm and enhanced subspace decomposition
to apply in HSI classification. Subspace decomposition was realized by computing the
relevance between adjacent bands, and ABC algorithm was guided by enhanced subspace
decomposition and maximum entropy to optimize the combination of selected bands, which
provided high classification accuracy compared with six related techniques. Wang et al. [30]
proposed a wrapper feature-selection approach based on improved ant lion optimizer
(ALO) and wavelet SVM to reduce the dimension of HSI. Lévy flight was used to help ALO
jump out of local optimum and the wavelet SVM was introduced to improve the stability of
classification result. The results showed that the proposed method can provide satisfactory
classification accuracy in fewer frequency bands. Subsequently, Wang et al. [31] designed a
new band selection method using chaos operation to set corresponding indices for the top
three gray wolves in GWO to improve the optimization ability of GWO, and experimental
results demonstrated that a suitable band subset can be obtained and superior classification
accuracy can be achieved by this approach. Kavitha and Jenifa [32] used Discrete Wavelet
transform with eight taps and four taps for extracting the important features and applied
PSO algorithm for searching the optimal band subsets and utilized SVM as a classifier to
classify HSI effectively. Medjahed et al. [33] introduced a novel band selection framework
based on binary CS algorithm. The experiment compared the optimization ability of CS
under two different objective functions and proved that it could obtain more excellent
results than relevant approaches by adopting a few instances for training. Su et al. [34]
proposed a modified firefly algorithm (FA) to deal with the band selection problem by
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optimizing the minimum values of objective function, which outperformed superior results
than SFS and PSO. In essence, band selection is a NP hard problem, as if the number of the
bands increases, the above algorithms may suffer from premature convergence and even
optimization stagnation.

Hybrid rice optimization (HRO) [35] is a newly proposed nature-inspired algorithm
and has been successfully applied to image processing and knapsack problem because of
its simple structure and strong optimization ability. For example, Liu et al. [36] presented
an image segmentation method that used HRO to find the fittest multi-level thresholds by
using Renyi’s entropy as the fitness function, and experiments proved that HRO prevailed
over the other six commonly used evolutionary algorithms on most metrics. Su et al. [37]
designed two different hybrid models for the complex large-scale 0–1 knapsack problem
by using novel combinations of improved HRO and binary ant colony algorithm, which
achieved better performance on different size datasets. In addition, Ye et al. [38] regarded
the band selection problem as a combinatorial optimization problem and employed binary
HRO to select the optimal band set for HSI, which obtained good results in classification
precision and execution efficiency. Although HRO algorithm has contributed to acquiring
satisfactory results, primary HRO performs the exploitation of the current best solution
during each search process inadequately.

Recently, DE algorithm has been successfully combined with other swarm intelligence
algorithms for solving diverse optimization problems. Tubishat et al. [39] employed
evolutionary operators from DE algorithm to help each whale seek better positions and
improve the local search capability of WOA for feature selection in sentiment analysis.
Jadon et al. [40] proposed a hybrid DE algorithm with ABC algorithm to enhance the
convergence and the balance between exploration and exploitation. Houssein et al. [41]
hybridized the adaptive guided DE algorithm with slime mold algorithm for combinatorial
optimization problems, which verified that evolutionary operators could boost the local
search capability of swarm agents. Hence, a modified HRO (MHRO) based on opposition-
based learning (OBL) strategy and differential evolution (DE) operators is proposed to
overcome the disadvantages of standard HRO in the paper. The main contributions of this
paper are concluded as follows:

(1) OBL strategy is introduced to enhance the diversity of the initial population and
accelerate the convergence of MHRO;

(2) DE operators are embedded into the search process of MHRO to enhance the local
exploitation ability;

(3) The MHRO algorithm is applied in band selection and its performance is demon-
strated on standard HSI datasets.

The remainder of the paper is organized as follows: Section 2 briefly gives a fundamen-
tal overview of the related technique and standard HRO algorithm. The methodology and
the specific workflow of the proposed band selection approach are introduced in Section 3.
Section 4 presents the experimental results and comparative studies. At last, conclusions
and future work are summarized in the final section.

2. Background
2.1. Overview of Hybrid Rice Optimization Algorithm

HRO algorithm is a meta-heuristic algorithm that simulates the breeding process of
three-line hybrid rice. At each iteration, the rice seed population is sorted by the fitness from
superior to inferior and divided into three sub-populations. According to self-equilibrium
and symmetry, each sub-population is designed as an equal number of individuals. The
individuals in the top third of the fitness ranking are selected into the maintainer line, the
bottom third as the sterile line, and the remaining belong to the restorer line. The algorithm
consists of three stages: hybridization, selfing, and renewal.
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2.1.1. Hybridization

Hybridization is performed to renew the rice seed genes in the sterile line. Two kinds
of rice seeds presented to reconstruct one new individual are randomly chosen in the
maintainer line and sterile line, respectively. If the new rice seed is superior to the current
one, the current rice seed will be replaced by the new one. The new gene by hybridizing is
shown in Equation (1).

Xk
new(i) =

r1Xk
s,r + r2Xk

m,r

r1 + r2
(1)

where Xk
new(i) represents the new k-th gene of the i-th rice seed in sterile line, Xk

s,r is the

k-th gene of a individual randomly selected from the sterile line, Xk
m,r is the k-th gene of

a individual randomly selected from the maintainer line, r1 and r2 are random numbers
between [−1, 1].

2.1.2. Selfing

Selfing is the behavior that optimizes the gene sequence of rice seeds in the restorer
line, which makes rice seeds gradually approach the best one, and the updated Equation is
shown in (2).

Xnew(i) = rand(0, 1) · (Xbest − Xj,r) + Xi (2)

where Xnew(i) is the new individual produced by selfing of the i-th restorer, Xbest represents
the current optimal solution and Xj,r is the j-th individual randomly selected from the
restorer line (i 6= j). If the new individual is superior to the old individual, the old individual
is replaced by the new and the current self-crossing number (ti) is set to 0, otherwise the
ti = ti + 1.

2.1.3. Renewal

This stage is a reset operation for rice seeds in the restorer line that has not been
updated for tmax consecutive times (i.e., reaching the maximum selfing time), and the
renewal strategy is shown in Equation (3).

Xnew(i) = Xi + rand(0, 1) · (Rmax − Rmin) + Rmin (3)

where Xnew(i) is the new individual produced by renewal of the i-th restorer, Rmax is the
upper bound of the search space and Rmin is the lower bound.

In summary, the flow of HRO is described in Algorithm 1.

Algorithm 1. Pseudo-Code of HRO

1: Input: the predefined parameters of HRO
2: Output: the global best solution and its fitness function value
3: Initialize the rice seed population randomly
4: Initialize ti = 0, k = 0
5: While (k < maximum number of iterations)
6: Calculate the fitness function for each rice seed
7: Divide the rice seeds into three lines
8: for each rice seed in the sterile line
9: Randomly select corresponding rice seeds in the sterile line and in the maintainer line
10: The new gene is obtained by Equation (1)
11: if the new rice seed is better
12: Update the current rice seed
13: end if
14: end for
15: for each rice seed in the restorer line
16: if ti < tmax
17: The new rice seed is obtained by Equation (2)
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18: if the new rice seed is better
19: Update the rice seed
20: ti = 0
21: else
22: ti = ti + 1
23: end if
24: else
25: The rice seed is renewed by Equation (3)
26: end if
27: end for
26: k = k + 1
27: end while

2.2. The Binary Coding

In general, data can be divided into two different types, that is, continuous or discrete.
The basic HRO is presented for optimization problems with continuous search space.
However, band selection for HSI is regarded as a discrete optimization problem, which is
difficult to be solved by adopting the standard HRO. For binary coding, each individual
in HRO is represented by a binary string where each element is only limited to 0 or 1.
In order to solve the band selection problem, the continuous value of each candidate
solution in the rice seeds population must be mapped to a probability value taking 0 or 1.
Therefore, a sigmoid function is used to achieve data transform in the paper and is given as
Equations (4) and (5).

S(x) =
1

1 + e−x (4)

Xk
i =

{
1, S(Xk

i ) > 0.5
0, else

(5)

where x is a real number, Xk
i represents the k-th gene of the i-th new rice seed.

2.3. The Opposition Based Learning

Generally, a good initial position of the population individual can accelerate the
convergence speed of the algorithm. If the initial guess tends to be far from the position
of the unknown optimal solution, the algorithm converges more slowly. OBL strategy
can consider the current solution and its opposite solution to improve the diversity of the
population. Then, the OBL method selected the fittest solutions from all initial solutions as
the initial population, which can effectively broaden the search space of the algorithm.

Definition 1. Let x be a real number between lb and ub, the opposite number x̃ of x is calculated as
Equation (6).

x̃ = lb + ub− x (6)

where lb and ub are the lower and upper bounds of the search space, respectively. Similarly,
the opposite number can also be used in multidimensional space.

Definition 2. Let x = {x1, x2, . . . , xD} be a point in D-dimensional space, where xi ∈ [lbi, ubi].
The opposite point x̃ = {x̃1, x̃2, . . . , x̃D} can be defined in Equation (7).

x̃i = lbi + ubi − xi (7)

Definition 3. Let x = {x1, x2, . . . , xD} be a bit string in D-dimensional space, where xi represents
0 or 1. The incomplete opposite point x̃ = {x̃1, x̃2, . . . , x̃D} can be expressed as Equation (8).
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x̃i =

{
1− xi, rand(0, 1) > r

xi, else
(8)

where r represents the proportion of taking the opposite value, and r ∈ [0, 1]. It takes r= 0.5
in the paper.

2.4. Differential Evolution

DE algorithm, which includes mutation, crossover and selection operators, is a simple
and potential method to solve optimization problems.

2.4.1. Mutation

The aim of this step is to form a new vector by randomly selecting three different
target vectors in the population. In each iteration, a mutant vector Vi (i = 1, . . . , N, N is the
population size) is generated using Equation (9).

Vi = Xr1 + F · (Xr2 − Xr3) (9)

where Xr1, Xr2 and Xr3 are random solution vectors selected from the population and F is
the mutation factor.

2.4.2. Crossover

After mutation operation, the mutant vector Vi will crossover with its corresponding
target vector Xi. The crossover process is defined as Equation (10).

U j
i =

{
V j

i , i f rand(0, 1) ≤ CR or j = jrand

X j
i , else

(10)

where j = 1, . . . , D and D represents the dimension of the problem. CR is the crossover
rate and jrand is a randomly chosen integer within [1, D].

2.4.3. Selection

The selection process is to evaluate the fitness function of the target vector Xi and the
trial vector Ui obtained after crossover operator, and the better vector will remain in the
next generation. The selection strategy is given as Equation (11).

Xi =

{
Ui, i f f (Ui)< f (Xi)
Xi, else

(11)

where f (Ui) and f (Vi) are the fitness value of vectors Ui and Vi, respectively.

3. The Proposed Band Selection Method

To overcome the disadvantages of the primary HRO algorithm, two strategies are
used to enhance the performance of HRO for handling the band selection problem. The
main steps of the proposed technique are described in the following subsections.

3.1. The Coding Scheme

The key factor to handling the band selection issue is to make an appropriate mapping
between the problem solution and algorithm coding. For band selection of HSI, each band
has two candidate states of being selected or not being selected, which is suitable to be
represented by binary coding. In HRO, each gene bit is represented by “1” or “0”, where
“1” means that the corresponding band is selected and will be utilized for training, and
“0” represents that the corresponding band is not chosen. Supposing that HSI contains ten
bands, the binary coding of MHRO is “1001100101”. That is, the 1st, 4th, 5th, 8th and 10th
bands will be selected to complete the subsequent classification task.
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3.2. The Objective Function

Further, the proposed band selection method is developed to minimize the fitness
function or the objective function by adopting MHRO algorithm. The main purpose of this
method is to select the bands with the most informative subset from the original bands,
so as to maximize the classification accuracy. Accordingly, SVM is adapted to conduct
the classification on the HSI datasets, and the classification accuracy is selected as part of
the objective function. In band selection technique, classification accuracy is an important
measure metric, but how to reduce the number of redundant bands is also one of the most
crucial goals. Therefore, the objective function as shown in Equation (12) is utilized in
the paper.

Fitness = α · (1−OA) + (1− α) · ns

nc
(12)

where Fitness denotes the fitness value, OA represents the overall classification accuracy
and its concept is described in Appendix A.1. Note that nc and ns are the entire and the
selected number of bands. α is a weight factor that balances classification accuracy and
selected number of bands. It takes α = 0.99 in the paper.

3.3. The Implementation of the Proposed MHRO

The proposed band selection method is easy to implement, and its idea is to choose the
optimal band subset with satisfactory classification results. Two improvements contained in
the proposed algorithm MHRO are presented as shown in Figure 1. The first improvement
is to adopt OBL in the initialization stage, whose aim is to improve the population diversity.
The second improvement is the combination of DE operators and binary HRO algorithm,
which improves the local search ability of the algorithm. The main procedure of these
strategies utilized in MHRO is described as follows:

OBL: In the stage of population initialization, the position of each rice seed is randomly
generated in the specified space. Then, a new population is formed by generating the
corresponding opposite individual for each rice seed in the initial population by using OBL
mechanism. Next, the individuals in the initial and new populations are sorted according
to their fitness value, and the top N individuals are selected to enter the final population.
The main steps to initialize the population by OBL are as follows:

(1) Initialize the location of each rice seed randomly, Let Xi =
{

xi1, xi2, . . . , xij, . . . , xiD
}

be
the i-th rice seed in the initial population X, where i = 1, 2, . . . , N and j = 1, 2, . . . , D.
N denotes the population size and D represents the dimension of the problem;

(2) A new population OX was obtained by using the Equation (8) for each rice seed in
the population X;

(3) The N fittest individuals are chosen from the set {X ∪ OX} to constitute the new
initial population of the MHRO algorithm.

DE operators: In HRO, only individuals in sterile and restorer lines are updated, while
maintenance lines are ignored, which reduces the search performance of the algorithm on
high-dimensional band selection. Therefore, DE evolution operators are applied to the
genetic sequences of each rice seed in the maintainer line to find better rice seeds by using
Equations (9)–(11). In order to degrade the possibility of falling into the local optimum,
the mutation factor F in Equation (9) is set as a random number between 0 and 1, where
Xr1, Xr2 and Xr3 are randomly selected individuals in the maintainer line. If the fitness
value of the newly generated trial solution is better than the current individual, the current
individual will be replaced. Otherwise, it is not replaced.
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4. Experimental Results and Discussions

In this section, two sets of experiments are carried out to compare the proposed
approach MHRO with multiple swarm intelligence algorithms and filter-based feature-
selection methods. All the algorithms in these experiments are implemented by the lan-
guage of python 3.9 and run on a PC with Intel(R) Core(TM) i7-10700 @ 2.9 GHz CPU and
16 GB memory under Windows 10 operating system.

4.1. Datasets Description

Five public HSI datasets are employed to evaluate the performance of the proposed
band selection method, including the Kennedy Space Center (KSC), Botswana, Indian Pines,
Salinas and Pavia University datasets.

KSC: KSC was captured by AVIRIS sensor over the Kennedy Space Center in Florida.
The size of the KSC image is 512× 614 pixels from 0.4 to 2.5 µm. The data contain 224 bands
and have a spatial resolution of 18 m. The noisy bands of low signal-to-noise or water
absorption are dropped, and the remaining 176 bands are utilized for analysis. Figure 2
shows the false-color image of the KSC dataset and the corresponding ground truth image.
Details of the category information are listed in Table 1.
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Figure 2. (a) KSC HSI. (b) Ground truth.

Table 1. Detailed category information in KSC dataset.

Class Number Class Name Number of Samples

1 Scrub 761
2 Willow swamp 243
3 Cabbage palm hammock 256
4 Cabbage palm/Oak hammock 252
5 Slash pine 161
6 Oak/Broadleaf hammock 229
7 Hardwood swamp 105
8 Graminoid marsh 431
9 Spartina marsh 520
10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927

Total 5211

Botswana: The Botswana images, built over Okavango Delta, Botswana on May 31,
2001 by the NASA EO-1 satellite, are of size 1476 × 256. EO-1 acquires data in 242 bands
from the 0.4 µm to 2.5 µm portion of the spectrum in 10 nm windows. Noise bands are
discarded, and the remaining 145 bands are chosen as candidate features. The false-color
image of the Botswana dataset and the corresponding ground truth image are illustrated in
Figure 3. The specific category information is listed in Table 2.

Table 2. Detailed category information in Botswana dataset.

Class Number Class Name Number of Samples

1 Water 270
2 Hippo grass 101
3 Floodplain grasses 1 251
4 Floodplain grasses 2 215
5 Reeds 269
6 Riparian 269
7 Firescar 259
8 Island interior 203
9 Acacia woodlands 314
10 Acacia shrublands 248
11 Acacia grasslands 305
12 Short mopane 181
13 Mixed mopane 268
14 Exposed soils 95

Total 3248
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Indian Pines: The Indian Pines dataset was gathered by AVIRIS sensor in northwest-
ern Indiana. The acquired image consists of 145 × 145 pixels and 224 original spectral
bands with a spectrum range from 0.4 µm to 2.5 µm. The total number of bands is reduced
to 200 by removing bands containing the area of water absorption. Figure 4 shows the
false-color image of the Indian Pines dataset and the corresponding ground truth image.
The specific category information is given in Table 3.
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Table 3. Detailed category information in Indian Pines dataset.

Class Number Class Name Number of Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheats 205
14 Woods 1265
15 Building-Grass-Trees-Drivers 386
16 Stone-Steel-Towers 93

Total 10,249

Salinas: The Salinas dataset shown in Figure 5 was obtained by an AVIRIS sensor on
Salinas Valley. The HSI is formed by 512 × 217 pixels and 224 bands in the spectrum range
0.4–2.5 µm. Further, 204 bands in this scene are retained by discarding 20 water absorption
bands. The detailed category information of the Salinas dataset is given in Table 4.
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Table 4. Detailed category information in Salinas dataset.

Class Number Class Name Number of Samples

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Total 54,129

Pavia University: The last dataset was collected from Pavia University in 2002. Pavia
University is a 610 × 340 pixels image, and the number of spectral bands is 103. This image
was taken by ROSIS on the wavelength range of 0.43 µm to 0.86 µm. The false-color image
of Pavia University dataset and the corresponding ground truth image are illustrated in
Figure 6. The concrete category information is listed in Table 5.
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Table 5. Detailed category information in Pavia University dataset.

Class Number Class Name Number of Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42,776

4.2. Parameter Settings

Appropriate parameter settings can improve the optimization ability of the algorithm.
In the following experiments, the proposed band selection technique is compared with
GA [28], PSO [32], CS [33], FA [34] and HRO [38]. The corresponding parameter settings of
each algorithm are listed in Table 6. To make a fair comparison, all of the algorithms are
adopted by binary coding and the corresponding band subset is used as input to SVM for
classification. Each algorithm has an initial population size of 20 and a maximum number
of iterations of 30. For all HSI datasets, 20% of samples are randomly selected as training
data, and the remaining 80% are chosen as testing data. All algorithms are independently
run 10 times for a case, and the average results are recorded.

Table 6. Parameters setting of each algorithm.

Algorithm Parameters Value

GA
Crossover rate CR 0.8
Mutation rate CM 0.01

PSO
Acceleration coefficients c1, c2 2
Minimum inertia weightωmin 0.2
Maximum inertia weightωmax 0.9

CS
Detection probability pa 0.25
Levy flight parameter β 1.5

FA
Absorption coefficient γ 1

Initial attraction β0 1
Randomization parameter α 0.5

HRO, MHRO Maximum selfing time tmax 10

4.3. Experiments for Different Optimization Algorithms

In this section, five benchmark datasets were used to test the performance of band
selection based on MHRO. The overall classification accuracy (OA), kappa coefficient (The
concept of kappa coefficient is described in Appendix A.2), number of selected bands
and fitness function of each algorithm are utilized as evaluation indicators, as shown in
Tables 7 and 8. It could be seen from Table 7 that the optimization ability of the proposed
method is apparently superior to GA, PSO, CS, FA and HRO algorithms in terms of OA and
kappa coefficients. It indicates DE operators employed by the individuals in the maintainer
line have more probability to enhance the exploitation ability of MHRO in local search. For
the Indian Pines dataset, OA of MHRO is 6.6% higher than GA, 4.89% higher than CS, and
6.17% higher than FA. In addition, the kappa coefficient of MHRO in Botswana, Salinas
and Pavia University datasets are all over 0.94. This shows that the classification results are
basically consistent with the real category labels.
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Table 7. OA and Kappa coefficient of six algorithms.

Dataset Metrics GA PSO CS FA HRO MHRO

KSC
OA (%) 92.84 ± 0.14 93.24 ± 0.1 92.92 ± 0.07 92.83 ± 0.06 93.34 ± 0.19 93.60 ± 0.10
Kappa 0.9201 ± 0.0016 0.9246 ± 0.0012 0.9211 ± 0.0007 0.9200 ± 0.0007 0.9257 ± 0.0021 0.9287 ± 0.0011

Botswana
OA (%) 94.69 ± 0.14 95.49 ± 0.23 94.79 ± 0.07 94.74 ± 0.09 95.63 ± 0.22 95.96 ± 0.10
Kappa 0.9425 ± 0.0015 0.9511 ± 0.0024 0.9436 ± 0.0007 0.9431 ± 0.0010 0.9526 ± 0.0024 0.9562 ± 0.0010

Indian Pines
OA (%) 82.65 ± 0.85 88.75 ± 0.50 84.36 ± 0.62 83.08 ± 0.42 88.43 ± 0.27 89.25 ± 0.32
Kappa 0.8018 ± 0.0098 0.8718 ± 0.0057 0.8215 ± 0.0072 0.8068 ± 0.0049 0.8682 ± 0.0031 0.8776 ± 0.0036

Salinas
OA (%) 94.39 ± 0.03 94.64 ± 0.07 94.49 ± 0.05 94.49 ± 0.03 94.59 ± 0.06 94.73 ± 0.04
Kappa 0.9375 ± 0.0004 0.9403 ± 0.0008 0.9386 ± 0.0006 0.9386 ± 0.0003 0.9397 ± 0.0007 0.9413 ± 0.0005

Pavia
University

OA (%) 95.19 ± 0.09 95.46 ± 0.04 95.30 ± 0.05 95.34 ± 0.07 95.41 ± 0.04 95.53 ± 0.06
Kappa 0.9360 ± 0.0012 0.9396 ± 0.0005 0.9376 ± 0.0007 0.9380 ± 0.0010 0.9390 ± 0.0006 0.9406 ± 0.0008

Table 8. The number of selected bands and fitness value of six algorithms.

Dataset Metrics GA PSO CS FA HRO MHRO

KSC
Num 81.3 65.5 82 89.7 41 37.5

Fitness 0.0756 ± 0.0015 0.0707 ± 0.0008 0.0747 ± 0.0006 0.0761 ± 0.0007 0.0683 ± 0.0020 0.0655 ± 0.0009

Botswana
Num 70.5 56.2 72.4 77.6 37.9 35.3

Fitness 0.0574 ± 0.0016 0.0486 ± 0.0025 0.0566 ± 0.0008 0.0574 ± 0.0006 0.0459 ± 0.0020 0.0425 ± 0.0010

Indian Pines
Num 96.5 69.4 89.1 106.4 41.1 44.1

Fitness 0.1766 ± 0.0085 0.1149 ± 0.0051 0.1593 ± 0.0063 0.1728 ± 0.0042 0.1166 ± 0.0027 0.1086 ± 0.0030

Salinas
Num 99.6 91.8 102.8 109.5 82.6 85.8

Fitness 0.0604 ± 0.0003 0.0575 ± 0.0009 0.0596 ± 0.0005 0.0599 ± 0.0002 0.0576 ± 0.0004 0.0564 ± 0.0004

Pavia
University

Num 51.1 46.2 52.9 56.6 42.7 41.9
Fitness 0.0526 ± 0.0008 0.0495 ± 0.0004 0.0516 ± 0.0004 0.0517 ± 0.0003 0.0496 ± 0.0003 0.0484 ± 0.0004

According to Table 8, it is observed that the number of selected bands using HRO and
MHRO is significantly less than those of GA, PSO, CS and FFA. The average number of
selected bands with FA is 88 in the five datasets, nearly 1.8 times that of MHRO. About
79% of the high correlation and redundancy bands from the KSC dataset are removed
by MHRO, with an average of only 37 bands with satisfactory classification accuracy
remaining. Moreover, it is noticed that MHRO has slightly more band subsets than HRO
for Indian Pines and Salinas datasets, which is caused by the fact that MHRO prioritizes
the superior precision between high classification accuracy and a smaller number of bands
at each iteration. With regard to the fitness, the proposed method has a better fitness value
compared with the other five algorithms, and its corresponding standard deviation does
not exceed 0.003 in any dataset, which verifies that MHRO has a slight fluctuation in HSI
datasets. More importantly, the standard deviation of fitness value with MHRO is only
0.0004 for Salinas and Pavia University datasets, which is stable for independent operations.
Figure 7 depicts the variation of average fitness with the number of iterations for all the
algorithms used on five datasets.

As it is shown in Figure 7, the initial fitness value of MHRO is lower than HRO in
all datasets, which proved that the OBL strategy used in the initial stage could enhance
population diversity and provide more high-quality solutions. With the increase of iteration
times, the iteration curves of GA, CS and FA gradually tend to be stable, while MHRO
keeps a downward trend. This shows that DE operators can help to improve the exploration
and exploitation ability, and also implies that MHRO has a powerful potential to find better
solutions. As a result, MHRO has excellent optimization capability on HSI datasets and
can obtain an optimal band subset with satisfactory classification accuracy.
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4.4. Experiments for Other Related Techniques

To further verify the reliability of the proposed algorithm, the MHRO is compared
with two common feature-selection methods, including Joint Mutual Information (JMI)
and its improvement, named Joint Mutual Information Maximization (JMIM) [42] on five
datasets. The experiments are implemented with bands varying from 10% to 30% of the
total number of bands in each dataset. The results of classification accuracy for each class,
OA and kappa coefficients are recorded in Tables 9–13.

Table 9. The classification results for KSC dataset via different number of bands.

Class
Number

10% 20% 30%

JMI JMIM MHRO JMI JMIM MHRO JMI JMIM MHRO

1 92.5750 93.4319 92.5350 94.1935 93.9145 93.9490 94.4805 93.3116 93.5024
2 92.8144 92.6554 90.0000 93.7500 93.2203 91.5344 93.7107 93.8889 91.9786
3 65.2985 91.2821 87.0466 77.8723 87.4419 89.9471 76.6520 87.7934 87.8307
4 58.9286 61.4504 73.0233 70.2564 63.6000 73.3032 66.5116 63.0522 74.0741
5 76.1364 78.0220 79.1304 79.6117 81.3187 82.7957 85.1852 81.4433 80.7692
6 76.5432 60.3659 78.9474 79.1667 68.1818 75.7225 75.2688 67.5497 80.2395
7 64.6552 71.6981 81.7073 65.2893 72.6415 88.8889 64.1667 75.2475 85.3659
8 84.6939 89.0141 93.6599 90.0990 88.5559 90.7609 89.0625 88.1081 91.1602
9 77.3469 93.9252 94.0909 83.5470 95.2038 94.3052 87.1681 96.5602 94.5205

10 89.1374 100.00 97.0297 95.8333 100.00 96.0784 95.2381 100.00 96.4286
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Table 9. Cont.

Class
Number

10% 20% 30%

JMI JMIM MHRO JMI JMIM MHRO JMI JMIM MHRO

11 89.6739 99.6997 99.7050 91.1932 99.3976 99.4030 91.1932 99.1018 99.7015
12 98.0609 97.6982 98.5000 96.6752 98.9848 98.7406 97.4026 98.4925 98.0000
13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA (%) 86.6635 91.3408 93.1638 89.9736 92.0844 93.3557 89.9496 92.1084 93.3797
Kappa 0.8514 0.9036 0.9238 0.8883 0.9119 0.9259 0.8881 0.9121 0.9262

Table 10. The classification results for Botswana dataset via different number of bands.

Class
Number

10% 20% 30%

JMI JMIM MHRO JMI JMIM MHRO JMI JMIM MHRO

1 100.00 99.5392 100.00 99.5392 99.5392 100.00 99.5392 99.5392 100.00
2 98.7500 98.7654 97.4359 100.00 100.00 98.7342 100.00 100.00 96.2963
3 98.0296 95.6522 99.0050 98.0100 97.5610 99.5050 98.0488 97.5728 99.0148
4 92.7374 94.9721 95.0276 92.2222 97.0930 96.6292 91.7582 94.3503 96.6480
5 85.2941 89.9471 88.7324 83.9623 90.0000 89.5735 88.4422 88.0597 90.3846
6 75.7576 76.9953 83.1050 80.9278 79.8122 88.6792 80.2885 80.4762 87.9070
7 100.00 99.5098 99.5074 100.00 100.00 100.00 99.5050 99.5000 100.00
8 94.8718 97.5155 96.3636 96.2025 99.3548 94.7368 98.7261 98.7421 96.4286
9 81.2977 86.3469 94.7154 86.5672 87.0370 96.4844 87.5472 88.3895 96.0784

10 83.5616 83.1776 91.3265 86.3014 87.0192 92.0213 88.6792 88.2075 94.2708
11 95.3191 94.7826 96.1373 97.0085 94.1423 94.1423 95.7627 96.1207 96.6102
12 93.8776 94.5946 91.2162 95.2381 93.3333 94.2857 91.4474 93.8776 94.3262
13 88.8889 95.2607 97.0588 93.5484 93.0556 96.1905 92.9245 92.2018 97.1154
14 97.3333 100.00 97.5000 98.6301 100.00 98.7342 98.6301 98.6486 98.7342

OA (%) 90.9196 92.4586 94.5748 92.6510 93.2282 95.4598 92.9588 93.2282 95.8830
Kappa 0.9016 0.9183 0.9412 0.9204 0.9266 0.9508 0.9237 0.9266 0.9554

Table 11. The classification results for Indian Pines dataset via different number of bands.

Class
Number

10% 20% 30%

JMI JMIM MHRO JMI JMIM MHRO JMI JMIM MHRO

1 55.5556 91.6667 100.00 76.1905 100.00 100.00 72.7273 92.8571 100.00
2 43.4932 80.5106 89.8605 58.5537 84.8908 89.2364 58.6438 85.1363 89.6140
3 26.0976 79.1209 86.7621 51.7355 84.2975 85.4430 57.3574 85.3135 85.8034
4 36.3636 76.3006 76.6169 56.0510 75.2747 73.7864 49.2754 75.7396 77.2021
5 68.4807 90.3226 94.9735 86.1461 89.5141 93.6869 89.2857 88.5496 92.1182
6 79.3939 87.2699 92.6350 83.4609 88.4013 94.6667 84.1079 88.1620 94.6932
7 0.0000 95.2381 95.4545 64.5161 90.9091 88.0000 73.0769 90.9091 100.00
8 79.7357 95.6853 97.2152 94.1919 96.6667 98.7113 89.3671 97.1503 98.7147
9 0.0000 62.5000 90.0000 0.0000 66.6667 87.5000 20.0000 71.4286 86.6667

10 57.6493 82.2102 78.0652 65.2226 85.1316 79.3143 74.5739 84.9490 80.9187
11 56.7493 83.2692 86.5589 73.9841 84.9903 88.6812 75.5808 86.6535 89.0834
12 34.8485 79.4769 86.0324 52.9968 84.2536 87.8351 59.7531 84.4622 87.5510
13 78.5714 96.2025 94.8276 96.7105 98.0892 96.5116 99.3506 98.0892 98.8095
14 89.2120 92.4027 92.5785 93.6770 93.6416 93.9189 93.2740 94.5259 93.1232
15 60.8696 77.9661 73.4615 71.1297 78.5088 79.9228 69.7479 76.3780 78.4000
16 98.4615 98.5507 98.6111 98.4848 97.1014 98.3607 98.0392 98.5075 98.3607

OA (%) 61.0366 84.7927 87.8780 73.1463 87.0244 88.9024 74.5366 87.5244 89.2317
Kappa 0.5475 0.8260 0.8618 0.6926 0.8517 0.8737 0.7084 0.8575 0.8774
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Table 12. The classification results for Salinas dataset via different number of bands.

Class
Number

10% 20% 30%

JMI JMIM MHRO JMI JMIM MHRO JMI JMIM MHRO

1 99.8101 99.8101 100.00 99.7498 99.9373 100.00 99.9374 100.00 100.00
2 99.0017 99.0017 99.8321 99.5983 99.5654 99.7985 99.6317 99.8993 99.7650
3 87.9785 87.9785 96.1353 92.8571 93.1847 99.3769 95.1703 97.5686 99.5633
4 98.4889 98.4889 99.3789 98.6655 98.7533 99.2902 99.1063 98.9295 99.3783
5 88.9628 88.9628 99.5342 95.4922 95.3606 99.5818 98.4870 98.9686 99.6281
6 99.6211 99.6211 99.9373 99.9050 99.8735 99.9373 99.7472 99.7788 99.9373
7 99.3338 99.3338 99.9644 99.8252 99.7556 99.9288 99.9650 99.8602 99.9644
8 72.4820 72.4820 80.7262 77.6299 78.1479 83.2298 79.0656 81.4202 84.3931
9 93.7717 93.7717 99.4389 96.2108 96.3827 99.5787 97.1542 98.1235 99.5986

10 92.6040 92.6040 97.7493 95.2437 95.1362 98.3116 95.6164 95.9938 98.3109
11 79.8193 79.8193 98.9260 86.9677 87.5635 99.6433 88.6499 87.1111 99.4055
12 95.8543 95.8543 98.7630 96.9046 96.9562 99.0209 96.8434 97.4603 99.2801
13 95.7333 95.7333 99.3151 96.6622 98.5034 99.8626 97.8408 98.3762 99.8623
14 96.7153 96.7153 98.5849 97.8417 98.0000 98.8249 97.6387 98.2332 98.5899
15 66.6223 66.6223 84.2755 75.7640 75.5780 84.2284 77.6699 80.8717 84.7408
16 98.2244 98.2244 99.5830 98.8842 98.8137 99.2388 99.1028 99.1701 99.3070

OA (%) 86.9573 86.9573 93.2662 90.3589 90.5159 94.0467 91.3195 92.4834 94.3816
Kappa 0.8543 0.8543 0.9249 0.8924 0.8942 0.9336 0.9032 0.9162 0.9374

Table 13. The classification results for Pavia University dataset via different number of bands.

Class
Number

10% 20% 30%

JMI JMIM MHRO JMI JMIM MHRO JMI JMIM MHRO

1 86.7749 91.5299 94.2054 89.3364 93.0755 95.4459 91.6985 94.4086 95.5572
2 81.0733 90.0861 95.0046 83.7405 93.8672 96.2513 87.2954 95.9982 96.6656
3 69.8551 78.1069 87.9648 71.1213 82.0709 89.7384 76.1051 83.6127 89.7283
4 92.3801 96.3346 95.7699 92.0854 96.5762 97.3862 93.7824 97.6637 97.7580
5 99.7180 99.9065 99.4550 99.4403 99.9064 99.3642 99.5323 100.00 99.6357
6 89.9167 92.0507 93.0775 89.3754 91.2009 95.0250 88.6102 94.7454 95.7552
7 73.9530 79.6693 86.4476 77.1178 83.2370 89.2323 84.4828 85.8252 88.9437
8 79.6457 80.0737 84.4270 80.5669 82.9960 84.8779 82.3899 86.5560 86.2015
9 99.8681 99.8682 99.8682 99.8681 99.8681 99.8682 99.8681 99.8681 99.8681

OA (%) 83.1887 89.6701 93.4426 85.2138 92.1452 94.6992 88.1155 94.2082 95.1316
Kappa 0.7677 0.8607 0.9126 0.7976 0.8951 0.9295 0.8390 0.9229 0.9353

Table 9 shows OA and kappa values generated for the KSC dataset under different
band subsets. It is clear that the proposed MHRO has the highest OA compared with
other filter feature techniques. In particular, OA of MHRO is 6.5% higher than JMI and
1.8% higher than JMIM via 10% entire number of bands. In addition, only OA and Kappa
coefficient of JMI are lower than 90% with different band subsets, and MHRO both exceed
92%. In brief, it is verified that the proposed band selection approach has good practicability
for KSC dataset.

Table 10 reports OA and kappa values generated for the Botswana dataset under
different band subsets. It is induced that OA corresponding to MHRO is satisfactory,
which is more than 95% via exceeding 20% the number of bands. More importantly, the
classification accuracy by MHRO is superior to JMI and JMIM in 12 categories with 30%
of the total number of bands. Moreover, kappa coefficients of MHRO are approximately
0.02–0.04, 0.02–0.03 and 0.028–0.032 higher than other approaches in the total number of
bands 10%, 20% and 30%, respectively. In sum, it is an effective band selection technique
for the Botswana dataset.
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OA and kappa values generated for the Indian Pines dataset under different band
subsets are given in Table 11. It is observed that OA of the proposed MHRO significantly
outperformed JMI, and the difference is over 14% even 26%. Further, the accuracy achieved
by using MHRO reaches 100% on class number 1 and just 55.55% by using JMI via 10% of
all number of bands. It is worth noting that the category named Oats is difficult to classify
correctly by using JMI and JMIM, and the number of samples correctly distinguished by
MHRO exceeded 86%. Therefore, it is a more promising technique than filtering feature-
selection methods on the Indian Pines dataset.

Table 12 reports OA and kappa values generated for the Salinas dataset under different
band subsets. It is obviously revealed that the proposed band selection approach can still
obtain the best classification accuracy when the selected number of bands does not exceed
20%, and OA is lower than 87% by using JMI and JMIM techniques via 10% total number of
bands. More than 98% of the samples could be correctly distinguished in the 13 categories
by MHRO and the corresponding kappa coefficient is more than 0.92, which infers that
the precisions are basically consistent with the real category labels. In short, the proposed
MHRO has a strong optimization ability on the Salinas dataset.

According to Table 13, it has been concluded that the classification accuracy rate
obtained by the proposed MHRO performs better than JMI and JMIM in most categories.
For 10% total number of bands, OA is lower than 84% by using JMI and lower than 90% by
JMIM. Kappa value by using MHRO has reached 0.91, 0.92 and 0.93 in the different number
of bands, respectively, which are 0.9–15 higher than JMI. In conclusion, the proposed
MHRO is a robust and feasible feature-selection approach for the Pavia University dataset.

5. Discussion

As shown in Tables 7 and 8, the experimental results of MHRO on all datasets per-
formed better than other swarm intelligence algorithms. Except for Indian Pines and
Salinas, HRO has slightly smaller band subsets than MHRO. It can be seen from Figure 7
that the fitness function values of GA, CS and FA are only slight fluctuations throughout
the iteration, indicating that they easily fall into local optimum at the early stage of iteration.
In contrast, the fitness value of MHRO is always the lowest and keeps a decreasing trend,
which implies that MHRO has strong optimization ability and is superior to algorithms
GA [28], PSO [32], CS [33], FA [34] and HRO [38].

According to Tables 9–13, MHRO achieves higher accuracy than filter techniques JMI
and JMIM [42] under different band subsets. This can be explained by the fact that the filter
methods use mutual information to select feature subsets and they are independent of the
classifier, while the wrapper approach MHRO proposed in the paper calculates the fitness
function based on the accuracy of the classifier and the number of selected bands.

6. Conclusions

Band selection is a crucial phase to remove high-correlation bands and improve the
classification accuracy for HSI. In the paper, a band selection approach based on MHRO is
proposed and the basic idea is to obtain the fittest band combination. Experimental results
are compared with commonly used feature-selection approaches optimized by GA, PSO,
CS, FA and standard HRO on five datasets. In general, it is concluded that the proposed
MHRO has excellent optimization capability and is able to achieve the highest classification
accuracy with fewer bands. Moreover, OA and kappa coefficient are obviously higher than
other related feature-selection techniques JMI and JMIM, which proved that the precisions
are basically consistent with the real category labels. As a result, the proposed band
selection technique has good robustness and practicability for HSI datasets. Future work
will investigate other swarm intelligence algorithms and combine multiple optimization
strategies and spatial information to further improve the performance of band selection.
In addition, it is worthwhile to formulate different assessment criteria to solve the multi-
objective optimization problem for feature selection on large-scale datasets.



Symmetry 2022, 14, 1293 19 of 21

Author Contributions: Conceptualization, Z.Y. and M.W.; methodology, W.C. and S.L.; software,
W.C. and S.L.; validation, Z.Y. and K.L.; formal analysis, W.C.; investigation, W.C. and S.L.; re-
sources, Z.Y.; data curation, W.C., K.L. and M.W.; writing—original draft preparation, Z.Y. and W.C.;
writing—review and editing, Z.Y. and W.Z.; visualization, W.C.; supervision, Z.Y. and K.L.; project
administration, Z.Y.; funding acquisition, Z.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant
No. 61502155, 61772180, funded by Fujian Provincial Key Laboratory of Data Intensive Computing
and Key Laboratory of Intelligent Computing and Information Processing, Fujian No. BD201801.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The public data in section “Datasets description” are available at
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (accessed on
25 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Overall classification accuracy (OA) and Kappa coefficient are commonly used in HSI
classification, and they will be described in detail as follows.

Appendix A.1. Overall Classification Accuracy

OA represents the ratio between the number of correctly classified samples by the
classifier or classification algorithm and the total number of samples, and the mathematical
expression is shown as Equation (A1).

OA =
∑Nc

i=1 Cii

∑Nc
j=1 ∑Nc

i=1 Cij
(A1)

where Nc is the number of classes, Cii represents the number of samples correctly classified
to class i, and Cij denotes the number of samples of i-th class assigned to j-th category.

Appendix A.2. Kappa Coefficient

Kappa coefficient is a statistical indicator to measure the agreement between the final
classification results and the ground-truth map, and its value is in the range of [−1, 1]. If
the value of kappa coefficient is closer to 1, it indicates that the classification result is better.
Kappa coefficient is given as Equation (A2).

Kappa =
Ns∑Nc

i=1 Cii −∑Nc
i=1 Ci+C+i

Ns
2 −∑Nc

i=1 Ci+C+i
(A2)

where Ns is the number of samples, Ci+ represents the number of samples in class i and
C+i denotes the total number of samples of non-category i predicted to be category i.
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