Some New Anderson Type h and q Integral Inequalities in Quantum Calculus
Abstract
:1. Introduction
2. q-Integral Inequalities of the Anderson Type
2.1. Notations and Preliminaries
2.2. Main Results
3. h-Integral Inequalities of the Anderson Type
3.1. Notations and Preliminaries
3.2. Main Results
4. Conclusions
- In the current study, we analyzed a Feng Qi type q-integral inequality and h-integral inequality and then discussed an Anderson type integral inequality in quantum calculus;
- We considered how to translate some Anderson type integral inequalities into quantum calculus (i.e., q-integral and h integral inequalities);
- By transforming these Anderson type integral inequalities into the equivalent q-integral inequalities and h-integral inequalities, we established a solution method for the corresponding fractional integral inequalities. Our work further develops the solution of time-scale calculus.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Pogány, T.K. On an open problem of F. Qi. J. Inequal. Pure Appl. Math. 2002, 3, 54. [Google Scholar]
- Brahim, K.; Bettaibi, N.; Sellami, A.M. On Some Feng Qi Tpe q-Integral Inequalities. J. Inequal. Pure Appl. Anal. 2008, 9, 43. [Google Scholar]
- Bougoffa, L. Notes on Qi type inequalities. J. Inequal. Pure Appl. Math. 2003, 4, 77. [Google Scholar]
- Krasniqi, V.; Shabani, A.S. On Some Feng Qi Type h-Integral Inequalities. Int. J. Open Probl. Compt. Math. 2009, 2, 516–521. [Google Scholar]
- Mazouzi, S.; Qi, F. On an open problem regarding an integral inequality. J. Inequal. Pure Appl. Math. 2003, 4, 31. [Google Scholar]
- Fayyaz, T.; Irshad, N.; Khan, A.R.; Ur Rahman, G.; Roqia, G. Generalized integral inequalities on time scales. J. Inequal. Appl. 2016, 2016, 235. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rehman, M. Encyclopedia of Mathematics and Its Applications, 2nd ed.; Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cheung, W.S.; Hanjš, Ž.; Pečarić, J. Some Hardy-type inequalities. J. Math. Anal. Applics. 2000, 250, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Koornwinder, T.H. q-Special Functions, a Tutorial. In Deformation Theory and Quantum Groups with Applications to Mathematical Physics; Gerstenhaber, M., Stasheff, J., Eds.; Contemporary Mathematics: Amherst, MA, USA, 1992. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Andersson, B.J. An inequality for convex functions. Nordisk Mat. Tidskr. 1958, 6, 25–26. [Google Scholar]
- Qi, F. Several integral inequalities. J. Inequal. Pure Appl. Math. 2002, 1, 19. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.A.; Chen, L.; Khan, A.R.; Muhammad, G.; Sun, B.; Hussain, S.; Hussain, J.; Rasool, A.U. Some New Anderson Type h and q Integral Inequalities in Quantum Calculus. Symmetry 2022, 14, 1294. https://doi.org/10.3390/sym14071294
Abbas MA, Chen L, Khan AR, Muhammad G, Sun B, Hussain S, Hussain J, Rasool AU. Some New Anderson Type h and q Integral Inequalities in Quantum Calculus. Symmetry. 2022; 14(7):1294. https://doi.org/10.3390/sym14071294
Chicago/Turabian StyleAbbas, Munawwar Ali, Li Chen, Asif R. Khan, Ghulam Muhammad, Bo Sun, Sadaqat Hussain, Javed Hussain, and Adeeb Ur Rasool. 2022. "Some New Anderson Type h and q Integral Inequalities in Quantum Calculus" Symmetry 14, no. 7: 1294. https://doi.org/10.3390/sym14071294
APA StyleAbbas, M. A., Chen, L., Khan, A. R., Muhammad, G., Sun, B., Hussain, S., Hussain, J., & Rasool, A. U. (2022). Some New Anderson Type h and q Integral Inequalities in Quantum Calculus. Symmetry, 14(7), 1294. https://doi.org/10.3390/sym14071294