Study on the Preparation and Performance of a Prefabricated Pervious-Cement-Based Concrete Pavement Slab
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixing Ratio and Stirring Process
- Surface BPC
- Base PFBIC
2.3. Specimen Shaping
2.4. Test Methods
2.4.1. Basic Mechanical Property Testing
2.4.2. Permeability Coefficient
2.4.3. Composite Specimen Interface Shear
2.4.4. Composite Specimens Interface Splitting Strength
2.4.5. Three-Point Bending Test
2.4.6. Micro Structure
3. Results and Discussion
3.1. Analysis of the Influencing Factors of Compressive Strength
3.1.1. 28 d Compressive Strength Range Analysis
3.1.2. Compressive Strength Variance Analysis
3.2. Analysis of Influencing Factors of Permeability Coefficient
3.2.1. Permeability Coefficient Range Analysis
3.2.2. Variance Analysis
3.3. Basic Performance
3.4. Interface Shear Performance of Composite Specimens
3.5. Splitting Performance of Composite Specimens
3.6. Composite Specimens’ Bending and Tensile Properties
3.7. Microscopic Analysis
4. Conclusions
- (1)
- The early strength agent content and silica fume content exhibited the most significant influence on the compressive strength of the BPC. The aggregate gradation and early strength agent content had the most significant influence on the permeability coefficient. The highest compressive strength and permeability coefficient of the BPC were 40.30 MPa and 2.41 mm/s, respectively;
- (2)
- Better interfacial bonding performance within the composite structures can be achieved by casting the surface layer before the full curing of the base layer. In addition, the interfacial bonding strength can be further enhanced in most cases by using the interface agents. The cement-based fiber silica fume slurry interface agent led to a higher bond strength as compared to the epoxy resin binder and cement-based interface agent. The highest interfacial shear strength and splitting tensile strength achieved were 15.96 MPa and 2.20 MPa, respectively;
- (3)
- The ultimate bending stress of the BPC-PFBIC composite specimen was 6.58 MPa and the maximum mid-span deflection was 0.81 mm, which were higher than the BPC specimens and higher than the PFBIC specimens, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Jiang, Y.; Swallow, S. China’s sponge city development for urban water resilience and sustainability: A policy discussion. Sci. Total Environ. 2020, 729, 139078. [Google Scholar] [CrossRef]
- Akkaya, A.; Çağatay, İ.H. Experimental investigation of the use of pervious concrete on high volume roads. Constr. Build. Mater. 2021, 279, 122430. [Google Scholar] [CrossRef]
- Vu, V.-H.; Tran, B.-V.; Le, B.-A.; Nguyen, H.-Q. Prediction of the relationship between strength and porosity of pervious concrete: A micromechanical investigation. Mech. Res. Commun. 2021, 118, 103791. [Google Scholar] [CrossRef]
- Song, H.; Yao, J.; Luo, Y.; Gui, F. A chemical-mechanics model for the mechanics deterioration of pervious concrete subjected to sulfate attack. Constr. Build. Mater. 2021, 312, 125383. [Google Scholar] [CrossRef]
- Kim, K.; Chun, S.; Park, B.; Han, S. Precast prestressed concrete pavement (PPCP): Effect of thermal gradient on curling deflection and stress. Constr. Build. Mater. 2021, 274, 121966. [Google Scholar] [CrossRef]
- Xie, N.; Akin, M.; Shi, X. Permeable concrete pavements: A review of environmental benefits and durability. J. Clean. Prod. 2019, 210, 1605–1621. [Google Scholar] [CrossRef]
- Zhong, R.; Leng, Z.; Poon, C.-S. Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review. Constr. Build. Mater. 2018, 183, 544–553. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Z.; Khan, M.B.E. Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Constr. Build. Mater. 2020, 265, 120759. [Google Scholar] [CrossRef]
- Li, L.; Feng, J.; Lu, Z.; Xie, H.; Xiao, B.; Kwan, A.; Jiao, C. Effects of aggregate bulking and film thicknesses on water permeability and strength of pervious concrete. Powder Technol. 2022, 396, 743–753. [Google Scholar] [CrossRef]
- Sahdeo, S.K.; Ransinchung, G.; Rahul, K.; Debbarma, S. Effect of mix proportion on the structural and functional properties of pervious concrete paving mixtures. Constr. Build. Mater. 2020, 255, 119260. [Google Scholar] [CrossRef]
- Shen, P.; Lu, J.-X.; Zheng, H.; Liu, S.; Poon, C.S. Conceptual design and performance evaluation of high strength pervious concrete. Constr. Build. Mater. 2021, 269, 121342. [Google Scholar] [CrossRef]
- Rangelov, M.; Nassiri, S.; Haselbach, L.; Englund, K. Using carbon fiber composites for reinforcing pervious concrete. Constr. Build. Mater. 2016, 126, 875–885. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Ju, X. Application of ductile fiber reinforced cementitious composite in jointless concrete pavements. Compos. Part B Eng. 2013, 50, 224–231. [Google Scholar] [CrossRef]
- Vaitkus, A.; Šernas, O.; Gražulytė, J. Modular pavements: Developing high performance concrete. Constr. Build. Mater. 2021, 292, 123362. [Google Scholar] [CrossRef]
- Li, J.; Dong, L.; Zhang, J. Experimental on Bonding Performances of UHPC-thin Asphalt Layer with Epoxy Adhesive Agents for Ultra-high Performance Composite Bridge Deck. J. Chang. Univ. Nat. Sci. Ed. 2020, 40, 49–57. [Google Scholar]
- Carbonell Muñoz, M.A.; Harris, D.K.; Ahlborn, T.M.; Froster, D.C. Bond performance between ultrahigh-performance concrete and normal-strength concrete. J. Mater. Civ. Eng. 2014, 26, 04014031. [Google Scholar] [CrossRef]
- Crane, C.K. Shear and Shear Friction of Ultra-High Performance Concrete Bridge Girders; Georgia Institute of Technology: Atlanta, GA, USA, 2010. [Google Scholar]
- Lee, M.-G.; Wang, Y.-C.; Chiu, C.-T. A preliminary study of reactive powder concrete as a new repair material. Constr. Build. Mater. 2007, 21, 182–189. [Google Scholar] [CrossRef]
- Li, Z.; Rangaraju, P.R. Effect of surface roughness on the bond between ultrahigh-performance and precast concrete in bridge deck connections. Transp. Res. Rec. 2016, 2577, 88–96. [Google Scholar] [CrossRef]
- Looney, T.; Coleman, R.; Funderburg, C.; Volz, J.; Floyd, R. Concrete bond and behavior of nonproprietary ultrahigh-performance concrete bridge slab joints. J. Bridge Eng. 2021, 26, 04020128. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, P.; Wang, X.; Wu, J. Shear properties of the interface between ultra-high performance concrete and normal strength concrete. Constr. Build. Mater. 2020, 248, 118455. [Google Scholar] [CrossRef]
- Tarr, S.M.; Okamoto, P.A.; Sheehan, M.J.; Packard, R.G. Bond interaction between concrete pavement and lean concrete base. Transp. Res. Rec. 1999, 1668, 9–16. [Google Scholar] [CrossRef]
- Lu, Z.; Feng, Z.-G.; Yao, D.; Li, X.; Jiao, X.; Zheng, K. Bonding performance between ultra-high performance concrete and asphalt pavement layer. Constr. Build. Mater. 2021, 312, 125375. [Google Scholar] [CrossRef]
- Wang, H.-P.; Song, T.; Yan, J.-W.; Xiang, P.; Feng, S.-Y.; Hui, D. Improved Analytical Method for Interfacial-Slip Control Design of Steel–Concrete Composite Structures. Symmetry 2021, 13, 1225. [Google Scholar] [CrossRef]
- Zhai, H.-X.; Tang, Y.-Z.; Chen, S.-H.; Chen, H.-H.; Cheng, B.-Q.; Cai, X.; Wei, Y.-H. Experimental Research on Durability of Fly Ash Pavement Concrete and Mix Proportion Optimization. Adv. Mater. Sci. Eng. 2021, 2021, 8864706. [Google Scholar] [CrossRef]
- Sun, N.; Song, Y.; Hou, W.; Zhang, H.; Wu, D.; Li, Y.; Gong, Y. Interfacial Bond Properties between Normal Strength Concrete and Epoxy Resin Concrete. Adv. Mater. Sci. Eng. 2021, 2021, 5561097. [Google Scholar] [CrossRef]
- Xi, J.; Liu, J.; Yang, K.; Zhang, S.; Han, F.; Sha, J.; Zheng, X. Role of silica fume on hydration and strength development of ultra-high performance concrete. Constr. Build. Mater. 2022, 338, 127600. [Google Scholar] [CrossRef]
- Carballosa, P.; Calvo, J.G.; Revuelta, D. Influence of expansive calcium sulfoaluminate agent dosage on properties and microstructure of expansive self-compacting concretes. Cem. Concr. Compos. 2020, 107, 103464. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 2019, 229, 117068. [Google Scholar] [CrossRef]
- Nedunuri, S.S.S.A.; Sertse, S.G.; Muhammad, S. Microstructural study of Portland cement partially replaced with fly ash, ground granulated blast furnace slag and silica fume as determined by pozzolanic activity. Constr. Build. Mater. 2020, 238, 117561. [Google Scholar] [CrossRef]
- Vu, M.-H.; Sulem, J.; Laudet, J.-B. Effect of the curing temperature on the creep of a hardened cement paste. Cem. Concr. Res. 2012, 42, 1233–1241. [Google Scholar] [CrossRef]
Cementitious Materials | w (CaO) | w (SiO2) | w (Al2O3) | w (Fe2O3) | w (MgO) | w (SO3) | w (K2O) | w (Na2O) | Other |
---|---|---|---|---|---|---|---|---|---|
P·II 52.5 | 64.70 | 20.40 | 4.70 | 3.38 | 0.87 | 1.88 | 4.06 | ||
P·O 42.5 | 60.60 | 21.84 | 7.32 | 3.70 | 1.77 | 2.24 | 2.53 | ||
Fly ash | 6.09 | 49.96 | 33.02 | 4.52 | 1.17 | 0.62 | 0.98 | 0.66 | |
Silica fume | 0.52 | 93.13 | 0.37 | 0.92 | 1.03 | 0.81 | 3.22 |
Diameter/μm | Aspect Ratio | Tensile Strength/MPa | Elastic Modulus/GPa | Breaking Elongation% | Density g/cm3 | |
---|---|---|---|---|---|---|
Basalt fiber | 18 | 833 | 4100–4800 | 89 | 3.1 | 2.7 |
PVA fiber | 15 | 400 | 1400–1600 | 35–39 | 14.0–17.0 | 0.91 |
Application | Name | Manufacturer |
---|---|---|
Surface BPC | HPMC Dispersant agent | Jinzhou Fuqiang Fine Chemical Co., Ltd. |
HB-03 Defoaming agent | Shandong Yantai Hongfu Additive Co., Ltd. | |
Early strength agent | Wuxi Jide Sponge Company | |
Base PFBIC | WHDF Curing agent | Wuhan Tianyi Chemical Co., Ltd. |
Polycarboxylate superplasticizer | Anhui China Railway Engineering Materials Technology Co., Ltd. |
Level | A (Grading of Aggregates) | B (Early Strength Agent Content/%) | C (Basalt Fiber Content/%) | D (Silica Fume Content/%) | |
---|---|---|---|---|---|
3–5 mm | 5–10 mm | ||||
1 | 7:3 | 2.5 | 0.1 | 7 | |
2 | 5:5 | 3.0 | 0.2 | 9 | |
3 | 3:7 | 3.5 | 0.3 | 11 |
Number | A | B/% | C/% | D/% | 28 d Compressive Strength/MPa | Permeability Coefficient/mm/s | |
---|---|---|---|---|---|---|---|
3–5 mm | 5–10 mm | ||||||
1 | 7:3 | 2.5 | 0.1 | 7 | 31.5 | 2.74 | |
2 | 7:3 | 3.0 | 0.2 | 9 | 33.9 | 2.48 | |
3 | 7:3 | 3.5 | 0.3 | 11 | 35.7 | 1.63 | |
4 | 5:5 | 2.5 | 0.2 | 11 | 26.9 | 3.51 | |
5 | 5:5 | 3.0 | 0.3 | 7 | 40.3 | 2.40 | |
6 | 5:5 | 3.5 | 0.1 | 9 | 32.5 | 2.65 | |
7 | 3:7 | 2.5 | 0.3 | 9 | 28.7 | 3.77 | |
8 | 3:7 | 3.0 | 0.1 | 11 | 28.6 | 3.17 | |
9 | 3:7 | 3.5 | 0.2 | 7 | 39.2 | 2.91 |
Number | A | B | C | D |
---|---|---|---|---|
K1 | 101.1 | 89.6 | 103.2 | 111.0 |
K2 | 99.7 | 102.8 | 100.0 | 97.6 |
K3 | 99.0 | 107.4 | 107.2 | 91.2 |
k1 | 33.7 | 29.9 | 34.4 | 37.0 |
k2 | 33.2 | 34.3 | 33.3 | 32.5 |
k3 | 33.0 | 35.8 | 35.7 | 30.4 |
Range | 0.7 | 5.9 | 2.4 | 6.6 |
Intensity | D > B > C > A |
Factor | Quadratic Sum | Freedom Degree | Mean Square | F Ratio | P Ratio | Significance |
---|---|---|---|---|---|---|
A | 0.74 | 1 | 0.74 | 0.43 | 0.5484 | not significant |
B | 52.81 | 1 | 52.81 | 30.79 | 0.0052 | particularly significant |
C | 35.53 | 1 | 35.53 | 20.71 | 0.0104 | significant |
D | 65.34 | 1 | 65.34 | 38.10 | 0.0035 | particularly significant |
Error | 6.86 | 4 | 1.72 | |||
Summation | 161.27 | 8 |
Number | A | B | C | D |
---|---|---|---|---|
K1 | 6.87 | 8.06 | 8.58 | 8.06 |
K2 | 8.67 | 8.36 | 8.38 | 8.9 |
K3 | 9.53 | 6.87 | 8.11 | 8.11 |
k1 | 2.29 | 2.69 | 2.86 | 2.69 |
k2 | 2.89 | 2.79 | 2.79 | 2.97 |
k3 | 3.18 | 2.29 | 2.70 | 2.70 |
Range | 0.89 | 0.5 | 0.16 | 0.28 |
Intensity | A > B > D > C |
Factor | Quadratic Sum | Freedom Degree | Mean Square | F Ratio | P Ratio | Significance |
---|---|---|---|---|---|---|
A | 1.18 | 1 | 1.18 | 23.95 | 0.0081 | particularly significant |
B | 1.47 | 1 | 1.47 | 29.85 | 0.0055 | particularly significant |
C | 0.037 | 1 | 0.037 | 0.75 | 0.4360 | not significant |
D | 0.00041 | 1 | 0.00041 | 0.00846 | 0.9311 | not significant |
Error | 0.2 | 4 | ||||
Summation | 2.88 | 8 |
A | B | C | D | Performance Index | Efficiency Coefficient | Overall Efficacy Coefficient | ||
---|---|---|---|---|---|---|---|---|
28 d Compressive Strength/MPa | Permeability Coefficient/mm/s | 28 d Compressive Strength | Permeability Coefficient | |||||
1 | 1 | 1 | 1 | 31.5 | 2.74 | 0.782 | 0.732 | 0.757 |
1 | 2 | 2 | 2 | 33.9 | 2.48 | 0.841 | 0.658 | 0.743 |
1 | 3 | 3 | 3 | 35.7 | 1.63 | 0.886 | 0.432 | 0.619 |
2 | 1 | 2 | 3 | 26.9 | 3.51 | 0.667 | 0.878 | 0.765 |
2 | 2 | 3 | 1 | 40.3 | 2.40 | 1.000 | 0.719 | 0.847 |
2 | 3 | 1 | 2 | 32.5 | 2.65 | 0.829 | 0.703 | 0.763 |
3 | 1 | 3 | 2 | 28.7 | 3.77 | 0.712 | 1.000 | 0.843 |
3 | 2 | 1 | 3 | 28.6 | 3.17 | 0.730 | 0.841 | 0.784 |
3 | 3 | 2 | 1 | 39.2 | 2.91 | 0.973 | 0.687 | 0.817 |
Material | Flexural Strength/MPa | Compressive Strength/MPa | Permeability Coefficient/mm/s |
---|---|---|---|
BPC | 5.02 | 40.30 | 2.41 |
PFBIC | 8.20 | 50.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, H.-X.; Li, C.-F.; Liu, Y.-L.; Zhao, Y.; Tang, Y.-Z.; Li, H.-B.; Zheng, J.-Y. Study on the Preparation and Performance of a Prefabricated Pervious-Cement-Based Concrete Pavement Slab. Symmetry 2022, 14, 1295. https://doi.org/10.3390/sym14071295
Zhai H-X, Li C-F, Liu Y-L, Zhao Y, Tang Y-Z, Li H-B, Zheng J-Y. Study on the Preparation and Performance of a Prefabricated Pervious-Cement-Based Concrete Pavement Slab. Symmetry. 2022; 14(7):1295. https://doi.org/10.3390/sym14071295
Chicago/Turabian StyleZhai, Hong-Xia, Chao-Fan Li, Yun-Lin Liu, Yue Zhao, Yu-Zhao Tang, Hai-Bin Li, and Ji-Yuan Zheng. 2022. "Study on the Preparation and Performance of a Prefabricated Pervious-Cement-Based Concrete Pavement Slab" Symmetry 14, no. 7: 1295. https://doi.org/10.3390/sym14071295
APA StyleZhai, H. -X., Li, C. -F., Liu, Y. -L., Zhao, Y., Tang, Y. -Z., Li, H. -B., & Zheng, J. -Y. (2022). Study on the Preparation and Performance of a Prefabricated Pervious-Cement-Based Concrete Pavement Slab. Symmetry, 14(7), 1295. https://doi.org/10.3390/sym14071295