
����������
�������

Citation: Almuhayfith, F.E.; Darwish,

J.A.; Alharbi, R.; Marin, M. Burr XII

Distribution for Disease Data

Analysis in the Presence of a Partially

Observed Failure Mode. Symmetry

2022, 14, 1298. https://doi.org/

10.3390/sym14071298

Academic Editor: Axel Pelster

Received: 30 April 2022

Accepted: 7 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Burr XII Distribution for Disease Data Analysis in the Presence
of a Partially Observed Failure Mode
Fatimah E. Almuhayfith 1,† , Jumanah Ahmed Darwish 2,† , Randa Alharbi 3,† and Marin Marin 4,*,†

1 Department of Mathematics and Statistics, College of Sciences, King Faisal University,
Alahsa 31982, Saudi Arabia; falmuhaifeez@kfu.edu.sa

2 Department of Statistics, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
jadarwish@uj.edu.sa

3 Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
ralharbi@ut.edu.sa

4 Department of Mathematics and Computer Science, Transilvania University of Brasov,
500036 Brasov, Romania

* Correspondence: m.marin@unitbv.ro
† These authors contributed equally to this work.

Abstract: Modeling competing failure modes is an important problem in engineering and survival
analyses. Competing failure modes are partially observed in many applications and often pose a
modeling challenge. This study discusses the inference for partially observed failure modes assuming
a Burr XII distribution. In particular, we consider two failure modes, and the failure time data
are collected under a hybrid type I censoring scheme. The model parameters are estimated using
maximum likelihood and Bayesian methods under a symmetric squared error loss function, whereas
the intervals estimation is done with three methods: asymptotic and credible confidence intervals.
Besides a simulation study, a real-life data set is taken from individuals who live in an environment
with several diseases to present the utility of the work. Additionally, a simulation study is constructed
to measure and compare different estimation methods.

Keywords: Burr XII distribution; partially observed failure modes; hybrid type I censoring scheme;
maximum likelihood; symmetric squared error

1. Introduction

The lifetime data of individuals are collected in complete or censoring forms from a
life testing experiment. Due to budget or time constraints, we commonly observe censored
data rather than complete data. The oldest and most widely used censoring schemes
are type I and type II. In the case of type I censoring, a fixed test time is assumed and a
random number of failures are observed. Similarly, in type II censoring, a fixed number of
failure are observed with a random test time. However, these two schemes do not allow to
remove individuals from the test other than the test termination. Contrary to these schemes,
progressive censoring schemes are more flexible censoring schemes proposed to improve
the efficiency of the experiment. Different schemes can be considered as a special case
of progressive censoring schemes; see [1–3]. The scheme parameter τ (ideal test time)
and m (number of failed units) are fixed in advance, and the resulting scheme is known
as hybrid censoring. A hybrid censoring scheme (HCS) combined with type I and type II
censoring schemes results in type I and type II HCSs.

For a type I HCS, suppose n units are put on a life testing experiment. Prior to
the test, the experimenter decides a suitable number of failures m required for statistical
inference and the ideal test time τ. The failure times are recorded until the min(Tm, τ) is
observed [4–6]. Similarly, for a type II HCS, with n units and (m, τ), the test is stopped at
the max(Tm, τ) [7].
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The presence of competing failure modes results in the latent failure time models in
the literature. The life testing data with competing risks consist of failure time and the
corresponding failure indicator. The competing risks model can be studied with dependent
causes of failure (see [8–11]) or independent causes of failure for simplicity. In the problem
of designing systems, independent failure is a significant factor for safety, especially in
mechanical systems. In some situations, independent failure might be an optimal design
choice to prevent the system from ever shutting down. The competing risks model and
its properties were discussed recently by [12–14]. Therefore, in this paper, we study an
independent latent failure time model [15] assuming the Burr XII distribution. Additionally,
some applicatiosn of distribution have been introduced by Kayal et al. [16]. More details
about the competing risks model can be seen in [17–29], and the references cited therein.

Burr [30] introduced a system of twelve types of distributions. These distributions
may have a variety of shapes and are widely used in different branches of sciences such as
medical sciences, chemical engineering, business, quality control, and reliability studies.
One member of this family is known as the Burr XII distribution. Such a model has been
proposed by [31]. The Burr XII distribution includes many commonly used distributions
such as gamma, lognormal and loglogistic distributions and has two asymptotic limiting
cases, Weibull and Pareto Type I. Additionally, this Burr distribution can fit a wide range
of empirical data in different branches of science, such as finances, hydrology, reliability
to model and failure time data. The parameter values of the Burr XII distribution cover a
broad set of skewness and kurtosis. The random variable T = Tij is distributed as a Burr
XII distrbution if its cumulative distribution function (CDF) can be written as

Fj(t) = 1− (1 + tθ)−αj , t > 0, αj, θ > 0, j = 1, 2. (1)

where αj and θ are the shape parameters. The assumption of a common shape parameter
is desired for making computation easy and hence, testing different groups of the data
(see McCool [32]). The failure rate function of the Burr XII distribution is unimodal at
θ > 1 or decreasing at θ ≤ 1 and its shape is not effected by the shape parameters α.
Different authors have discussed competing Burr XII distributions, the accelerated compet-
ing Burr XII distributions when failure times and causes of failure are observed by [33].
Recently, ref. [34] have discussed the competing Burr XII distributions for products in
competing duration (mean two-sample case). However, in this paper, we are adopt this
model when the causes of failure are partially observed (meaning the cause of failure
is undetected for some failure units in the test).

The Burr XII distribution density function, survival function Sj(.), and failure rate
function hj(.), respectively, are given by

f j(t) = αjθtθ−1(1 + tθ)−(αj+1), (2)

Sj(t) = (1 + tθ)−αj , (3)

and
hj(t) = αjθtθ−1(1 + tθ)−1, (4)

where j = 1, 2 denotes the number of failure modes in the populations.
For the failure of the experimental units, two different risk factors competing is

considered of a lifetime experiment. The data which are obtained under a type I HCS
for such a competing risk model present the Burr XII lifetime of the failed units and the
corresponding indicator variable, which denotes the modes of failure. Our aim is to develop
estimation procedures under a competing risks Burr XII model with two failure modes.
The model parameters are estimated with classical and Bayes methods under a type I
HCS. In addition, the asymptotic confidence interval as well as the credible intervals are
constructed. Moreover, real-life data obtained from a life experiment for individuals under
different diseases are analyzed and discussed in detail.
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The study is divided into the following sections. The model formulation and likelihood
function is discussed in Section 2. The point and interval maximum likelihood estimation is
discussed in Section 3. Section 4 discusses the Bayesian estimation, whereas a Monte Carlo
simulation study is presented in Section 5. A real-life data under two diseases is analyzed
in Section 6, while concluding comments are given in Section 7.

2. Model Formulation

Suppose that n units are randomly selected from a life product to put under test, such that
any unit of product failure occurs under one of two activated independent causes of failure.
Additionally, suppose the latent failure time of n units are denoted by T1, T2, . . . , Tn, where
Ti = min(Ti1, Ti2)|i=1,2, ...,n and Tij denotes the i-th failure time under cause j. Under con-
sideration of the type I HCS, let τ and m denote the ideal test time. The numbers needed
in statistical inference are previously selected. When the experiment is running, the failure
times and the corresponding cause of failure, say (Ti, δi), where i = 1, 2, . . . , r and r denote the
numbers of failure to reach the min(Tm, τ) and 1 ≤ r ≤ m, are recorded. The experiment is
continued until min(Tm, τ) is observed. Therefore, the observed type I HCS competing risks
are defined by t ={(t1;n, δ1), (t2;n, δ2). . . , (tr, δr)}. Under partially observed causes of failure,
the indicator δi for i = 1, 2, . . . , r takes three different values; the first values are δi = 1 or 2,
which denotes a failure with the first or second cause. However, if the cause of failure is not
clear, then we use δi = ∗. Therefore, the joint likelihood function under the above-described
scenario of type I HCS competing risks t ={(t1;n, δ1), (t2;n, δ2). . . , (tr, δr)} is formulated by

L(t|η) = n!
(n− r)!

(
r

∏
i=1

[ f1(ti)S2(ti)]
ω(δi=1)[ f2(ti)S1(ti)]

ω(δi=2)[f(xi)]
ω(δi=∗)

)
S(µ)n−r, (5)

where η = {α1, α2, θ}, Sj(t) = P(Tj > t), j = 1, 2 and S(t) = P(T1 > t, T2 > t) =
S1(t)S2(t) is the survival function with density f(.). Additionally, for the latent failure time
Ti = min(Ti1, Ti2),

µ =

{
τ, r < m
tm, r = m

, ω(δi = k) =
{

1, δi = k,
0, else

, k = 1, 2, ∗, (6)

and

nj =
r

∑
i=1

ω(δi = j), j = {1, 2, ∗}. (7)

We assume a Burr XII distribution under the type I HCS competing risks model for
the latent failure time. Furthermore, one shape parameter θ is fixed, and another shape
parameter αj = 1, 2 has the following assumptions:

1. Some individuals fail with an unknown cause, and the latent failure time has a Burr
XII distribution with shape parameters α1 + α2 and θ;

2. A binomial random variable is taken for variables n1 and n2 that fail under the first
and second causes of failure, respectively, with sample size (r− n3) and a probability
of success α1

α1+α2
and α2

α1+α2
, respectively;

3. The Bernoulli distribution is taken for n3 with masking probability, 0 < p < 1.
Therefore, the Bernoulli random variable with a value of 1 means that the cause of
failure is unknown, and 0 denotes the known cause of failure.

3. Estimations under Maximum Likelihood

For a given type I HCS t ={(t1;n, δ1), (t2;n, δ2). . . , (tr, δr)}, where the competing risks
sample is drawn from Burr XII distributions, the likelihood function of α1, α2 and θ is
formulated by
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L(α1, α2, θ|t) ∝ αn1
1 αn2

2 (α1 + α2)
n3 θr

(
1 + µθ

)−(n−r)(α1+α2) r

∏
i=1

tθ−1
i

(
1 + tθ

i

)−(α1+α2)−1
(8)

The corresponding logarithmic likelihood function (8) can be written as

`(α1, α2, θ|t) = n1 log α1 + n2 log α2 + n3 log(α1 + α2) + r log θ − (n− r)(α1 + α2)
× log

[
1 + µθ

]
+ (θ − 1)∑r

i=1 log ti − (α1 + α2 + 1)∑r
i=1 log

(
1 + tθ

i
)
.

(9)

The point and asymptotic confidence intervals of model parameters under the com-
peting risk type I HCS are discussed in two cases: known θ and unknown θ. The details for
each case are given in the following section.

3.1. Estimation with Known θ

The partial derivatives of Equation (9) with respect to parameters α1 and α2 are

n1

α1
+

n3

α1 + α2
− (n− r) log

[
1 + µθ

]
−

r

∑
i=1

log
(

1 + tθ
i

)
= 0 (10)

and
n2

α2
+

n3

α1 + α2
− (n− r) log

[
1 + µθ

]
−

r

∑
i=1

log
(

1 + tθ
i

)
= 0. (11)

Therefore, the estimators α̂1(θ) and α̂2(θ) are computed by the following theorem.

Theorem 1. For a given θ and n1, n2 > 0, the conditional ML estimators of parameters α1 and α2
are computed from

α̂j(θ) =
njr

(n1 + n2)
[
(n− r) log

[
1 + µθ

]
+ ∑r

i=1 log
(
1 + tθ

i
)] , j = 1, 2. (12)

Proof. The determinant of the Hessian matrix H(α1, α2) is used to prove this theorem.
In particular,

D(H(α1, α2)) =
n1n2

α1α2
+

n1n3

α2
1(α1 + α2)2

+
n2n3

α2
2(α1 + α2)2

> 0, (13)

and has the property of positivity for all values α1 and α2. Therefore the proof agrees with
the argument given in [35].

Remark 1.

1. There is no information regarding the parameter αj if nj = 0, j = 1, 2 which means that there
are no failures due to cause j.

2. The results of the partially observed causes of failure of the competing risks model reduce to the
usual competing risks model if m3 = {1, 2}.

3.2. Estimation with Unknown θ

The first partial derivative of (9) with respect to θ is

r
θ
+

r

∑
i=1

log ti −
(n− r)(α1 + α2)µ

θ log µ

1 + µθ
− (α1 + α2 + 1)

r

∑
i=1

tθ
i log ti

1 + tθ
i

= 0, (14)

Equation (14) yields that the estimator of θ is not in closed form. Thus, we use an
iterative method such as the Newton–Raphson or fixed point method. The following
theorem describes these operations.



Symmetry 2022, 14, 1298 5 of 17

Theorem 2. The estimators of θ under the ML method is given by the iteration

θ(i+1) = g(θ(i)), (15)

where
g(θ) =

r
(n−r)(α1+α2)µθ log µ

1+µθ + (α1 + α2 + 1)∑r
i=1

tθ
i log ti

1+tθ
i
−∑r

i=1 log ti

, (16)

where α1(θ) and α2(θ) are defined in (12). The profile log-likelihood function of θ is obtained from (9)
after replacing parameters α1(θ) and α2(θ) as follows:

Z(θ|t) = (θ − 1)∑r
i=1 log ti +

2
∑

j=1
nj log

(
njr/(n1+n2)

[(n−r) log[1+µθ ]+∑r
i=1 log(1+tθ

i )]

)
+ n3

× log
(

r/(n−r)
log[1+µθ ]+∑r

i=1 log(1+tθ
i )

)
− r(n−r) log[1+µθ ]

(n−r) log[1+µθ ]+∑r
i=1 log(1+tθ

i )

−
(

r
(n−r) log[1+µθ ]+∑r

i=1 log(1+tθ
i )

+ 1
)

∑r
i=1 log

(
1 + tθ

i
)
+ r log θ.

(17)

For the fixed point iteration method, we stop the algorithm if |θ(i+1) − θ(i)| is sufficiently small.

3.3. Interval Estimation

From the log-likelihood function (9), the second derivatives for the model parameters
η = {α1, α2, θ} are given by

∂2`(η|t)
∂α2

1
=
−n1

α2
1
− n3

(α1 + α2)
2 , (18)

∂2`(η|t)
∂α2

2
=
−n1

α2
2
− n3

(α1 + α2)
2 , (19)

∂2`(η|t)
∂θ2 =

−r
θ2 −

(n− r)(α1 + α2)(1− µθ)µθ log2 µ(
1 + µθ

)2 − (α1 + α2 + 1)
r

∑
i=1

(
1− tθ

i
)
tθ
i log2 ti(

1 + tθ
i
)2 , (20)

∂2`(η|t)
∂α1∂α2

=
∂2`(η|t)
∂α2∂α1

=
−n3

(α1 + α2)
2 , (21)

∂2`(η|t)
∂α1∂θ

=
∂2`(η|t)
∂θ∂α1

=
∂2`(η|t)
∂α2∂θ

=
∂2`(η|t)
∂θ∂α2

=
−(n− r)µθ log µ

1 + µθ
−

r

∑
i=1

tθ
i log ti

1 + tθ
i

. (22)

The Fisher information matrix is defined as the minus expectation of Equations (18)–(22),
which does not yield a closed form solution. Hence, the approximated information matrix is
used to obtain the standard errors. To this end, suppose that Ψ

(
η
)

defines the approximated

observed information matrix under the MLE of model parameters Ψ̂
(

η̂
)

, where

Ψ̂
(

η̂
)
=

[
−

∂2`(η|t)
∂ηi∂ηj

]
η̂

. (23)

Therefore, the 100(1− 2ε)% interval estimators of model parameters η̂ with mean η

and variance-covariance matrix Ψ−1
0

(
η̂
)

are given by

α̂j ∓ zε

√
Ψ̂jj, j = 1, 2 (24)
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and
θ̂ ∓ zε

√
Ψ̂33, (25)

where Ψ̂jj, j = 1, 2, 3γ are the diagonal elements of the observed information matrix and zε

follows a normal (0, 1) distribution with tailed probability ε. Equations (24) and (25) can
have a negative lower bound, and to avoid it, we adopted the logarithmic transformation of
model parameters defined by log ηi, i = 1, 2, 3. Then, the delta method was applied [35,36].
The pivotal quantity z =

log η̂i−log ηi
Var(η̂i)

is distributed with standard normal distribution and
the approximate interval estimate of η = {α1, α2, θ}, such that 100(1− 2ε)% is

η̂i exp
(
∓zε

√
Var( log η̂i)

)
, i = 1, 2, 3, (26)

where Var(log η̂i)=
Var(η̂i)

η̂i
.

4. Bayes Estimation

This section discusses the Bayesian approach for point and the corresponding interval
estimation of the model parameters. We suppose an independent gamma prior for the
parameter vectors η = {α1, α2, θ}, given as

π∗(ηi) ∝ η
ai−1
i exp(−biηi). (27)

Then, the joint prior density can be written as

π∗(η) ∝
3

∏
i=1

η
ai−1
i exp(−biηi). (28)

The two functions, the likelihood function (9) and the joint prior density (28), are used
to calculate the posterior distribution.

π(η|t)∝ α
n1+a1−1
1 α

n2+a2−1
2 θr+a3−1 exp{n3 log(α1 + α2) + θ ∑r

i=1 log ti − (n− r)
× (α1 + α2) log

(
1 + µθ

)
− (α1 + α2 + 1)∑r

i=1 log
(
1 + tθ

i
)
− b1α1 − b2α2 − b3θ

}
.

(29)

The joint posterior density defined by (29) needs a normalization problem that involves
complicated integrals. Different approximation techniques can be applied to overcome this
problem, such as numerical integration, Lindley approximations, and the Markov chain
Monte Carlo (MCMC) approach. This study adopts MCMC with an importance sample
technique for computing Bayes estimators under the symmetric squared error loss function
(SELF); see [37].

4.1. Posterior Distribution under Importance Sample Technique

The joint posterior distribution, Equation (29), can be formulated as

π(η|t) = h(η|t)
3

∏
i=1

hi(ηi), (30)

where
hi(αi) ∝ Qni+ai

i α
(ni+ai)−1
i exp{−Qiαi}, i = 1, 2, (31)

h3(θ) ∝ θr+a3−1 exp

{
θ

r

∑
i=1

log ti − 2
r

∑
i=1

log
(

1 + tθ
i

)
− θb3

}
, (32)

h(η|t) ∝
(

Qn1+a1
1 Qn2+a2

2

)−1
exp

{
n3 log(α1 + α2) +

r

∑
i=1

log
(

1 + tθ
i

)}
, (33)
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and

Qi = bi +
r

∑
i=1

log
(

1 + tθ
i

)
+ (n− r) log

(
1 + µθ

)
. (34)

The proposed full conditional posterior distributions are used to generate a sample
from the posterior distribution and hence parameters estimates.

4.2. Point Estimation

The point estimates and the corresponding variances are computed under the follow-
ing importance sample algorithm.

1. Let η̂ = {α̂1, α̂2, θ̂} as the initial values of an iteration with I = 1.

2. Generate α
(I)
1 and α

(I)
2 from the gamma densities given in (31).

3. Under the normal distribution as a proposal, the Metropolis–Hasting (MH) algorithm
generates θ(I).

4. For given α
(I)
1 , α

(I)
2 and θ(I), compute h(I)= h(α(I)

1 , α
(I)
2 , θ(I)|t) and update I by I + 1.

5. The steps from (2) to (4) are repeated M times.
6. Suppose that M∗ is a burn-in required to satisfy the stationary distribution.

7. Compute the uniform values w(i) =
(

h(i)/ ∑M
i=M∗+1 h(i)

)
, i = M∗ + 1, M∗ + 1, . . . , M.

Under the SELF, the point estimator of any function of parameters vectors Ω is given by

Ω̂B =
M

∑
i=M∗+1

Ω(i)w(i). (35)

and the corresponding posterior variance of Ω is

V(Ω) =
M

∑
i=M∗+1

(Ω(i) − Ω̂B)
2w(i), (36)

where Ω may be α1, α2, θ or a function of the parameters.

4.3. Interval Estimation

This subsection computes the credible or highest posterior density (HPD) interval
estimators by using the MCMC sample generated using importance sampling [38]. The
credible intervals of the parameter ηi|i=1,2,3 = α1, α2 or θ are given as follows:

1. For the parameter ηi, use (α(k)1 , α
(k)
2 , θ(k)) of the MCMC sample to find the ε-th quantile

of ηi by η
(ε)
i as

η
(ε)
i = inf{ηi : π(ηi|t) ≥ ε}, (37)

where π(ηi|t) is the marginal cumulative posterior distribution.
2. The generated values η

(k)
i , k = M∗+ 1, M∗+ 1, . . . , M are ordered to obtain η

[k]
i , k = 1,

2, . . . , M−M∗.
3. Without loss of generality for η1, we define the value wi by

w(i)
1 =

h(η[k]
1 , η

(k)
2 , η

(k)
2 |t)

∑S
i=S∗+1 h(η[k]

1 , η
(k)
2 , η

(k)
2 |t)

, (38)

where h is defined by (33).
4. For the ordered pairs (w1, η1), the ε-th quantile of η1 of the marginal posterior is

η̂
(ε)
1 =

{
η
[k]
1 , if ε = 0

η
[k]
1 , if ∑k−1

i=1 w(i)
1 < ε < ∑k

i=1 w(i)
1

. (39)
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5. The 100(1− 2ε%) credible intervals of η
[k]
1 are given by

(η
(ε)
1 , η

(1−ε)
1 ). (40)

The credible interval for η1 and η2 can be obtained similarly.

5. Simulation Studies

The performances of the developing results in this paper are assessed and compared
in this section through building the Monte Carlo method and analyzing random choices
of the parameters’ values. Therefore, for given prior information, we generate a random
sample of size 10 from the gamma density, and the true parameter values are considered
as the mean of this sample. Thus, for {(ai, bi)} = {(3, 2),(4, 3),(4, 2)}, the parameter vector
is equal to η = {α1, α2, θ} = {1.2, 1.7, 2.2}. For {(ai, bi)} = {(1, 1),(1, 2),(2, 3)}, the parameter
vector is equal to η = {α1, α2, θ} = {0.9, 0.6, 1.1}. For each choice of scheme parameters
n, m, τ generated 1000 samples of the Burr XII distribution with shapes α1 + α2 and θ.
Additionally, two integers n1 and n2 are generated from binomial distributions with the
probability of success given by

αj
α1+α2

, j = 1, 2, respectively. Furthermore, n3 is generated
from a Bernoulli distribution with a masking probability p. For each sample set, we computed
the point and interval estimate with MLE and Bayesian estimations. The point estimate was
measured under average (AV) and mean squared error (MSE). Additionally, the interval
estimate was measured under mean interval length (MIL) and coverage percentage (CP). The
numerical results study the effect of changing the sample size n, m, τ, p and parameter values.
In the Bayesian approach, we considered changes with 11,000 iterations, discarding the first
1000 iterations. The numerical results of the simulation study are presented in Tables 1–4.

Table 1. AVs and MSEs in the bracket for the estimators under η = {1.2, 1.7, 2.2}.

p (τ, n, m) MLE Bayes

α1 α2 θ α1 α2 θ

0.1 (0.5, 40, 15) 1.415 2.011 2.485 0.961 1.817 2.321
(0.305) (0.397) (0.522) (0.207) (0.308) (0.371)

(0.5, 40, 30) 1.399 1.907 2.416 1.227 1.789 2.337
(0.253) (0.348) (0.448) (0.161) (0.267) (0.316)

(0.5, 50, 30) 1.392 1.927 2.443 1.222 1.804 2.337
(0.259) (0.351) (0.443) (0.161) (0.260) (0.312)

(1.0, 40, 15) 1.351 1.890 2.401 1.221 1.788 2.321
(0.249) (0.338) (0.447) (0.152) (0.259) (0.288)

(1.0, 40, 30) 1.302 1.825 2.384 1.225 1.801 2.314
(0.201) (0.285) (0.375) (0.101) (0.211) (0.227)

(1.0, 50, 30) 1.313 1.829 2.380 1.221 1.798 2.311
(0.294) (0.268) (0.361) (0.098) (0.192) (0.204)

0.2 (0.5, 40, 15) 1.454 2.046 2.514 0.998 1.852 2.024
(0.325) (0.415) (0.541) (0.221) (0.325) (0.387)

(0.5, 40, 30) 1.401 1.922 2.430 1.241 1.803 2.356
(0.271) (0.362) (0.465) (0.175) (0.281) (0.331)

(0.5, 50, 30) 1.414 1.932 2.441 1.235 1.811 2.350
(0.276) (0.365) (0.461) (0.179) (0.275) (0.325)

(1.0, 40, 15) 1.365 1.901 2.407 1.232 1.805 2.339
(0.249) (0.338) (0.447) (0.152) (0.259) (0.288)

(1.0, 40, 30) 1.302 1.825 2.384 1.225 1.801 2.314
(0.201) (0.285) (0.375) (0.101) (0.211) (0.227)

(1.0, 50, 30) 1.313 1.829 2.380 1.221 1.798 2.311
(0.207) (0.281) (0.379) (0.107) (0.208) (0.221)
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Table 1. Cont.

p (τ, n, m) MLE Bayes

α1 α2 θ α1 α2 θ

0.3 (0.5, 40, 15) 1.485 2.122 2.565 1.050 1.899 2.074
(0.350) (0.442) (0.566) (0.247) (0.339) (0.399)

(0.5, 40, 30) 1.430 1.955 2.474 1.267 1.838 2.381
(0.292) (0.383) (0.481) (0.191) (0.298) (0.348)

(0.5, 50, 30) 1.445 1.959 2.469 1.267 1.840 2.378
(0.291) (0.384) (0.479) (0.194) (0.278) (0.339)

(1.0, 40, 15) 1.388 1.927 2.441 1.259 1.832 2.357
(0.264) (0.354) (0.462) (0.170) (0.268) (0.294)

(1.0, 40, 30) 1.327 1.851 2.399 1.252 1.828 2.341
(0.219) (0.298) (0.391) (0.119) (0.224) (0.245)

(1.0, 50, 30) 1.340 1.855 2.399 1.248 1.641 2.347
(0.218) (0.297) (0.395) (0.124) (0.229) (0.241)

Table 2. MILs and CPs in the bracket for the estimators under η = {1.2, 1.7, 2.2}.

p (τ, n, m) MLE Bayes

α1 α2 θ α1 α2 θ

0.1 (0.5, 40, 15) 3.124 3.425 4.852 2.842 3.015 4.052
(0.89) (0.87) (0.89) (0.90) (0.91) (0.89)

(0.5, 40, 30) 3.015 3.285 4.599 2.687 2.841 3.911
(0.90) (0.91) (0.89) (0.93) (0.91) (0.90)

(0.5, 50, 30) 3.029 3.260 4.590 2.692 2.838 3.921
(0.91) (0.89) (0.90) (0.93) (0.93) (0.94)

(1.0, 40, 15) 3.075 3.381 4.801 2.790 2.984 4.003
(0.90) (0.89) (0.89) (0.90) (0.91) (0.92)

(1.0, 40, 30) 2.958 3.241 4.557 2.655 2.802 3.871
(0.90) (0.92) (0.90) (0.93) (0.94) (0.93)

(1.0, 50, 30) 2.982 3.214 4.547 2.645 2.801 3.887
(0.92) (0.90) (0.90) (0.93) (0.93) (0.92)

0.2 (0.5, 40, 15) 3.191 3.484 4.915 2.898 3.081 4.112
(0.90) (0.87) (0.88) (0.90) (0.89) (0.90)

(0.5, 40, 30) 3.074 3.325 4.666 2.746 2.899 3.972
(0.90) (0.90) (0.89) (0.90) (0.91) (0.93)

(0.5, 50, 30) 3.092 3.310 4.651 2.754 2.898 3.979
(0.90) (0.90) (0.91) (0.93) (0.92) (0.91)

(1.0, 40, 15) 3.130 3.439 4.864 2.845 3.038 4.069
(0.92) (0.90) (0.89) (0.90) (0.94) (0.92)

(1.0, 40, 30) 3.025 3.298 4.680 2.715 2.864 3.918
(0.91) (0.92) (0.96) (0.93) (0.91) (0.92)

(1.0, 50, 30) 3.041 3.269 4.592 2.698 2.858 3.941
(0.91) (0.92) (0.90) (0.93) (0.92) (0.91)

0.3 (0.5, 40, 15) 3.280 3.581 4.999 2.960 3.174 4.202
(0.86) (0.89) (0.88) (0.90) (0.89) (0.91)

(0.5, 40, 30) 3.159 3.414 4.741 2.829 2.975 4.050
(0.89) (0.89) (0.90) (0.90) (0.91) (0.89)

(0.5, 50, 30) 3.178 3.400 4.732 2.835 2.975 4.030
(0.90) (0.92) (0.91) (0.93) (0.92) (0.94)

(1.0, 40, 15) 3.215 3.521 4.945 2.935 3.120 4.148
(0.90) (0.92) (0.91) (0.94) (0.92) (0.92)

(1.0, 40, 30) 3.111 3.379 4.760 2.810 2.941 4.045
(0.93) (0.91) (0.96) (0.93) (0.92) (0.92)

(1.0, 50, 30) 3.123 3.345 4.680 2.781 2.935 4.022
(0.92) (0.92) (0.91) (0.93) (0.95) (0.91)
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Table 3. AVs and MSEs in the bracket for the estimators under η = {0.9, 0.6, 1.1}.

p (τ, n, m) MLE Bayes

α1 α2 θ α1 α2 θ

0.1 (0.5, 40, 15) 1.118 0.819 1.417 1.049 0.748 1.235
(0.191) (0.124) (0.269) (0.124) (0.057) (0.252)

(0.5, 40, 30) 1.084 0.772 1.375 1.003 0.715 1.202
(0.174) (0.103) (0.230) (0.100) (0.031) (0.235)

(0.5, 50, 30) 1.089 0.791 1.380 1.000 0.708 1.202
(0.171) (0.100) (0.236) (0.091) (0.019) (0.240)

(1.5, 40, 15) 1.074 0.778 1.371 1.002 0.705 1.200
(0.172) (0.101) (0.235) (0.102) (0.042) (0.233)

(1.5, 40, 30) 1.041 0.733 1.338 0.974 0.677 1.171
(0.150) (0.081) (0.209) (0.076) (0.004) (0.217)

(1.5, 50, 30) 1.045 0.742 1.336 0.961 0.662 1.155
(0.151) (0.082) (0.214) (0.082) (0.003) (0.221)

0.2 (0.5, 40, 15) 1.147 0.845 1.444 1.074 0.778 1.268
(0.214) (0.142) (0.278) (0.142) (0.074) (0.280)

(0.5, 40, 30) 1.111 0.803 1.407 1.029 0.741 1.232
(0.191) (0.122) (0.252) (0.115) (0.049) (0.254)

(0.5, 50, 30) 1.118 0.812 1.402 1.022 0.735 1.229
(0.188) (0.120) (0.255) (0.111) (0.040) (0.257)

(1.5, 40, 15) 1.104 0.803 1.400 1.028 0.731 1.224
(0.191) (0.118) (0.254) (0.119) (0.057) (0.252)

(1.5, 40, 30) 1.067 0.761 1.362 1.000 0.707 1.201
(0.168) (0.100) (0.228) (0.092) (0.019) (0.234)

(1.5, 50, 30) 1.071 0.771 1.362 0.987 0.687 1.184
(0.168) (0.100) (0.233) (0.100) (0.018) (0.241)

0.3 (0.5, 40, 15) 1.191 0.887 1.481 1.112 0.821 1.312
(0.230) (0.157) (0.282) (0.159) (0.091) (0.299)

(0.5, 40, 30) 1.152 0.851 1.459 1.071 0.779 1.271
(0.208) (0.144) (0.271) (0.133) (0.068) (0.271)

(0.5, 50, 30) 1.160 0.853 1.445 1.059 0.771 1.270
(0.205) (0.139) (0.276) (0.129) (0.058) (0.274)

(1.5, 40, 15) 1.145 0.841 1.439 1.066 0.769 1.271
(0.209) (0.141) (0.271) (0.141) (0.075) (0.271)

(1.5, 40, 30) 1.309 0.799 1.398 1.032 0.745 1.238
(0.187) (0.122) (0.247) (0.110) (0.041) (0.255)

(1.5, 50, 30) 1.122 0.812 1.397 1.020 0.721 1.217
(0.190) (0.124) (0.251) (0.119) (0.037) (0.260)

Table 4. MILs and CPs in the bracket for the estimators under η = {0.9, 0.6, 1.1}.

p (τ, n, m) MLE Bayes

α1 α2 θ α1 α2 θ

0.1 (0.5, 40, 15) 2.235 1.754 2.578 2.100 1.584 2.411
(0.88) (0.88) (0.89) (0.93) (0.91) (0.89)

(0.5, 40, 30) 2.185 1.709 2.541 2.065 1.546 2.382
(0.89) (0.91) (0.90) (0.93) (0.91) (0.96)

(0.5, 50, 30) 2.192 1.701 2.541 2.071 1.541 2.375
(0.90) (0.90) (0.93) (0.93) (0.95) (0.94)

(1.5, 40, 15) 2.141 1.667 2.501 2.019 1.503 2.336
(0.92) (0.89) (0.89) (0.94) (0.91) (0.93)

(1.5, 40, 30) 2.102 1.631 2.465 1.852 1.462 2.300
(0.92) (0.92) (0.92) (0.93) (0.90) (0.93)

(1.5, 50, 30) 2.113 1.625 2.454 1.847 1.452 2.294
(0.90) (0.90) (0.90) (0.94) (0.93) (0.95)
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Table 4. Cont.

p (τ, n, m) MLE Bayes

α1 α2 θ α1 α2 θ

0.2 (0.5, 40, 15) 2.275 1.791 2.610 2.138 1.614 2.447
(0.89) (0.88) (0.87) (0.93) (0.91) (0.89)

(0.5, 40, 30) 2.322 1.745 2.579 2.099 1.581 2.412
(0.89) (0.92) (0.90) (0.92) (0.91) (0.94)

(0.5, 50, 30) 2.234 1.734 2.577 2.099 1.572 2.415

(0.91) (0.90) (0.90) (0.92) (0.95) (0.91)
(1.5, 40, 15) 2.177 1.698 2.534 2.051 1.532 2.367

(0.90) (0.89) (0.89) (0.94) (0.91) (0.91)
(1.5, 40, 30) 2.137 1.662 2.499 1.887 1.491 2.336

(0.91) (0.92) (0.92) (0.93) (0.90) (0.92)
(1.5, 50, 30) 2.147 1.661 2.487 1.879 1.482 2.315

(0.92) (0.92) (0.91) (0.95) (0.94) (0.95)

0.3 (0.5, 40, 15) 2.299 1.815 2.639 2.161 1.642 2.470
(0.89) (0.85) (0.89) (0.90) (0.91) (0.89)

(0.5, 40, 30) 2.357 1.784 2.614 2.132 1.615 2.441
(0.90) (0.90) (0.90) (0.90) (0.91) (0.92)

(0.5, 50, 30) 2.261 1.760 2.597 2.127 1.597 2.444
(0.91) (0.92) (0.90) (0.92) (0.90) (0.91)

(1.5, 40, 15) 2.210 1.729 2.564 2.082 1.564 2.381
(0.91) (0.89) (0.90) (0.92) (0.91) (0.92)

(1.5, 40, 30) 2.158 1.689 2.532 1.915 1.524 2.359
(0.92) (0.92) (0.91) (0.93) (0.93) (0.95)

(1.5, 50, 30) 2.171 1.692 2.500 1.896 1.509 2.337
(0.91) (0.92) (0.94) (0.92) (0.94) (0.93)

6. Disease Data Analysis

This section discusses two examples of lifetime data recorded under two diseases
to illustrate the applications of the proposed method. The first example data set is taken
from [39], which represents about male mice exposed to 300 Roentgens of radiation over
the period of 5–6 weeks. This data set has been analyzed by several authors [19,40–42]
under different lifetime models. Example two takes a simulated data set to show the
method’s practicality.

6.1. Example 1: A Disease Data Set

The summary of the first set is given in Table 5, where the diseases reticulum cell
sarcoma and thymic lymphoma were considered cause 1 while other diseases were consid-
ered cause 2. Without loss of information, the data were divided by 1000. Assuming n = 99,
m = 50 and τ = 0.7, the competing risks of the type I HCS are summarized by

t = {(0.04, 2), (0.042, 2), (0.051, 2), (0.062, 2), (0.159, 1), (0.163, 2), (0.179, 2), (0.189, 1),
(0.191, 1), (0.198, 1), (0.200, 1), (0.206, 2), (0.207, 1), (0.220, 1), (0.222, 2), (0.228, 2), (0.235, 1),
(0.245, 1), (0.249, 2), (0.250, 1), (0.252, 2), (0.256, 1), (0.261, 1), (0.265, 1), (0.266, 1), (0.28, 1),
(0.282, 2), (0.317, 1), (0.318, 1), (0.324, 2), (0.333, 2), (0.341, 2), (0.343, 1), (0.356, 1), (0.366, 2),
(0.383, *), (0.385, *), (0.399, *), (0.403, 1), (0.407, 2), (0.414, 1), (0.420, 2), (0.428, 1), (0.431, 2),
(0.432, 1), (0.441 2), (0.461, 2), (0.462, 2), (0.482, 2), (0.495, 1)}}. That is, the type I HCS
competing risks have (n1, n2, n3, r) = (24, 23, 3, 50).

From the profile log-likelihood function (17), Figure 1, the ML estimator can be seen to
have an initial guess value of 1.8 for θ. A noninformative prior was considered by fixing
ai = bi = 0.0001, i = 1, 2, 3. The estimation results obtained from the MLE and Bayes
methods are presented in Table 6. We considered 11,000 iterations and discarded the first
1000 iterations as the burn-in period to compute Bayes estimates. The convergence of the
posterior chains is depicted in Figures 2–4. Under the estimated values of the parameters
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in Table 6, the survival probability when t = 0.3 for MLE is given by S1−MLE = 0.861756,
S22−MLE = 0.867113, and for a Bayes estimate, it is S1−B = 0.863052 and S22−B = 0.84316.

Table 5. Real life data presented by Hoel (1972) for radiated male mice.

cause1 159 189 191 198 200 207 220 235 245 250 256
261 265 266 280 317 318 343 356 383 399 403
414 428 432 495 525 536 549 552 554 558 571
596 605 612 621 628 631 636 643 647 648 649
586 594 596 661 663 666 670 695 697 700 705
712 713 738 748 753

cause2 40 42 51 62 163 179 206 222 228 249 252
282 324 333 341 366 385 407 420 431 441 461
462 482 517 517 524 564 567 586 619 620 621
622 647 651 686 761 763

Figure 1. Profile log-likelihood function of θ.

Figure 2. Simulated numbers and corresponding histogram generated under MCMC.
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Figure 3. Simulated numbers and corresponding histogram generated under MCMC.

Figure 4. Simulated numbers and corresponding histogram generated under MCMC.

Table 6. The point and the corresponding 95% interval estimate.

Pa. ML Bayes 95% A.C.I. Lenth 95% C.I. Lenth

α1 1.5607 0.9695 (0.7588, 2.3626) 1.6038 (1.1172, 1.7971) 0.6799
α2 1.4957 1.1230 (0.7172, 2.2742) 1.5571 (1.0846, 1.6138) 0.5291
θ 1.9123 1.5013 (1.4658, 2.3588) 0.8930 (1.3123, 1.5896) 0.2773

6.2. Example 2: Simulated Data

A data set was generated from a Burr XII distribution using the following algorithms.

1. We fixed η = {α1, α2, θ} = {1.0, 1.3, 0.5}, and the hyper parameters were selected to
satisfy E(ηi) ' ai

bi
.

2. For the given n = 50, m = 25 and τ = 5.5, we generated a type I HSC random sample
from a Burr XII distribution with parameters α1 + α2 and θ ∈ {0.0008, 0.0012, 0.0016,
0.0024, 0.0025, 0.0038, 0.0057, 0.0069, 0.0103, 0.0105, 0.012, 0.0134, 0.0172, 0.0237, 0.0312,
0.0336, 0.0507, 0.0589, 0.1098, 0.1295, 0.1577, 0.1675, 0.1732, 0.1959, 0.2141}.

3. From this data, we noticed that r = m = 25.
4. The number of censored failure causes n3 = 3 were generated from the Bernouli

distribution with a probability p = 0.1 and a sample size of 25.
5. The two observed causes n1 = 12 and n2 = 10 were generated from the binomail

distribution with parameter (r − n3) and the probability of success α1
α1+α2

and α2
α1+α2

,
respectively.

6: The fixed point method was used to compute the MLE with an initial value of 0.52
taken from the profile log-likelihood function (17) depicted in Figure 5.

7. The simulated number and the corresponding histogram generated under MCMC
methods are presented by Figures 6–8.

8. Point estimates, 95% ML intervals and a Bayes estimate are given in Table 7.
9. Under the estimated values of the parameters in Table 7, the survival probability

when t = 0.05 for MLE is given by S1−MLE = 0.822363, S22−MLE =0.84961 and, for a
Bayes estimate, S1−B = 0.836762, S22−B = 0.836863.
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Table 7. Point and 95% interval for the ML and Bayes estimate.

Exact ML Bayes 95% A.C.I. Length 95% C.I. Length

α1= 1.0 1.0368 1.0311 (0.3994, 1.6741) 1.2748 (0.8247, 1.8636) 1.0390
α= 1.3 0.8640 1.0304 (0.2896, 1.4383) 1.1488 (0.7965, 2.0385) 1.2420
θ= 0.5 0.5248 0.5567 (0.3559, 0.6936) 0.3377 (0.2862, 0.526) 0.2398

Figure 5. Profile log-likelihood function of θ.

Figure 6. Simulated numbers and corresponding histogram generated under MCMC.

Figure 7. Simulated numbers and corresponding histogram generated under MCMC.
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Figure 8. Simulated numbers and corresponding histogram generated under MCMC.

7. Conclusions

In a life testing experiment, failure may occur due to different causes. In this paper,
we considered partially observed independent causes of failure with a Burr XII life time
distribution. The competing risk model parameters are estimated by two different methods
of estimation, namely the MLE and Bayes methods, under a symmetric squared error loss
function. In addition to a simulation study, a real data set is used to show the practicality
of the proposed method. In addition, the interval estimates are listed for simulation as well
as for real data sets. Finally, the MCMC approach with an importance sampling step is
considered to compute the Bayes estimates. The results obtained from the real data and
Monte Carlo simulation study in Tables 4–7 suggested that the proposed model under
a type I HSC is capable of measuring competing disease risks. Small values of masking
probability are preferred over the large values. The affected sample size m and ideal test
time τ are more crucial than the sample size n. Estimation based on the Bayes method
leads to better results than the MLE method. The results of the MSEs and interval length
decrease for larger m and τ. In a life testing experiment, failure may occur due to different
causes. In this paper, we considered partially observed independent causes of failure with
a Burr XII life time distribution. The competing risk model parameters we re estimated by
two different methods of estimation, namely the MLE and Bayes methods. In addition to a
simulation study, a real data set is used to show the practicality of the proposed method. In
addition, the interval estimates are listed for the simulation as well as for the real data set.
Finally, the MCMC approach with an importance sampling step is considered to compute
the Bayes estimates. The results obtained from the real data and Monte Carlo simulation
study in Tables 4–7 suggested that

1 The proposed model under the type I HSC is capable of measuring competing
disease risks;

2 Small values of masking probability are preferred over large values;
3 The affected sample size m and ideal test time τ are more crucial than the sample

size n;
4 Estimation based on Bayes method leads to better results than the MLE;
5 The results of the MSEs and interval length decrease for larger m and τ.
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