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Abstract: We study a D-dimensional Einstein–Gauss–Bonnet model which includes the Gauss–Bonnet
term, the cosmological term Λ and two non-zero constants: α1 and α2. Under imposing the metric to
be diagonal one, we find cosmological type solutions with exponential dependence of three scale
factors in a variable u, governed by three non-coinciding Hubble-like parameters: H 6= 0, h1 and
h2, obeying mH + k1h1 + k2h2 6= 0, corresponding to factor spaces of dimensions m > 1, k1 > 1
and k2 > 1, respectively, and depending upon sign parameter ε = ±1, where ε = 1 corresponds
to cosmological case and ε = −1—to static one). We deal with two cases: (i) m < k1 < k2 and
(ii) 1 < k1 = k2 = k, k 6= m. We show that in both cases the solutions exist if εα = εα2/α1 > 0 and
αΛ > 0 satisfy certain (upper and lower) bounds. The solutions are defined up to solutions of a
certain polynomial master equation of order four (or less), which may be solved in radicals. In case
(ii), explicit solutions are presented. In both cases we single out stable and non-stable solutions as
u→ ±∞. The case H = 0 is also considered.

Keywords: Gauss–Bonnet; dark energy; stability

1. Introduction

In this semi-review article, which generalizes our previous work [1], we deal with
the so-called Einstein–Gauss–Bonnet (EGB) gravitational model in dimensions D > 7,
which contains the Gauss–Bonnet term and the cosmological term Λ. The model also
includes two non-zero constants: α1 and α2, corresponding to Einstein and Gauss–Bonnet
terms, respectively. It is well-known that the equations of motion for this model are of the
second order (as it appears in General Relativity). The so-called Gauss–Bonnet term has
appeared in (super)string theory as a second order correction in curvature to the effective
(super)string effective action [2,3].

At present, the EGB gravitational model, e.g., with a cosmological term, and its
modifications [4–25], are under intensive studies in cosmology and astrophysics, aimed
at a solution of the dark energy problem, i.e., a possible explanation for the accelerat-
ing expansion of the Universe, which follows from supernovae (type Ia) observational
data [26,27], and the search for a possible local manifestation of dark energy (related to
black holes, wormholes etc.).

In this article we start with the so-called cosmological type solutions with “diagonal”
metric ds2 = −ε(du)2 + ∑n

i=1 εia2
i (u)(dyi)2, governed by n > 3 scale factors (D = n + 1,

ε = ±1, εi = ±1) depending upon one variable u, which is the synchronous time variable
for the cosmological case, when ε = εi = 1. For the case ε = −1 and ε1 = −1, ε j = 1
(j > 1) we get static configurations described by space-like variable (coordinate) u and
time-like coordinate y1. In the cosmological case the equations of motion are governed by
an effective Lagrangian which contains a 2-metric (or minisupermetric) Gij and a finslerian
metric Gijkl , see Refs. [13,14] for Λ = 0 and Ref. [28] for Λ 6= 0.

Symmetry 2022, 14, 1296. https://doi.org/10.3390/sym14071296 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071296
https://doi.org/10.3390/sym14071296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4153-2658
https://doi.org/10.3390/sym14071296
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071296?type=check_update&version=1


Symmetry 2022, 14, 1296 2 of 15

Here we consider the cosmological type solutions with exponential dependence of
scale factors (upon u-variable) and obtain a class of solutions with three scale factors,
governed by three non-coinciding Hubble-like parameters—H, h1 and h2—corresponding
to factor spaces of dimensions m > 1, k1 > 1 and k2 > 1, respectively (D = 1+m+ k1 + k2).
Here we impose the following restriction S1 = mH + k1h1 + k2h2 6= 0, excluding the
solutions with constant volume factor and addressing a classification theorem which tells
us that for generic anisotropic exponential solutions with Hubble-like parameters h1, . . . , hn
obeying S1 = ∑n

i=1 hi 6= 0 the number of different (real) numbers among h1, . . . , hn may be
1, or 2, or 3 [21]. The main goal of this paper is to extend the results of Ref. [1] to a class of
cosmological type solutions, which include static ones (with ε = −1).

Here, as in Ref. [1], we consider without loss of generality two cases: (i) m < k1 < k2
and (ii) 1 < k1 = k2 = k, k 6= m. (In the case m = k1 = k2, the solutions are absent due
to our restrictions.) For H 6= 0 in both cases the solutions exist only if αε = εα2/α1 > 0,
Λε > 0 and multidimensional cosmological term Λ obeys the bounds: 0 < λ−(m, k1, k2) ≤
Λα ≤ λ+(m, k1, k2). For H = 0, the solutions exist only when αε > 0, Λε > 0, k1 6= k2 and
Λα = λ∞(k1, k2) > 0. We note that here, as in Ref. [1], we use the Chirkov–Pavluchenko–
Toporensky scheme of reduction of the set of polynomial equations [17]. As in Ref. [1] we
reduce the problem in the generic H 6= 0 case to solutions of a single polynomial master
equation of the fourth order or less, which may be solved in radicals for all m > 1, k1 > 1
and k2 > 1. In the case (ii) 1 < k1 = k2 = k, k 6= m (H 6= 0), the solutions for Hubble-like
parameters are found explicitly (see Section 4).

We also study (in Section 5) the stability of the solutions for u → ±∞ in a class of
cosmological type solutions with diagonal metrics by using an extension of the results of
Refs. [1,21] (see also the approach of Ref. [18]) and single out the subclasses of stable/non-
stable solutions.

We note that the exponential cosmological type solutions with two non-coinciding
Hubble-like parameters H 6= 0 and h obeying S1 = mH + lh1 6= 0 with m > 2, l > 2 were
studied earlier in Ref. [29]. In that case there were two sets of solutions obeying: (a) εα > 0,
αΛ < λ+(m, l) and (b) εα < 0, αΛ < −λ−(m, l), where λ±(m, l) > 0 and ε = ±1.

It should be noted that, recently, EGB models were used for constricting certain
4-dimensional gravitational models (so-called 4DEGB theories, e.g., belonging to Horndeski
class) by using ideas of Glavan–Lin rescaling [30] and/or dimensional reductions. These 4D
modified models of gravity are (at the moment) under intensive study and have numerous
applications in gravitational physics and cosmology, for a review see Ref. [31].

2. The Cosmological Model

We start with the model governed by the action:

S =
∫

M
dDz

√
|g|{α1(R[g]− 2Λ) + α2L2[g]}. (1)

Here, g = gMNdzM⊗ dzN is the metric on a manifold M (dim M = D), |g| = |det(gMN)|,
Λ is the cosmological term, R[g] is scalar curvature,

L2[g] = RMNPQRMNPQ − 4RMN RMN + R2

is the Gauss–Bonnet term and α1, α2 are certain nonzero constants.
Our choice of the manifold is following:

M = R×M1 × . . .×Mn. (2)

In what follows we deal with the metric:

g = −εdu⊗ du +
n

∑
i=1

Biεie2viudyi ⊗ dyi. (3)
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Here, Bi > 0 are arbitrary constants, ε = ±1, εi = ±1, i = 1, . . . , n (n > 3) and
M1, . . . , Mn are chosen to be 1-dimensional manifolds (either non-compact (R) or compact
(S1) ones). The cosmological case (ε = εi = 1) was considered in detail in Ref. [1]. The case
ε = −1 may describe certain static configurations.

The action (1) with the ansatz for the metric (1) imposed gives rise to the equations of
motion which are of polynomial type [20]:

E = Gijvivj + 2Λε− αεGijklvivjvkvl = 0, (4)

Yi =

[
2Gijvj − 4

3
αεGijklvjvkvl

] n

∑
i=1

vi − 2
3

Gijvivj +
8
3

Λε = 0, (5)

i = 1, . . . , n. Here we denote α = α2/α1 and

Gij = δij − 1, Gijkl = GijGikGilGjkGjlGkl . (6)

Refs. [13,14]. For n > 3, we have a set of polynomial equations of order 4.
For the case n > 3, Λ = 0 and αε < 0 the set of Equations (4) and (5) has a trivial

(isotropic) solution: v1 = · · · = vn = H [13,14], which was generalized in Ref. [16] to the
case Λ 6= 0.

In Refs. [13,14], the following proposition was proved: there are no more than three
different numbers among v1, . . . , vn if Λ = 0. This proposition was generalised in Ref. [21]
for Λ 6= 0, when the following condition is imposed ∑n

i=1 vi 6= 0.
In this paper we study solutions to Equations (4) and (5) by using the following ansatz:

v = (

m︷ ︸︸ ︷
H, . . . , H,

k1︷ ︸︸ ︷
h1, . . . , h1,

k2︷ ︸︸ ︷
h2, . . . , h2). (7)

Here, H is the Hubble-like parameter which corresponds to an m-dimensional factor
space with inequality m > 1 imposed, while h1 is the Hubble-like parameter which is
related to an k1-dimensional factor space with k1 > 1 and h2 is the Hubble-like parameter
assigned to an k2-dimensional factor space with k2 > 1.

In what follows we add additional restrictions to our ansatz (7):

H 6= h1, H 6= h2, h1 6= h2, S1 = mH + k1h1 + k2h2 6= 0. (8)

It was shown in Ref. [22] that the set of (n + 1) polynomial Equations (4) and (5) under
ansatz (7) and restrictions (8) obeyed are equivalent to a set of polynomial equations:

E = 0, (9)

Q = − 1
2αε

, (10)

L = H + h1 + h2 − S1 = 0, (11)

which are of fourth, second and first orders, respectively. Here, E is defined in (4) and

Q = Qh1h2 = S2
1 − S2 − 2S1(h1 + h2) + 2(h2

1 + h1h2 + h2
2), (12)

where

Sk =
n

∑
i=1

(vi)k. (13)

For more general prescription of a scheme of the reduction of polynomial equations of
motion see Ref. [17] (the so-called Chirkov–Pavluchenko–Toporensky trick).

Relation (10) is a special case of more general relations [22]:

Qhihj
= S2

1 − S2 − 2S1(hi + hj) + 2(h2
i + hihj + h2

j ) = −
1

2αε
, i 6= j, (14)



Symmetry 2022, 14, 1296 4 of 15

i, j = 0, 1, 2, with notation h0 = H used.
Relation (8) excludes the following case H = h1 = h2 = 0. In the main body of the

paper we put:
H 6= 0. (15)

As in Ref. [1] we denote:

x1 = h1/H, x2 = h2/H. (16)

In terms of dimensionless parameters the restrictions (8) may rewritten as follows:

x1 6= 1, x2 6= 1, x1 6= x2, m + k1x1 + k2x2 6= 0. (17)

Equation (11) is equivalent to the following one:

m− 1 + (k1 − 1)x1 + (k2 − 1)x2 = 0. (18)

In what follows we do not consider the case,

m = k1 = k2, (19)

which lead us to the empty set of solutions, since we find for m = k1 = k2 > 1 from
restriction (17): 1 + x1 + x2 6= 0, while (18) implies 1 + x1 + x2 = 0.

Due to (10) and (12) we obtain:

2αεPH2 = −1, (20)

where

P = P(x1, x2)

(m + k1x1 + k2x2)
2 − (m + k1x2

1 + k2x2
2)

−2(m + k1x1 + k2x2)(x1 + x2) + 2(x2
1 + x1x2 + x2

2). (21)

The relation (20) is valid for αεP < 0. It can be readily proved that [1]:

P < 0 (22)

for m > 1, k1 > 1, k2 > 1. Indeed [1],

P = 1−m + (1− k1)x2
1 + (1− k2)x2

2 < 0. (23)

It follows from (22) that:
αε > 0. (24)

Equation (9) reads [1]:

2Λε = −Gijvivj + αεGijklvivjvkvl

= H2V1 + αεH4V2, (25)

where

V1 = V1(x1, x2)

= −m− k1x2
1 − k2x2

2 + (m + k1x1 + k2x2)
2 (26)
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and

V2 = V2(x1, x2)

= [m]4 + 4[m]3(k1x1 + k2x2) + 6[m]2
(
[k1]2x2

1 + 2k1k2x1x2 + [k2]2x2
2

)
+4m

(
[k1]3x3

1 + 3[k1]2k2x2
1x2 + 3k1[k2]2x1x2

2 + [k2]3x3
2

)
+[k1]4x4

1 + 4[k1]3k2x3
1x2 + 6[k1]2[k2]2x2

1x2
2 + 4k1[k2]3x1x3

2 + [k2]4x4
2. (27)

Here, [N]k = N(N − 1)...(N − k + 1).
Due to (20) we obtain:

λ = αΛ = − V1

4P +
V2

8P2 , (28)

or
V2(x1, x2)− 2P(x1, x2)V1(x1, x2)− 8(P(x1, x2))

2λ = 0. (29)

Owing to Equation (18) we get:

x2 = x2(x1) = −
m− 1
k2 − 1

− k1 − 1
k2 − 1

x1. (30)

Hence, from Equation (29) we get a master equation in x1 variable:

V2(x1, x2(x1))− 2P(x1, x2(x1))V1(x1, x2(x1))− 8(P(x1, x2(x1)))
2λ = 0. (31)

This polynomial equation is of fourth order or less (this depends upon the value of λ).
One may solve it in radicals for all m > 1, k1 > 1 and k2 > 1.

Relations (23) and (30) imply the identity:

−(k2 − 1)P(x1, x2(x1)) = (k1 − 1)(k1 + k2 − 2)x2
1

+2(m− 1)(k1 − 1)x1 + (m− 1)(m + k2 − 2), (32)

which will be used below.

3. The Case k1 6= k2

In this section we put k1 6= k2. We rewrite relation (28) as follows:

λ = f (x1) ≡ −
V1(x1, x2(x1))

4P(x1, x2(x1))
+

V2(x1, x2(x1))

8(P(x1, x2(x1)))2 . (33)

Due to (30), we present restrictions (17) in the following form [1]:

x1 6= X1, x1 6= X2, x1 6= X3, x1 6= X4, (34)

where

X1 = 1, (35)

X2 = −m + k2 − 2
k1 − 1

, (36)

X3 = − m− 1
k1 + k2 − 2

, (37)

X4 =
m− k2

k2 − k1
. (38)
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Extremum Points

We obtain [1]:

d f
dx1

=
C(m, k1, k2)(x1 − X1)(x1 − X2)(x1 − X3)(x1 − X4)(

− (k2 − 1)P(x1, x2(x1))

)3 , (39)

where
C(m, k1, k2) = (m− 1)(k1 − 1)2(k2 − k1)(k1 + k2 − 2) (40)

and X1, X2, X3, X4 are given by (35)–(38). Thus, the extreme points of the function f (x1) are
excluded from our consideration Due to (8) we are ought to exclude the extreme points
of f (x1).

For λi = f (Xi), i = 1, 2, 3, 4, we have [1]:

λ1 = λ1(m, k1, k2) =
u(k2, m + k1)

8(m + k1 + k2 − 3)(m + k1 − 2)(k2 − 1)
, (41)

λ2 = λ2(m, k1, k2) =
u(k1, m + k2)

8(m + k1 + k2 − 3)(m + k2 − 2)(k1 − 1)
, (42)

λ3 = λ3(m, k1, k2) =
u(m, k1 + k2)

8(m− 1)(k1 + k2 − 2)(m + k1 + k2 − 3)
, (43)

λ4 = λ4(m, k1, k2) =
v(m, k1, k2)

8w(m, k1, k2)
. (44)

Here,

u(m, l) = lm2 + (l2 − 8l + 8)m + l(l − 1), (45)

v(m, l, k) = (k + l)m2 + (m + l)k2 + (m + k)l2 − 6mlk, (46)

w(m, l, k) = (k + l − 2)m2 + (m + l − 2)k2 + (m + k− 2)l2

+2ml + 2mk + 2lk− 6mlk. (47)

It was verified in Ref. [1] that:

λi = λi(m, k1, k2) > 0 (48)

for m > 1, k1 > 1, k2 > 1, i = 1, 2, 3, 4.
In the limit x1 → ±∞ we obtain:

λ∞ = lim
x1→∞

f (x1) =
(k1 + k2 − 6)k1k2 + k2

1 + k2
2 + k1 + k2

8(k1 − 1)(k2 − 1)(k1 + k2 − 2)
. (49)

Here we obtain [1]:

λ∞ = λ∞(k1, k2) = λ∞(k2, k1) > 0, (50)

for all k1 > 1 and k2 > 1.
The definitions of Xi imply [1]:

X2 < X3 < 0 < X1 = 1. (51)

Here, m > 1, k1 > 1 and k2 > 1.
From this point up to Section 4 we impose the following inequality:

1 < m < k1 < k2. (52)
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It was shown in Ref. [1] that:

0 < λ1 < λ2 < λ3, (53)

0 < λ1 < λ4 < λ3, (54)

and
(A+) X4 < X2, λ4 > λ2, for 2k1 −m− k2 > 0, (55)

(A−) X4 > X2, λ4 < λ2, for 2k1 −m− k2 < 0, (56)

and
(A0) X4 = X2, λ4 = λ2, for 2k1 −m− k2 = 0. (57)

For (m, k1, k2) = (4, 6, 7) the function λ = f (x1) is presented graphically in Figure 1.

Figure 1. The graphical representation of the function λ = f (x1) for m = 4, k1 = 6, k2 = 7 [1].

It was proved in Ref. [1] that:

λ1 < λ∞ < λ3. (58)

By using (40) and (52) we get:

C(m, k1, k2) > 0. (59)

It was proved in Ref. [1] that for the function f (x1) mentioned above X3 is the point
of absolute maximum and X1 is the point of absolute minimum, i.e.,

λ1 ≤ λ = f (x1) ≤ λ3, (60)
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for all x1 ∈ R. We remind that according to (34) the points X1, X2, X3, X4 are forbidden for
our analysis. We obtain:

λ1 < λ = f (x1) < λ3, (61)

for all x1 6= X1, X2, X3, X4. Let us denote the set of definition of the function f for our
consideration (−∞, ∞)∗ ≡ {x|x ∈ R, x 6= X1, X2, X3, X4}. Since the function f (x1) is
a continuous one, the image of the function f (due to intermediate value theorem) is:
f ((−∞, ∞)∗) = (λ1, λ3). Thus, we are led to the following proposition.

Proposition 1. The solutions to Equations (4) and (5) for ansatz (7) with 1 < m < k1 < k2
obeying the inequalities H 6= 0, H 6= h1, H 6= h2, h1 6= h2 and S1 = mH + k1h1 + k2h2 6= 0 do
exist if and only if αε > 0 and

0 < λ1 < αΛ < λ3, (62)

where λ1 and λ3 are defined in (41) and (43), respectively. In this case x1 = h1/H 6= X1, X2, X3, X4
(see (35)–(38)), x2 = h2/H = x2(x1) is given by (30), x1 obeys the polynomial master
Equation (31) (of fourth order or less) and H2 is given by (20) and (21).

The case H = 0. In the case H = 0 the solutions under consideration take place only
if αε > 0, Λε > 0 and

αΛ = λ∞(k1, k2) =
(k1 + k2 − 6)k1k2 + k2

1 + k2
2 + k1 + k2

8(k1 − 1)(k2 − 1)(k1 + k2 − 2)
> 0, (63)

where k1 6= k2. Indeed, relation (11) reads as (k1 − 1)h1 + (k2 − 1)h2 = 0, and relation (10)
is equivalent to (k1 − 1)(h1)

2 + (k2 − 1)(h2)
2 = 1/(2αε). From these relations we get

αε > 0 and

h1 = ±
(

k2 − 1
2αε(k1 − 1)(k1 + k2 − 2)

)1/2
, (64)

h2 = ∓
(

k1 − 1
2αε(k2 − 1)(k1 + k2 − 2)

)1/2
, (65)

which imply, due to H = 0 and (9), the relation (63).

4. The Case k1 = k2

We will now turn our attention to the case H 6= 0, m > 1 and k1 = k2 = k > 1. Due
to (18) we obtain:

m− 1 + (k− 1)(x1 + x2) = 0. (66)

It follows from (23) that:

P = 1−m + (1− k)(x2
1 + x2

2). (67)

Since the case of equal factor-space dimensions is excluded from our consideration
(see Section 2) we put:

m 6= k (68)

and αε > 0.
Denoting

X ≡ αεH2, (69)

αε > 0, we obtain from (20) that

XP = −1
2

. (70)

Relation (69) implies
H = ε0

√
X/αε, ε0 = ±1. (71)



Symmetry 2022, 14, 1296 9 of 15

Plugging the relations (66), (67) into (26), (27) we obtain

V1 = [(m− 1)(m− k) + Pk(k− 1)]/(k− 1)2, (72)

V2 = [−(m− 1)(m− k)(m + k− 2)(m + 2k− 3)

+3P2(k− 1)2k]/(k− 1)3. (73)

By virtue relation (70), we present relation (28) as:

2λ = 2αΛ = XV1 + X2V2, (74)

or in an equivalent manner as:

AX2 + BX + C = 0. (75)

Here,

A = (m− 1)(m− k)(m + k− 2)(m + 2k− 3), (76)

B = −(m− 1)(m− k)(k− 1), (77)

C = −1
4

k(k− 1)2 + 2λ(k− 1)3. (78)

It follows from (68) that A 6= 0. The calculation of the discriminant D = B2 − 4AC
leads us to the following identity:

D = (m− 1)(m− k)(k− 1)2(F− 8λ f ), (79)

where we denote

F = F(m, k) = (m− 1)(m− k) + (m + k− 2)(m + 2k− 3)k, (80)

f = f (m, k) = (m + k− 2)(m + 2k− 3)(k− 1) > 0. (81)

It was verified in Ref. [1] that F = F(m, k) > 0 for all m > 1, k > 1 and k 6= m.
By solving Equation (75) we get [1]:

X = (−B + ε̄1
√

D)/(2A), ε̄1 = ±1. (82)

We seek real solutions obeying:

D > 0, (83)

X > 0. (84)

The case D = 0 should be excluded [1]. Indeed, D = 0 implies either x1 = 1 or x2 = 1,
which is in contradiction with (17).

Here, we rewrite the inequality (83) as:

λ < λ1 for m > k, (85)

λ > λ1 for m < k, (86)

where
λ1 = λ1(m, k, k) = F(m, k)/(8 f (m, k)). (87)

Equations (66) and (67) may be resolved as:

x1 = −(ε2
√

E + m− 1)/(2k− 2), (88)

x2 = −(−ε2
√

E + m− 1)/(2k− 2), (89)
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where ε2 = ±1 and

E = −(m− 1)(m + 2k− 3)− 2P(k− 1)

= (k− 1)X−1 − (m− 1)(m + 2k− 3). (90)

Here, one should consider the case:

E > 0. (91)

Indeed, E = 0 implies x1 = x2, which is not allowed by (17). Due to (84) and (91)
we obtain:

0 < X <
k− 1

(m− 1)(m + 2k− 3)
. (92)

It was verified in Ref. [1] that relations (88), (89) and (92) imply all four inequalities
in (17).

Now we proceed with inequalities in (92). By introducing the parameter:

ε1 = ε̄1sign(m− k), (93)

we rewrite relation (82) in the following form:

X =
k− 1

2(m + k− 2)(m + 2k− 3)
+ ε1

√
D

2|A| , (94)

ε1 = ±1.
First, we consider the case ε1 = −1. The second inequality in (92) X < k−1

(m−1)(m+2k−3)
is valid due to 2(m + k− 2) > m− 1. As to the first inequality X > 0, we obtain:

0 <
√

D < (m− 1)|m− k|(k− 1). (95)

Due to definition of D in (79) we get:

0 < (m− 1)(m− k)(k− 1)2(F− 8λ f ) < (m− 1)2|m− k|2(k− 1)2. (96)

Relations (96) may be presented in the following form:

F− < 8λ f < F, for m > k, (97)

F < 8λ f < F−, for m < k. (98)

Here,
F− ≡ F− (m− 1)(m− k). (99)

By using relations:
F−
8 f

=
k

8(k− 1)
= λ∞ = λ∞(k, k), (100)

where λ∞(k, l) is defined in (49), and (87) and (100) one can present relations (97), (98) in
the following form:

λ∞ < λ < λ1, for m > k, (101)

λ1 < λ < λ∞, for m < k. (102)

Now, we consider the case ε1 = 1. Since the inequality X > 0 is obeyed in this case,
one should verify the inequality X < k−1

(m−1)(m+2k−3) . We find:

0 <
√

D < |m− k|(m + 2k− 3)(k− 1), (103)
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or
0 < (m− 1)(m− k)(F− 8λ f ) < |m− k|2(m + 2k− 3)2. (104)

We write relations (104) in the following form:

F+ < 8λ f < F, for m > k, (105)

F < 8λ f < F+, for m < k, (106)

where
F+ ≡ F− (m− 1)−1(m− k)(m + 2k− 3)2. (107)

Here one can verify that:

F+
8 f

= λ3 = λ3(m, k, k). (108)

Due to (87) and (108) we rewrite relations (105), (106) in the following form:

λ3 < λ < λ1, for m > k, (109)

λ1 < λ < λ3, for m < k. (110)

Here,
λ1 < λ∞ < λ3 (111)

for m < k, while
λ3 < λ∞ < λ1 (112)

for k < m. The inequalities in (112) just follow from inequalities F+ < F− < F for k < m.
Thus, we are led to the following generalisation of the Proposition 2 from Ref. [1].

Proposition 2. The solutions to Equations (4) and (5) for ansatz (7) imposed with 1 < m,
1 < k1 = k2 = k, m 6= k, obeying the inequalities H 6= 0, H 6= h1, H 6= h2, h1 6= h2,
S1 = mH + kh1 + kh2 6= 0 do exist if and only if αε > 0,

λ1 < λ = αΛ < λ3 (113)

for m < k and
λ3 < λ = αΛ < λ1, (114)

where λ1 = λ1(k, k), λ3 = λ3(k, k) are defined in (41) and (43). In this case H satisfies the
relation (71) with X from (94), x1 = h1/H and x2 = h2/H are given by relations (88) and (89), λ
obeys (101), (102) for ε1 = −1 and (109), (110) for ε1 = 1 with λ∞ = k

8(k−1) .

The case H = 0. For k1 = k2 = k > 1 and H = 0 the solutions under consideration
obeying restrictions (8) are absent [1].

5. The Analysis of Stability

Here, we analyse the stability of our solutions along a line as was done in
Refs. [20–22].

We impose the following restriction:

det(Lij(v)) 6= 0, (115)

where
L = (Lij(v)) = (2Gij − 4αεGijksvkvs). (116)
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Here, one should deal with general cosmological type setup with the metric:

g = −εdu⊗ du +
n

∑
i=1

e2βi(u)εidyi ⊗ dyi, (117)

where ε = ±1, εi = ±1, i = 1, . . . , n. For the equations of motion we obtain [28]:

E = Gijhihj + 2Λε− αεGijklhihjhkhl = 0, (118)

Yi =
dLi
dt

+ (
n

∑
j=1

hj)Li −
2
3
(Gsjhshj − 4Λε) = 0, (119)

where hi = β̇i = dβi

du ,

Li = Li(h) = 2Gijhj − 4
3

αεGijklhjhkhl , (120)

i = 1, . . . , n.
According to previous consideration of Ref. [21] the solution (hi(t)) = (vi)

(i = 1, . . . , n; n > 3) to Equations (118) and (119) which obeys the restrictions (115) is
stable under perturbations:

hi(t) = vi + δhi(t), (121)

i = 1, . . . , n, as u→ +∞, if and only if

S1(v) =
n

∑
i=1

vi > 0 (122)

and it is unstable, as u→ +∞, if and only if

S1(v) =
n

∑
i=1

vi < 0. (123)

In the limit u → −∞, the stability condition is given by (123) while the instability
condition reads as (122). These conditions just follow from solutions for perturbations
δhi(t) = Ci exp(−S1(v)u) (Ci = const 6= 0) which are valid in the leading order.

Here, a key point is the verification of the relation (115). It was fulfilled in Ref. [22] by
using first three relations in (8) and (14) and k1 > 1, k2 > 1 and m > 1.

First we consider the case 1 < m < k1 < k2. By using (18) we find that for H > 0 the
condition (122) may be written as:

m + k1x1 + k2x2 = 1 + x1 + x2 > 0 (124)

or, equivalently,

x1 > X4 =
m− k2

k2 − k1
. (125)

For H < 0 the stability condition (122) is as follows:

x1 < X4. (126)

The non-stability condition (123) for u→ +∞ reads as (126) for H > 0 and as (125) for
H < 0. These conditions are reversed in case u→ −∞.

Proposition 3. Let us consider cosmological type solutions to Equations (4) and (5) for ansatz (7)
with 1 < k1 < k2, obeying the inequalities H 6= 0, H 6= h1, H 6= h2, h1 6= h2,
S1 = mH + k1h1 + k2h2 6= 0.

(a) Let H > 0. For u→ +∞ the solutions are stable if x > X4 and unstable if x < X4, while for
u→ −∞ they are stable if x < X4 and unstable if x > X4;



Symmetry 2022, 14, 1296 13 of 15

(b) Let H < 0. For u→ +∞ the solutions are stable if x < X4 and unstable if x > X4, while for
u→ −∞ they are stable if x > X4 and unstable if x < X4.

Now we proceed with considering the case H 6= 0, 1 < m, 1 < k1 = k2 = k, m 6= k.
Since x1 6= 1, x2 6= 1 and x1 6= x2 the exact solutions under consideration obey the first
three relations in (8), which imply the validity of the key restriction (115).

For the stability condition (122) as u→ +∞ in this case we get:

H(m + k1x1 + k2x2) = H(1 + x1 + x2) = H
(

1− m− 1
k− 1

)
> 0, (127)

or, equivalently,
H(k−m) > 0. (128)

The non-stability condition (123) for u→ +∞ may be written as:

H(k−m) < 0. (129)

Thus, we have the following proposition.

Proposition 4. Let us consider cosmological type solutions (4), (5) for ansatz (7) with 1 < m,
1 < k1 = k2 = k, m 6= k, obeying the inequalities H 6= 0, H 6= h1, H 6= h2, h1 6= h2,
S1 = mH + kh1 + kh2 6= 0, is stable, as u→ +∞, if and only if H(k−m) > 0 and it is unstable,
as u→ +∞, if and only if H(k−m) < 0.

(c) Let H > 0. For u→ +∞ the solutions are stable if k > m and unstable if k < m, while for
u→ −∞ they are stable if k < m and unstable if k > m.

(d) Let H < 0. For u→ +∞ the solutions are stable if k < m and unstable if k > m, while for
u→ −∞ they are stable if k > m and unstable if k < m

The case H = 0. For a completeness we consider the solutions with H = 0 and h1, h2
from (64) and (65), where k1 6= k2, k1 > 1, k2 > 1, αε > 0 and Λ is given by (63). We get:

S1 = k1h1 + k2h2 = ±(k2 − k1)(2αε(k1 − 1)(k2 − 1)(k1 + k2 − 2))−1/2. (130)

Here, ± is a sign parameter in (64) and (65). By using our analysis presented above
we obtain that the solution with ±(k2 − k1) > 0 is stable, as u→ +∞. This occurs if either
k2 > k1 and the sign “ + ” are selected in (64) and (65), or if k2 < k1 and the sign “− ” are
chosen. For the case ±(k2 − k1) < 0 our solution is unstable, as u → +∞. (Here we also
assume the restriction m > 1). These conditions are reversed in case u→ −∞.

6. Conclusions

We have studied the D-dimensional Einstein–Gauss–Bonnet (EGB) model with the
Λ-term and two non-zero constants α1 and α2. By dealing with diagonal cosmological type
metrics, we have considered a class of solutions with exponential dependence of three scale
factors (upon u-variable) for any α = α2/α1 6= 0, signature parameter ε = ±1 and generic
dimensionless parameter Λα.

More precisely speaking, we have described a class of cosmological type solutions with
exponential dependence of three scale factors, governed by three non-coinciding Hubble-
like parameters H, h1 and h2. These parameters correspond, respectively, to factor spaces
of dimensions m > 1, k1 > 1 and k2 > 1 (D = 1 + m + k1 + k2), and obey the following
restriction S1 = mH + k1h1 + k2h2 6= 0. We have analyzed two cases: (i) m < k1 < k2
and (ii) 1 < k1 = k2 = k 6= m. This choice does not restrict the generality, since, as it was
shown, there are no solutions under consideration for k1 = k2 = m). It was shown that
the solutions exist only if λ = αΛ > 0 and the (dimensionless) parameter λ obey certain
restrictions, e.g., upper and lower bounds for H 6= 0, which depend upon dimensions m, k1
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and k2 (Proposition 1). In case (ii) we have presented explicit solutions for all k > 1 and
k 6= m ( Proposition 2).

By using the Chirkov–Pavluchenko–Toporensky splitting trick from Ref. [17], we
have reduced the problem for H 6= 0 to a master equation on the dimensionless variable
x1 = h1/H. This equation is of the fourth order (in the generic case) or less (depending on
λ), and may be solved in radicals for all m > 1, k1 > 1, k2 > 1 and λ. The master equation
does not depend upon the signature parameter ε = ±1 which only controls the sign of α
according to inequality αε > 0. Due to bounds obtained λ = αΛ > 0. (This is valid also
for H = 0). Hence the solutions under consideration do exist if Λε > 0 , i.e., when Λ > 0
in the cosmological case (ε = 1) and Λ < 0 in the static case (ε = −1). Here there are no
solutions under consideration for Λ = 0—contrary to the case of two factor spaces [29,32].

Here we have analyzed the stability of solutions as u → ±∞ in a class of cosmo-
logical type solutions with diagonal metrics. In both cases ((i) and (ii)) for H 6= 0, the
“islands” of stability and instability were singled out. (The case H = 0 was also anal-
ysed.) We have shown that in case (i) the solutions with H > 0 are stable as u → ∞ for
x1 = h1/H > X4 = m−k2

k2−k1
and unstable as u → ∞ for x1 < X4 (see Proposition 3). These

conditions should be reversed when we consider the case H > 0, u → −∞ or we deal
with H < 0, u→ +∞ (see Proposition 3). It was proved that in case (ii), the solutions with
H > 0 are stable as u→ ∞ for k > m and unstable as u→ ∞ for k < m (see Proposition 4).
For a given choice of asymptotic u→ ±∞, the stability condition for H < 0 is equivalent to
the instability conditions for H > 0 and vice versa.

We have also found that the solution with H = 0 exists only for k1 6= k2, αε > 0 and
a fixed value of εΛ > 0 depending upon k1 and k2. Here we have two opposite in sign
solutions for (h1, h2) with one solution being stable (u→ ±∞) and the second one unstable,
depending upon the sign of k1 − k2.

Some cosmological applications of the model (ε = 1), e.g., in the context of the variation
of the gravitational constant, were considered in Refs. [1,33,34]. For the static case (ε = −1),
possible applications of the obtained solutions may be a subject of a further research, aimed
towards a search for topological black hole solutions (with flat horizon) or wormhole
solutions, which are coinciding asymptotically (for (u→ ±∞)) with our solutions.
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