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Abstract: The E-Bayesian estimation approach has been presented for estimating the parameter and/or
reliability characteristics of various models. Several investigations in the literature have considered this
method under the assumption that just one parameter is unknown. So, based on Type-II censoring,
this study proposes for the first time an effort to use the E-Bayesian estimation approach to estimate
the full model parameters as well as certain related functions such as the reliability and hazard rate
functions. To illustrate this purpose, we apply the proposed technique to the two-parameter generalized
inverted exponential distribution which can be considered to be one of the most flexible asymmetrical
probability distributions. Moreover, the E-Bayesian method, maximum likelihood, and Bayesian estima-
tion approaches are also considered for comparison purposes. Under the assumption of independent
gamma priors, the Bayes and E-Bayes estimators are developed using the symmetrical squared error
loss function. Due to the complex form of the joint posterior density, two approximation techniques,
namely the Lindley and Markov chain Monte Carlo methods, are considered to carry out the Bayes and
E-Bayes estimates and also to construct the associate credible intervals. Monte Carlo simulations are
performed to assess the performance of the proposed estimators. To demonstrate the applicability of the
proposed methods in real phenomenon, one real data set is analyzed and it shows that the proposed
method is effective and easy to operate in a real-life scenario.

Keywords: E-Bayesian estimation; reliability function; hazard rate function; generalized inverted
exponential distribution; Markov chain Monte Carlo techniques

1. Introduction

The exponential distribution is the most popular distribution for lifetime data analysis
because of the simplicity of its probability density function (PDF). In spite of its popularity,
it has serious limitations in modeling data because of its constant failure rate. Many authors
proposed generalizations of the exponential distribution by adding a new parameter(s)
or mixing it with other well-known distributions to solve this limitation. For instance,
consider the exponentiated exponential distribution proposed by [1], alpha power expo-
nential distribution by [2], and Marshall–Olkin alpha power exponential distribution by [3].
Another modification to the exponential distribution has been done by using its inverted
version. To formally define this, let the random variable Y follow an exponential distribu-
tion, then X = Y−1 follows an inverted exponential distribution. Reference [4] used the
maximum likelihood method to estimate the parameter and the reliability function (RF) of
the inverted exponential distribution using complete samples. By including an exponenti-
ated parameter, Reference [5] introduced a generalized form of the inverted exponential
distribution. The new distribution was called the generalized inverted exponential distri-
bution (GIED). They have constructed various statistical properties of this distribution and
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observed that the hazard rate function (HRF) of the GIED can be increasing or decreasing
shaped. The random variable X is said to follow the GIED with scale parameter δ and
shape parameter θ if its PDF is given by

f (x; δ, θ) = δθx−2e−δ/x
(

1− e−δ/x
)θ−1

, x > 0, δ, θ > 0. (1)

The corresponding RF and HRF at mission time t > 0 are given, respectively, by

R(t; δ, θ) =
(

1− e−δ/t
)θ

, t > 0, δ, θ > 0 (2)

and
h(t; δ, θ) = δθt−2

(
eδ/t − 1

)−1
, t > 0, δ, θ > 0. (3)

The GIED is a specific case of the exponentiated inverse Weibull distribution. Refer-
ence [6] developed some of the GIED’s distributional properties in relation to this topic.
Reference [7] used the maximum likelihood method to investigate the reliability of a multi-
component stress-strength for the GIED. Reference [8] obtained the reliability estimation of
the GIED under progressive Type-II censoring. Reference [9] used the Bayesian perspective
to estimate the GIED parameters under progressive Type-II censoring. Reference [10]
studied the maximum likelihood and Bayesian estimations of the GIED by considering
hybrid censoring. Recently, Reference [11] obtained the E-Bayesian estimations of the shape
parameter and some lifetime parameters of the GIED. See [12–14] for more details about
GIED.

Reference [15] introduced an estimation method, named Expected-Bayesian (E-Bayesian)
method, to estimate the failure rate of the exponential distribution. Using this approach,
the E-Bayesian estimator (EBE) is given by taking the expectation of the usual Bayesian
estimator (BE) over the hyper-parameters. Recently, many authors considered the E-
Bayesian estimation method to estimate the unknown parameters of some distributions.
Reference [15] introduced the E-Bayesian estimation method and estimated the expo-
nential distribution parameter under Type-I censored data. Reference [16] studied the
E-Bayesian estimation of the Burr-XII distribution using Type-II censored data. The E-
Bayesian estimation for the geometric model based on record statistics was investigated
in [17]. Reference [18] studied the E-Bayesian estimation of the exponentiated parameter
using the LINEX loss function. Reference [19] discussed E-Bayesian estimation for the
simple step-stress model based on Type-II censored data. Reference [20] obtained the
E-Bayesian estimation of Burr Type-XII distribution using adaptive progressive Type-II
censored data. Reference [21] studied the E-Bayesian estimations for the exponential dis-
tribution based on record data. Reference [11] considered the E-Bayesian estimations for
some lifetime parameters of the GIED using Type-II censoring. For more studies about
E-Bayesian estimation, one may refer to [22–25].

All of the previous research focused on E-Bayesian estimation problems for just
distributions with one parameter such as exponential or geometric distributions. When
studying distributions with more than one parameter, on the other hand, they always
assumed that only one of these parameters is unknown to avoid analytical issues and
computing complexity. Although this approach is simple, it raises a significant concern
regarding the other unestimated parameters. To the best of our knowledge, the E-Bayesian
estimation with the assumption that all model parameters are unknown has not yet been
studied. For this reason, the main objectives of the present paper are as follows:

1. To derive the frequentist and BEs of the unknown parameters, RF and HRF for the
GIED when the lifetime data are collected under Type-II censored sampling.

2. To construct the asymptotic confidence intervals (ACIs) and Bayesian credible inter-
vals (BCIs) of the unknown parameters, RF and HRF.

3. To propose a simple approach to acquire the EBEs of the unknown parameters, RF
and HRF as well as the corresponding E-Bayesian credible intervals (E-BCIs).
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4. To compare the performance of the different proposed estimators using a simulation
study by considering some criteria including root mean squared errors (RMSEs),
relative absolute biases (RABs), and confidence lengths (CLs).

5. To show the usefulness and applicability of the proposed estimators by analyzing an
organ transplant blood data set.

Under the assumption of independent gamma priors, the BEs and EBEs are developed
using squared error loss (SEL). The SEL function is the generally employed symmetric loss
function in which the overestimation and underestimation are treated equally. Since the
Bayesian and E-Bayesian estimators cannot be obtained in closed forms, therefore we pro-
pose to use two procedures in order to approximate them, namely Lindley’s approximation
and Markov chain Monte Carlo (MCMC) methods.

The rest of this paper is organized as follows. The maximum likelihood method is
considered in Section 2 to estimate the parameters RF and HRF. Section 3 is devoted to the
Bayesian estimation using Lindley’s approximation and MCMC technique. The E-Bayesian
estimations are considered in Section 4. In Section 5 we discuss the elicitation procedure
used to determine the hyper-parameter values. Various interval estimations are considered
in Section 6. A simulation study is performed in Section 7. One real data set is analyzed in
Section 8. Finally, the paper is concluded in Section 9.

2. Maximum Likelihood Estimation

Suppose that n independent items taken from a population with PDF and RF given
by (1) and (2), respectively, are placed on a test. Let x1:m, . . . , xm:m be an observed Type-II
censored sample of size m < n from the GIED. Then from (1) and (2), we can write the
likelihood function, ignoring the constant term, as follows

L(δ, θ) = (δθ)m ∏m
i=1 x−2

i exp
{
−
[
∑m

i=1 (δ/xi) + log(ξ(xi; δ))
]}

× exp
{
−θ
[
−∑m

i=1 log(ξ(xi; δ))− (n−m) log(ξ(xm; δ))
]}

, (4)

where xi = xi:m, ξ(xi; δ) = 1− e−δ/xi , and ξ(xm; δ) = 1− e−δ/xm . To obtain the maximum
likelihood estimates (MLEs) of δ and θ, we first obtain the natural logarithm of (4) up to
proportional as

log L(δ, θ) ∝ m log(δθ)−∑m
i=1(δ/xi) + (θ − 1)∑m

i=1 log(ξ(xi; δ)) + θ(n−m) log(ξ(xm; δ)). (5)

The MLEs of δ and θ, denoted by δ̂ML and θ̂ML, are the solution of the following two
normal equations

m
δ
−∑m

i=1 x−1
i + (θ − 1)∑m

i=1

x−1
i e−δ/xi

ξ(xi; δ)
+ θ(n−m)

x−1
m e−

δ
xm

ξ(xm; δ)
= 0, (6)

and m
θ
+ ∑m

i=1 log(ξ(xi; δ)) + (n−m) log(ξ(xm; δ)) = 0. (7)

From Equation (7) and for constant δ, we can obtain the θ̂ML as a function in δ as

θ̂ML(δ) = −m
[
∑m

i=1 log(ξ(xi; δ)) + (n−m) log(ξ(xm; δ))
]−1

. (8)

Substituting (8) in (6), the MLE of δ is the solution of the following nonlinear equation

m
δ
−

m

∑
i=1

x−1
i + (θ̂ML(δ)− 1)∑m

i=1

x−1
i e−δ/xi

ξ(xi; δ)
+ θ̂ML(δ)(n−m)

x−1
m e−

δ
xm

ξ(xm; δ)
= 0. (9)

Any numerical technique can be used to obtain δ̂ML from (9). Once δ̂ML is obtained
the θ̂ML can be obtained directly from (8). Using the invariance property of the MLEs,
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the MLEs of RF and HRF can be obtained by replacing δ and θ in (2) and (3) by δ̂ML and
θ̂ML, respectively. Thus

R̂ML(t) = (1− e−δ̂ML/t)θ̂ML

and
ĥML(t) = δ̂ML θ̂MLt−2(eδ̂ML/t − 1)−1.

For more details about the reliability characteristics estimations, one may refer to [26–29].

3. Bayesian Estimation

This section discusses the Bayesian estimation of the parameters δ and θ and the
reliability indices under the SEL function. It is interesting to note that a joint conjugate
prior for the parameters does not exist when the two parameters are unknown; for further
information, see [9]. As a result, we investigate the BEs using independent gamma priors
for both δ and θ with the joint prior distribution as below.

g(δ, θ) ∝ δτ1−1θτ2−1e−(ν1δ+ν2θ), τj, νj > 0, j = 1, 2. (10)

Here, we choose to use gamma priors due to its mathematical flexibility and its ability
to cover a wide variety of prior beliefs of the experimenter. The joint posterior distribution
of δ and θ can be derived from (4) and (9) as follows

g(δ, θ|x) = A−1δm+τ1−1θm+τ2−1 exp
{
−
[
∑m

i=1 (δ/xi) + log(ξ(xi; δ))
]
− ν1δ

}
× exp

{
−θ
[
−∑m

i=1 log(ξ(xi; δ))− (n−m) log(ξ(xm; δ)) + ν2

]}
, (11)

where x = (x1, . . . , xm) and A is the normalized constant. From (11), the BE under SEL
function is given by the posterior mean. However, due to the complex form of the joint
posterior distribution in (11), the BEs of the unknown parameters are obtained in the
form of a ratio of two-dimensional integrals for which a closed-form solution is not easily
tractable due to implicit mathematical expressions. Because of that, we propose to use two
approaches, namely Lindley and MCMC methods to approximate the BEs from (11) as in
the following subsections.

3.1. Bayesian Estimation Using Lindley Approximation

Following the approach proposed by [30], we can obtain approximate explicit BEs
containing no integrals. Consider the ratio of integral in the form

Λ(X) =

∫
(δ,θ) ϕ(δ, θ) exp[`(δ, θ) + ψ(δ, θ)]d(δ, θ)∫

(δ,θ) exp[`(δ, θ) + ψ(δ, θ)]d(δ, θ)
(12)

where ϕ(δ, θ) is any function in δ and θ, `(δ, θ) = log L(δ, θ) and ψ(δ, θ) = log g(δ, θ).
Applying Lindley’s approximation, this ratio of integrals defined in (12) can be rewritten as

Λ(X) = ϕ(δ, θ) + 0.5
[
(ϕδδ + 2ϕδψδ)σδδ + (ϕθδ + 2ϕθψδ)σθδ + (ϕδθ + 2ϕδψθ)σδθ

+ (ϕθθ + 2ϕθψθ)σθθ

]
+ 0.5

[
(ϕδσδδ + ϕθσδθ)(`δδδσδδ + `δθδσδθ + `θδδσθδ

+ `θθδσθθ) + (ϕδσθδ + ϕθσθθ)(`θδδσδδ + `δθθσδθ + `θδθσθδ + `θθθσθθ)
]
, (13)

where ϕδ, ϕθ , ϕδθ , ϕθδ, ϕδδ, and ϕθθ are the derivatives of ϕ(δ, θ). All terms in (13) are
evaluated at the MLEs δ̂ = δ̂ML and θ̂ = θ̂ML of δ and θ, respectively. The other quantities
in (13) are obtained as

`δδ = −
m
δ2 − (θ − 1)∑m

i=1
e−δ/xi

x2
i ξ2(xi; δ)

− θ(n−m)
e−δ/xm

x2
mξ2(xm; δ)

,
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`θθ = −m
θ2 , `δθ = `θδ = ∑m

i=1
e−δ/xi

xiξ(xi; δ)
+ (n−m)

e−δ/xm

xmξ(xm; δ)
,

`δδδ =
2m
δ3 + (θ − 1)∑m

i=1
e−δ/xi (1 + e−δ/xi )

x3
i ξ3(xi; δ)

+ θ(n−m)
e−δ/xm(1 + e−δ/xm)

x3
mξ3(xm; δ)

,

`θθθ =
2m
θ3 , `θδδ = `δδθ = `δθδ = −∑m

i=1
e−δ/xi

x2
i ξ2xi; δ)

− (n−m)
e−δ/xm

x2
mξ2(xm; δ)

,

and
`δθθ = `θθδ = `θδθ = 0.

Additionally, σδδ, σθθ , and σδθ = σθδ are obtained as

σδδ =
−`θθ

`δδ`θθ − `2
δθ

, σθθ =
−`δδ

`δδ`θθ − `2
δθ

and σδθ =
`δθ

`δδ`θθ − `2
δθ

.

In addition, from the prior distribution in (10) we have

ψ(δ, θ) = log[g(δ, θ)] = (τ1 − 1) log(δ) + (τ2 − 1) log(θ)− (ν1δ + ν2θ).

Thus
ψδ =

τ1 − 1
δ
− ν1 and ψθ =

τ2 − 1
θ
− ν2. (14)

Now, when ϕ(δ, θ) = δ, hence ϕδ = 1 and ϕθ = ϕδδ = ϕθθ = ϕδθ = ϕθδ = 0. Then we
can obtain the BE of δ as follows

δ̃BL = δ̂ + ψδσδδ + ψθσδθ +
1
2

B1, (15)

where B1 = σ2
δδ`δδδ + 3σδδσδθ`δδθ + σθδσθθ`θθθ . Similarly, for ϕ(δ, θ) = θ and ϕθ = 1,

ϕδ = ϕδδ = ϕθθ = ϕδθ = ϕθδ = 0, we can obtain the BE of θ as follows

θ̃BL = θ̂ + ψδσθδ + ψθσθθ +
1
2

B2, (16)

where B2 = σδδσθθ`δδδ + 2σ2
δθ`δδθ + σθθσδδ`θδδ + σ2

θθ`θθθ .
Using the same approach we can obtain the BE of the RF by considering ϕ(δ, θ) =

[ξ(t; δ)]θ and in this case we have the following quantities

ϕδ = θt−1e−δ/t[ξ(t; δ)]θ−1, ϕθ = [ξ(t; δ)]θ log(ξ(t; δ)), ϕθθ = [ξ(t; δ)]θ [log(ξ(t; δ))]2,

ϕδδ = θt−2e−δ/t[ξ(t; δ)]θ−1[(θ − 1)e−δ/t − 1]

and
ϕδθ = ϕθδ = t−1e−δ/t[ξ(t; δ)]θ−1[1 + θ log(ξ(t; δ))].

Thus, the BE of the RF can be obtained as

R̃BL(t) = R̂(t) + B3 +
1
2

B4, (17)

where R̂ML = R̂ML(t), ξ(t; δ) = 1− e−δ/t, t > 0, B3 = ϕδψδσδδ + ϕθψδσθδ + ϕδψθσδθ +
ϕθψθσθθ and

B4 = ϕδδσδδ + 2ϕδθσδθ + ϕθθσθθ + (ϕδσδδ + ϕθσδθ)(`δδδσδδ + `δθδσδθ + `θδδσθδ)

+ (ϕδσθδ + ϕθσθθ)(`θδδσδδ + `θθθσθθ).
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Let ϕ(δ, θ) = δθt−2(eδ/t − 1)−1, then we have

ϕδ = θt−3(eδ/t − 1)−2[(t− δ)eδ/t − t], ϕθ = δt−2(eδ/t − 1)−1, ϕθθ = 0,

ϕδδ = θt−4eδ/t(eδ/t − 1)−3[δ(1 + eδ/t)− 2t(eδ/t − 1)],

and
ϕδθ = ϕθδ = t−3(eδ/t − 1)−2[eδ/t(t− δ)− t].

Therefore, the BE of the HRF can be obtained as

h̃BL(t) = ĥ(t) + B5 +
1
2

B6, (18)

where ĥML = ĥML(t),

B5 = ϕδψδσδδ + ϕθψδσθδ + ϕδψθσδθ + ϕθψθσθθ

and

B6 = ϕδδσδδ + 2ϕδθσδθ + (ϕδσδδ + ϕθσδθ)(`δδδσδδ + `δθδσδθ + `θδδσθδ)

+ (ϕδσθδ + ϕθσθθ)(`θδδσδδ + `θθθσθθ).

3.2. Bayesian Estimation Using MCMC

In this subsection, we propose to use the MCMC method to obtain the BEs of δ and θ
as well as R(t) and h(t). The MCMC method can be used to simulate samples from (11) and
in turn to obtain the BEs. To generate samples from (11), we need to sample successively
from a target distribution. Therefore, to implement the MCMC procedure, we revise the
posterior distribution in (11) as follows

g(δ, θ|x) ∝ g(δ|θ, x) g(θ|δ, x), (19)

where g(δ|θ, x) is the conditional distribution of δ given θ and data and can be written in
the form

g(δ|θ, x) ∝ δm+τ1−1 exp
{
−
[
∑m

i=1 (δ/xi) + log(ξ(xi; δ))
]
− ν1δ

}
× exp

{
−θ
[
−∑m

i=1 log(ξ(xi; δ))− (n−m) log(ξ(xm; δ))
]}

(20)

and g(θ|δ, x) is the conditional distribution of θ given δ and data in the form

g(θ|δ, x) ∝ θm+τ2−1 exp
{
−θ
[
−∑m

i=1 log(ξ(xi; δ))− (n−m) log(ξ(xm; δ)) + ν2

]}
. (21)

It can be seen from (21) that g(θ|δ, x) is gamma density, therefore, samples of θ can
be easily generated by considering any gamma generating routine. On the other hand,
the conditional distribution of δ given by (20) cannot be reduced to any well-known
distributions. Therefore, following [31], we have employed a hybrid strategy combining
the Metropolis–Hasting (M–H) algorithm with the Gibbs algorithm for obtaining the
samples from the posterior distributions to develop the BEs and construct the associated
credible intervals. One can also consider the Hamiltonian Monte Carlo method, instead of
the Gibbs sampling, which uses an approximate Hamiltonian dynamics simulation based
on numerical integration which is then corrected by performing a Metropolis acceptance
step, for details see [32]. The hybrid M–H steps (for updating δ) within Gibbs steps (for
updating θ) are carried out using the following steps:

Step 1: Set j = 1

Step 2: Generate δ(j) from (20) using M-H steps with N(δ̂ML, σδδ) as a proposal distribution.
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Step 3: Generate θ(j) from (21).

Step 4: Set j = j + 1.

Step 5: Redo steps 2–4, M times, and obtain (δ(j), θ(j)), j = 1, 2, . . . , M.

Step 6: Get the BEs of δ, θ, R(t) and h(t) at distinct time t > 0 under SEL function.

To remove the affection of an initial guess value and also to guarantee the sampling
convergence, the first simulated varieties, say M0, are discarded in the beginning of the
analysis implementation (burn-in period) and the remaining samples can be further utilized
to carried out the BEs. Then, for sufficiently large M, the drawn Bayes MCMC samples of the
unknown parameters δ, θ, R(t) and h(t) as in ϑ(j) = (δ(j), θ(j), R(j)(t), h(j)(t)), j = M0 + 1,
M0 + 2, . . . , M can be used to develop the Bayesian inference. Thus, the approximate BEs
of ϑ based on SEL function is given by

ϑ̃BM = ∑M
j=M0+1 ϑ(j)/(M−M0) .

4. E-Bayesian Estimation

In this section, we obtain the EBEs of δ, θ, R(t), and h(t). Reference [15] proposed the
E-Bayesian estimation to estimate the failure rate of the exponential distribution using SEL
function. He also investigated some properties of the E-Bayesian estimation. In the classical
Bayesian estimation, the values of the hyper-parameters are considered to be constants and
determined through experience or arbitrary by the researcher. On the other hand, the E-
Bayesian estimation method assumes that these hyper-parameters are random variables
and have prior distributions. Therefore, the main advantage of the E-Bayesian estimation
over the classical Bayesian estimation is that it takes the expectation of the usual BE over
the hyper-parameters to take into account all possible values of the hyper-parameters. Let
µ̃B(a, b) be the BE of the unknown parameter µ, where a and b are the hyper-parameters.
Then, the EBE of the parameter µ can be obtained as follows

µ̂EB =
∫ ∫

D
µ̃B(a, b)π(a, b)da db,

where D is the domain of a and b, and π(a, b) is the prior distributions of the hyper-
parameters a and b. According to [15], the prior distributions of the hyper-parameters
should be selected to guarantee that the prior distributions are decreasing functions in
the parameters. In our case, we obtain the first derivative of the prior distribution of the
parameter δ as

dg(δ)
dδ

=
ντ1

1
Γ(τ1)

δτ1−2e−ν1δ[(τ1 − 1)− ν1δ]. (22)

Similarly, the first derivative of the prior distribution of the parameter θ is given by

dg(θ)
dθ

=
ντ2

2
Γ(τ2)

θτ2−2e−ν2θ [(τ2 − 1)− ν2θ], (23)

where g(δ) and g(θ) are the prior distributions of the parameters δ and θ, respectively.
From (22) and (23), we can observe that when 0 < τ1 < 1, ν1 > 0 and 0 < τ2 < 1, ν2 > 0,
the derivatives dg(δ)

dδ and dg(θ)
dθ are less than zero, therefore, g(δ) and g(θ) are decreasing

functions in δ and θ, respectively. Based on these results, we obtain the EBEs by considering
three different prior distributions for the hyper-parameters to show the influence of these
distributions on the results of E-Bayesian estimations. For the parameter δ, we consider
using the following three prior distributions for the hyper-parameters τ1 and ν1
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φ1(τ1, ν1) =
τ

s1−1
1 (1−τ1)

s2−1

c1B(s1,s2)
, 0 < τ1 < 1, 0 < ν1 < c1

φ2(τ1, ν1) =
2ν1τ

s1−1
1 (1−τ1)

s2−1

c2
1B(s1,s2)

, 0 < τ1 < 1, 0 < ν1 < c1

φ3(τ1, ν1) =
3ν2

1 τ
s1−1
1 (1−τ1)

s2−1

c3
1B(s1,s2)

, 0 < τ1 < 1, 0 < ν1 < c1


, (24)

where B(., .) is the beta function. Additionally, for the parameter θ, the following three
prior distributions for the hyper-parameters τ2 and ν2 are considered

π1(τ2, ν2) =
τ

z1−1
2 (1−τ2)

z2−1

c2B(z1,z2)
, 0 < τ2 < 1, 0 < ν2 < c2

π2(τ2, ν2) =
2ν2τ

z1−1
2 (1−τ2)

z2−1

c2
2B(z1,z2)

, 0 < τ2 < 1, 0 < ν2 < c2

π3(τ2, ν2) =
3ν2

2 τ
z1−1
2 (1−τ2)

z2−1

c3
2B(z1,z2)

, 0 < τ2 < 1, 0 < ν2 < c2


. (25)

For more details about the E-Bayesian estimation, one can refer to [16,19,20,33,34].
The EBEs of δ and θ are, respectively, obtained as follows

δ̂EB =
∫ ∫

D
δ̃B(τ1, ν1) φk(τ1, ν1) dτ1 dν1, k = 1, 2, 3, (26)

and
θ̂EB =

∫ ∫
D

θ̃B(τ2, ν2)πk(τ2, ν2) dτ2 dν2, k = 1, 2, 3, (27)

where δ̃B(τ1, ν1) and θ̃B(τ2, ν2) are the BEs of δ and θ, respectively. Using the same approach,
we can obtain the EBEs of the RF and HRF. Since the BEs δ̃B(τ1, ν1) and θ̃B(τ2, ν2) have
no closed form, then it is not easy to obtain the EBEs in (26) and (27). To overcome this
problem, we propose to use the Lindley approximation and MCMC methods in the next
subsections to obtain the EBEs of δ, θ, R(t) and h(t).

4.1. E-Bayesian Estimation Using Lindley Approximation

To obtain the EBEs, we need to obtain the expected values of ψδ and ψθ given by (14)
over the prior distributions of the hyper-parameters given by (24) and (25), respectively.
Then, using (14) and (24) we have the following results:

(1) For the prior distribution φ1(τ1, ν1)

ψδ.1 =
∫ c1

0

∫ 1

0
ψδ φ1(τ1, ν1) dτ1 dν1

=
∫ c1

0

∫ 1

0

(
τ1 − 1

δ
− ν1

)
τs1−1

1 (1− τ1)
s2−1

c1B(s1, s2)
dτ1 dν1

=
1
δ

(
s1

s1 + s2
− c1δ

2
− 1
)

. (28)

(2) For the prior distribution φ2(τ1, ν1)

ψδ.2 =
∫ c1

0

∫ 1

0
ψδ φ2(τ1, ν1) dτ1 dν1

=
∫ c1

0

∫ 1

0

(
τ1 − 1

δ
− ν1

)
2ν1τs1−1

1 (1− τ1)
s2−1

c2
1B(s1, s2)

dτ1 dν1

=
1
δ

(
s1

s1 + s2
− 2c1δ

3
− 1
)

. (29)
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(3) For the prior distribution φ3(τ1, ν1)

ψδ.3 =
∫ c1

0

∫ 1

0
ψδ φ3(τ1, ν1) dτ1 dν1

=
∫ c1

0

∫ 1

0

(
τ1 − 1

δ
− ν1

)
3ν2

1 τs1−1
1 (1− τ1)

s2−1

c3
1B(s1, s2)

dτ1 dν1

=
1
δ

(
s1

s1 + s2
− 3c1δ

4
− 1
)

. (30)

Similarly, from (14) and (25) we can obtain the following results:
(1) For the prior distribution π1(τ2, ν2)

ψθ.1 =
∫ c2

0

∫ 1

0
ψθ π1(τ2, ν2) dτ2 dν2

=
∫ c2

0

∫ 1

0

(
τ2 − 1

θ
− ν2

)
τz1−1

2 (1− τ2)
z2−1

c2B(z1, z2)
dτ2 dν2

=
1
θ

(
z1

z1 + z2
− c2θ

2
− 1
)

. (31)

(2) For the prior distribution π2(τ2, ν2)

ψθ.2 =
∫ c2

0

∫ 1

0
ψθ π2(τ2, ν2) dτ2 dν2

=
∫ c2

0

∫ 1

0

(
τ2 − 1

θ
− ν2

)
2ν2τz1−1

2 (1− τ2)
z2−1

c2
2B(z1, z2)

dτ2 dν2

=
1
θ

(
z1

z1 + z2
− 2c2θ

3
− 1
)

. (32)

(3) For the prior distribution π3(τ2, ν2)

ψθ.3 =
∫ c2

0

∫ 1

0
ψθ π3(τ2, ν2) dτ2 dν2

=
∫ 1

0

∫ c2

0

(
τ2 − 1

θ
− ν2

)
3ν2

2 τz1−1
2 (1− τ2)

z2−1

c3
2B(z1, z2)

dτ2 dν2

=
1
θ

(
z1

z1 + z2
− 3c2θ

4
− 1
)

. (33)

Now, the different EBEs of the parameter δ can be obtained using Lindely approxima-
tion by using (15) and the results in (28)–(33) as follows

δ̃EBL.k = δ̂ + ψδ.kσδδ + ψθ.kσδθ +
1
2

B1, k = 1, 2, 3. (34)

From (16) and the results in (28)–(32), we can obtain the EBEs of θ as

θ̃EBL.k = θ̂ + ψδ.kσθδ + ψθ.kσθθ +
1
2

B2, k = 1, 2, 3. (35)

Similarly, we can obtain the EBEs of the RF from (17) and (28)–(32) as follows

R̃EBL.k(t) = R̂(t) + B3.k +
1
2

B4, k = 1, 2, 3, (36)
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where B3.k = ϕδψδ.kσδδ + ϕθψδ.kσθδ + ϕδψθ.kσδθ + ϕθψθ.kσθθ . Additionally, the EBEs of the
HRF can be obtained from (18) and (28)–(32) as follow

h̃EBL.k(t) = ĥ(t) + B5.k +
1
2

B6, k = 1, 2, 3, (37)

where B5.k = ϕδψδ.kσδδ + ϕθψδ.kσθδ + ϕδψθ.kσδθ + ϕθψθ.kσθθ .

4.2. E-Bayesian Estimation Using MCMC

Here, the MCMC method is used to obtain the EBEs of δ, θ, R(t), and h(t). The MCMC
method is used to generate samples of δ and θ based on the full conditional distributions
given by (20) and (21) and the prior distributions of the hyper-parameters in (24) and (25).
The EBEs are obtained according to the following steps

Step 1: Set the initial values of δ and θ as (δ(0), θ(0)) = (δ̂, θ̂).

Step 2: Determine the values of c1, c2, s1, s2, z1 and z2.

Step 3: Set j = 1

Step 4: Generate τ
(j)
1 and ν

(j)
1 from (24).

Step 5: Generate τ
(j)
2 and ν

(j)
2 from (25).

Step 6: Generate δ(j) from (20) using M-H steps with N(δ̂, σδδ).

Step 7: Generate θ(j) from (21).

Step 8: Set j = j + 1.

Step 9: Redo steps 3–8, M times, and obtain (δ(j), θ(j)), j = 1, 2, . . . , M.

Step 10: Get the EBEs of ϑ, where ϑ = (δ, θ, R(t), h(t)), under SEL function as

ϑ̃EBM.k = ∑M
j=M0+1 ϑ

(j)
k /(M−M0), k = 1, 2, 3,

where M0 is burn-in.ϑ(j) = (δ(j), θ(j), R(j)(t), h(j)(t)), j = M0 + 1, M0 + 2, . . . , M

5. Hyper-Parameter Value Selection

In the Bayesian paradigm, the elicitation procedure used to determine the hyper-
parameter value, when an informative prior of the density parameter is taken into account,
is the main issue. This problem has been discussed in the literature [35,36]. Moreover,
the value of hyper-parameters for the unknown parameter under interest is made by
assuming two independent information namely prior mean and prior variance of the
model parameters under consideration. In this regard, we propose the following steps of
the past samples algorithm to select the values of hyper-parameters (τ1, ν1) and (τ2, ν2) of
δ and θ, respectively, as

Step 1: Set the parameter value of δ and θ.

Step 2: Set j = 1

Step 3: Draw a random sample of size n from GIED.

Step 4: Compute the MLEs δ̂ and θ̂ of δ and θ, respectively.

Step 5: Set j = 1.

Step 6: Repeat steps 2–5 M times to get δ̂(j) and θ̂(j) for j = 1, 2, . . . , M.

Step 7: Equating the mean and the variance of δ̂(j) and θ̂(j) for j = 1, 2, . . . , M to the mean
and variance of the corresponding gamma density priors, respectively, as

1
M ∑M

j=1 δ̂(j) =
τ1

ν1
and

1
M− 1∑M

j=1

(
δ̂(j) − 1

M ∑M
j=1 δ̂(j)

)2
=

τ1

ν1
2 , (38)
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and
1
M ∑M

j=1 θ̂(j) =
τ2

ν2
and

1
M− 1∑M

j=1

(
θ̂(j) − 1

M ∑M
j=1 θ̂(j)

)2
=

τ2

ν22 . (39)

Step 8: Solving (38), the estimated hyper-parameter values τ̂1 and ν̂1 of τ1 and ν1 for δ can
obtained respectively by

τ̂1 =

(
1
M ∑M

j=1 δ̂(j)
)2

1
M−1 ∑M

j=1

(
δ̂(j) −M−1 ∑M

j=1 δ̂(j)
)2 , and ν̂1 =

1
M ∑M

j=1 δ̂(j)

1
M−1 ∑M

j=1

(
δ̂(j) −M−1 ∑M

j=1 δ̂(j)
)2 .

Step 9: Solving (39), the estimated hyper-parameter values τ̂2 and ν̂2 of τ2 and ν2 for θ can
obtained respectively by

τ̂2 =

(
1
M ∑M

j=1 θ̂(j)
)2

1
M−1 ∑M

j=1

(
θ̂(j) −M−1 ∑M

j=1 θ̂(j)
)2 , and ν̂2 =

1
M ∑M

j=1 θ̂(j)

1
M−1 ∑M

j=1

(
θ̂(j) −M−1 ∑M

j=1 θ̂(j)
)2 .

Similarly, one can use the same above steps of the past samples algorithm to determine
the value of priors si and zi, i = 1, 2, respectively.

6. Interval Estimation

In this section, we propose to use the asymptotic properties of the MLEs of δ and θ,
or any function of them such as R(t) and h(t) in order to construct associated confidence
intervals. Further, using the MCMC simulated varieties of the BEs and EBEs for δ, θ, R(t),
and h(t), the associated credible intervals are constructed.

6.1. Asymptotic Confidence Intervals

The 100(1− κ)% ACIs for ϑ, where ϑ = (δ, θ, R(t), h(t)), can be estimated using the
observed Fisher information matrix I−1(·), which is defined as the inverse of the matrix
of second partial derivatives of (4) with respect to δ and θ locally at their MLEs δ̂ and θ̂,
see [37], as

I−1(δ̂, θ̂) ∼=
[
−`δδ − `δθ

−`θδ − `θθ

]−1

=

[
σ̂δ̂δ̂ σ̂δ̂θ̂
σ̂θ̂δ̂ σ̂θ̂θ̂

]
. (40)

The second partial derivatives `ij, i, j = 1, 2, as in (40) are previously reported in
Section 3.1. Under some mild regularity conditions, the MLEs δ̂ and θ̂ are approximately
distributed as normal distribution δ̂∼N(δ, σδδ) and θ̂∼N(θ, σθθ), respectively. To construct
the 100(1− κ)% ACIs of the RF R(t) and HRF h(t), we need to approximate the variance
estimate of them.

Thus, the delta method which is a general approach to obtain the approximate esti-
mates of the variance associated with the MLEs of R(t) and h(t) is used for this purpose.
However, according to delta method based on (40), the variance of R̂(t) and ĥ(t) obtained
at their MLEs δ̂ and θ̂ can be approximated, respectively by

σ̂2
R̂ = [∇R̂]>I−1(δ̂, θ̂)[∇R̂]|(δ,θ)=(δ̂,θ̂)

and
σ̂2

ĥ = [∇ĥ]
>

I−1(δ̂, θ̂)[∇ĥ]|(δ,θ)=(δ̂,θ̂),

where ∇R̂ and ∇ĥ are the gradients of R(t) and h(t), respectively, with respect to δ and
θ, i.e.,

[∇R]> = [∂R(t)/∂α , ∂R(t)/∂λ ],
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and
[∇h]> = [∂h(t)/∂α , ∂h(t)/∂λ ],

Hence, 100(1− κ)% two-sided ACI for any function of δ and θ obtained based on their
MLEs ϑ̂, where ϑ̂ = (δ̂, θ̂, R̂(t), ĥ(t)), are given by

ϑ̂∓ zκ/2

√
σ̂2

ϑ̂

where zκ/2 is the (κ/2)-th upper percentile of the standard normal distribution.

6.2. Bayes and E-Bayes Credible Intervals

To construct the corresponding Bayesian and E-Bayesian credible intervals of any
function of the unknown model parameters δ and θ, the associated MCMC simulated
varieties obtained in Sections 3.2 and 4.2 are used, respectively. To construct the BCIs of
the parameters δ and θ as well as R(t) and h(t), order the simulated samples of Bayesian
MCMC estimates ϑ(j) for j = 1, 2, . . . , M after burn-in M0 as ϑ(M0+1), ϑ(M0+2), . . . , ϑ(M).
Hence, the 100(1− κ)% two-sided BCIs of ϑ is given by(

ϑ(M−M0)(κ/2), ϑ(M−M0)(1−(κ/2))

)
.

Similarly, using the simulated samples of E-Bayesian MCMC estimates ϑ(j) for j =
1, 2, . . . , M after burn-in M0, the 100(1− κ)% two-sided E-BCIs for δ, θ, R(t) and h(t) can
be easily constructed.

7. Simulation Study

Various Monte Carlo simulations are applied to analyze the behavior of the proposed
estimators produced in the previous sections, including the MLEs, Bayesian (Lindley’s
approximation and MCMC), and E-Bayesian (Lindley’s approximation and MCMC), as well
as the corresponding asymptotic/credible intervals. By considering two sets of parameter
values, (δ, θ) = (1, 1) and (δ, θ) = (3, 3), we simulate a large 1000 Type-II censored samples
for different combinations of n (number of total test units) and m (effective sample size) such
as n = 40, 60, and 80, m is taken as failure proportion such as m/n = 50 and 80% for each
n. The RF and HRF are evaluated when (δ, θ) = (1, 1) at the distinct time t = 0.25, hence
the corresponding actual values become 0.9816844 and 0.2985178, respectively. Similarly,
when (δ, θ) = (3, 3) for given time t = 0.75, the actual values of R(t) and h(t) are 0.9460533
and 0.2985178, respectively.

In the Bayesian paradigm, the choice of the hyper-parameter values is the main
issue. For this propose, to assign values for the hyper-parameters τi, νi, i = 1, 2, of the
gamma prior, we propose to use the procedure of past samples data described in Section 5.
In this regard, we generate 1000 complete samples of size 30 (say) from the GIED as past
samples for each plausible values of the unknown model parameters δ and θ. Consequently,
the values of τi, νi, i = 1, 2, are (τ1, τ2, ν1, ν2) = (12.326, 15.090, 10.990, 13.710) for (δ, θ) =
(1, 1) and (τ1, τ2, ν1, ν2) = (24.926, 7.9651, 7.7901, 2.3014) for (δ, θ) = (3, 3). In addition,
to carry out the influence of the various prior parameters on the desired EBEs of δ and
θ, we generate τ1 and ν1 for the parameter δ and τ2 and ν2 for the parameter θ from beta
and uniform densities in (24) and (25), respectively. Based on the past samples and for
fixed ci = 0.5 the values of si, zi, i = 1, 2, which are used to calculate the desired EBEs are
(s1, s2, z1, z2) = (8.5420, 7.3215, 2.7534, 1.9968). Using the hybrid strategy combining M–H
with the Gibbs algorithm proposed in Sections 3.2 and 4.2, we generate 12,000 MCMC
samples and discard the first 2000 samples from the generated sequence to remove the
affection of the selection of the start value. Here, the initial values for running the MCMC
sampler algorithm was taken to be the MLEs.
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For each estimation issue, the average point estimates of the unknown parameters
δ and θ as well as R(t) and h(t) with their RMSEs and RABs as well as the average CLs
(ACLs) of the interval estimates are calculated using the following formulas

ϑ̂η =
1
Q ∑Q

i=1 ϑ̂
(i)
η , η = 1, 2, 3, 4, (41)

RMSE(ϑ̂η) =

√
1
Q ∑Q

i=1

(
ϑ̂
(i)
η − ϑη

)2
, η = 1, 2, 3, 4, (42)

RAB(ϑ̂η) =
1
Q ∑Q

i=1

∣∣∣ϑ̂(i)
η − ϑη

∣∣∣
ϑη

, η = 1, 2, 3, 4, (43)

and
ACL(ϑ̂η) =

1
Q ∑Q

i=1

(
ϑ̂
(i)
ηU − ϑ̂

(i)
ηL

)
, η = 1, 2, 3, 4, (44)

where Q is the number of replicates, ϑ̂ is the MLE, BE, or EBE of the parameter ϑ and
(ϑ̂ηL , ϑ̂ηU ) denote the 100(1 − γ)% confidence interval bounds, where ϑ1 = δ, ϑ2 = θ,
ϑ3 = R(t) and ϑ4 = h(t). The average estimates of δ, θ, R(t) and h(t) with their RMSEs and
RABs are calculated and reported in Tables 1–4. Uniformly, each column in the Tables 1–4 for
each m contains three values correspond to the AE, RMSE, and RAB summarized as the first,
second, and third values, respectively. In addition, the ACLs of 95% asymptotic/credible
intervals of δ, θ, R(t), and h(t) are listed in Tables 5 and 6. All numerical computations are
performed using R statistical programming language software version 4.0.4 by mainly two
useful recommended packages; namely the “CODA” package which used for carrying out
the computations of MCMC by [38] and the “maxLik” package to maximize the likelihood
function proposed by [39].

From Tables 1–6, it can be observed that the proposed estimators of the unknown
parameters for the GIED are very good in terms of RMSEs, RABs, and ACLs criteria. As n and
m increase, the RMSEs, RABs, and ACLs decrease as expected. So, to get better estimation
results, one may tend to increase the effective sample size. Additionally, it can be seen that
as the failure percentage m/n increases, the point and interval estimates become even better.
Comparing the performance of the proposed estimation methods, simulation results showed
that the EBEs for δ and R(t) perform better than other methods on the basis of minimum
RMSEs and RABs. On the other hand, the BEs for θ and h(t) have the smallest RMSEs and
RABs compared with other estimates in most of the cases. In addition, the credible intervals
are performed better than the ACIs due to the gamma prior information in terms of shortest
ACLs. Further, it is also noted the Bayesian and E-Bayesian approaches using the hybrid
M–H with the Gibbs algorithm sampler have performed better than Lindley’s approximation
procedure with respect to both RMSEs and RABs. Comparing the performance of the EBEs
based on the three different prior PDFs, it can be seen that the RMSEs and RABs of the
unknown model parameters δ and θ as well as R(t) and h(t) are greater based on prior
distribution 1 than those based on the other prior distributions.

Table 1. The AEs (first row), RMSEs (second row), and RABs (third row) of δ.

(δ, θ) n m MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

(1, 1) 40 20 1.1195 1.0655 1.1091 1.2909 1.2929 1.2754 1.0353 1.0349 1.0346
0.3359 0.8849 0.1848 0.4885 0.4870 0.4511 0.0432 0.0413 0.0373
0.2449 0.5270 0.1457 0.3550 0.3582 0.3398 0.0366 0.0360 0.0346

32 1.0864 1.0945 1.0602 1.1349 1.1352 1.1236 0.9889 0.9845 0.9804
0.2555 0.2513 0.1446 0.3336 0.3082 0.2995 0.0276 0.0253 0.0246
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Table 1. Cont.

(δ, θ) n m MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

0.1962 0.1792 0.1129 0.2332 0.2292 0.2246 0.0231 0.0191 0.0199
60 30 1.0846 1.1507 1.0762 1.1986 1.1925 1.1887 1.0244 1.0241 1.0183

0.2473 0.3115 0.1580 0.3520 0.3354 0.3244 0.0370 0.0315 0.0259
0.1872 0.2375 0.1225 0.2625 0.2546 0.2469 0.0302 0.0277 0.0205

48 1.0523 1.0891 1.0284 1.0864 1.0760 1.0570 1.0149 1.0121 0.9999
0.2070 0.1577 0.1195 0.2357 0.2237 0.2124 0.0343 0.0260 0.0133
0.1572 0.1163 0.0933 0.1775 0.1691 0.1639 0.0292 0.0211 0.0105

80 40 1.0615 1.1383 1.0625 1.1689 1.1649 1.1557 1.0078 1.0060 1.0174
0.2263 0.2123 0.1423 0.3004 0.2950 0.2836 0.0372 0.0329 0.0272
0.1719 0.1633 0.1109 0.2230 0.2205 0.2153 0.0313 0.0278 0.0230

64 1.0401 1.0777 1.0389 1.0626 1.0554 1.0521 1.0227 1.0186 1.0100
0.1734 0.1334 0.1148 0.1924 0.1887 0.1830 0.0267 0.0209 0.0125
0.1317 0.1036 0.0897 0.1447 0.1464 0.1414 0.0227 0.0187 0.0103

(3, 3) 40 20 3.2145 2.9732 3.0465 3.7890 3.6391 3.5856 3.0097 3.0081 3.0025
0.6869 1.8437 0.5090 1.2100 1.0123 0.9299 0.0293 0.0244 0.0216
0.1764 0.3442 0.1329 0.2969 0.2535 0.2413 0.0083 0.0064 0.0054

32 3.1491 3.0591 3.1632 3.2092 3.1506 3.1247 2.9995 2.9959 3.0109
0.6223 1.2058 0.4951 0.6105 0.5489 0.5296 0.0387 0.0223 0.0211
0.1583 0.2170 0.1277 0.1559 0.1403 0.1397 0.0115 0.0065 0.0054

60 30 3.1672 3.3550 3.0339 3.9009 3.8185 3.7457 3.0123 3.0152 3.0029
0.6004 1.3644 0.4601 1.2556 1.1694 1.0769 0.0179 0.0174 0.0159
0.1522 0.2917 0.1202 0.3181 0.2953 0.2755 0.0047 0.0052 0.0043

48 3.1233 3.1677 3.0336 3.1506 3.1392 3.0962 2.9883 2.9995 2.9953
0.5181 0.4353 0.3899 0.4987 0.4723 0.4412 0.0162 0.0152 0.0077
0.1368 0.0989 0.1022 0.1298 0.1190 0.1167 0.0042 0.0042 0.0021

80 40 3.1536 3.6011 3.0362 3.8030 3.7162 3.6524 2.9836 2.9883 2.9958
0.5431 1.1031 0.4133 1.1158 1.0335 0.9558 0.0177 0.0164 0.0115
0.1401 0.2925 0.1078 0.2855 0.2615 0.2443 0.0055 0.0046 0.0034

64 3.0989 3.2017 3.0676 3.1378 3.1077 3.0782 2.9834 3.0048 2.9971
0.4282 0.2576 0.3590 0.4349 0.4033 0.3905 0.0184 0.0126 0.0090
0.1104 0.0753 0.0938 0.1114 0.1051 0.1018 0.0055 0.0034 0.0025

Table 2. The AEs (first row), RMSEs (second row), and RABs (third row) of θ.

(δ, θ) n m MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

(1, 1) 40 20 1.2447 3.5536 1.0715 4.2877 4.2837 4.2701 1.0919 1.0928 1.0847
0.6271 4.3123 0.0747 3.4352 3.4134 3.4077 0.2499 0.2480 0.2437
0.4054 3.4991 0.0715 3.2877 3.2837 3.2701 0.1876 0.1849 0.1819

32 1.1219 3.1617 1.0239 3.3064 3.3084 3.2868 1.0289 1.0238 1.1926
0.3388 2.3146 0.0301 2.4449 2.4231 2.3947 0.1888 0.1852 0.1840
0.2434 2.1689 0.0251 2.3064 2.3084 2.2868 0.1453 0.1427 0.1420

60 30 1.1741 4.0378 1.0348 4.1653 4.1387 4.1031 1.0738 1.0720 1.0588
0.4560 3.2420 0.0444 3.2280 3.1965 3.1546 0.2217 0.2135 0.2043
0.3059 3.1179 0.0368 3.1653 3.1387 3.1031 0.1675 0.1626 0.1545

48 1.0748 3.1598 0.9901 3.2145 3.1709 3.1601 1.0396 1.0354 1.0263
0.2512 2.2328 0.0271 2.2993 2.2366 2.2317 0.1603 0.1572 0.1537
0.1805 2.1598 0.0222 2.2145 2.1709 2.1601 0.1245 0.1212 0.1194

80 40 1.1268 4.0632 1.0234 4.2453 4.2217 4.2179 1.0445 1.0437 1.0502
0.3750 3.1498 0.0381 3.2842 3.2570 3.2525 0.1810 0.1794 0.1776
0.2557 3.0896 0.0331 3.2453 3.2217 3.2179 0.1381 0.1380 0.1365

64 1.0581 3.1554 1.0157 3.1573 3.1106 3.1052 1.0406 1.0320 1.0265
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Table 2. Cont.

(δ, θ) n m MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

0.2138 2.2110 0.0272 2.2053 2.1530 2.1449 0.1374 0.1351 0.1316
0.1594 2.1554 0.0223 2.1573 2.1106 2.1052 0.1066 0.1045 0.1028

(3, 3) 40 20 3.6916 2.9921 2.8953 7.7877 7.2529 6.7721 3.1168 3.0733 3.0487
1.7495 9.6710 0.1075 8.2725 6.9536 5.6102 0.6392 0.6163 0.5983
0.3935 1.4207 0.0349 1.5959 1.4176 1.2574 0.1645 0.1588 0.1541

32 3.4354 3.6815 3.0195 5.0940 4.9258 4.8271 3.0742 3.0556 3.0504
1.4172 6.2592 0.0314 2.7488 2.5578 2.3036 0.5572 0.5426 0.5370
0.3098 0.9418 0.0087 0.6980 0.6419 0.6090 0.1417 0.1401 0.1401

60 30 3.6010 4.3264 2.9314 7.8495 7.6118 7.3998 3.0996 3.0707 3.0383
1.6977 8.3728 0.0908 7.0702 6.5662 6.4343 0.5823 0.5595 0.5396
0.3715 1.3336 0.0261 1.6165 1.5373 1.4666 0.1495 0.1455 0.1413

48 3.3708 4.4653 2.9461 4.7892 4.7168 4.6264 3.0328 3.0415 3.0138
1.1613 2.5480 0.0607 2.0855 2.0169 1.8728 0.4450 0.4448 0.4274
0.2674 0.6217 0.0186 0.5964 0.5723 0.5421 0.1153 0.1166 0.1128

80 40 3.6235 5.5127 2.9491 7.4986 7.1715 7.0092 3.0266 3.0093 3.0297
1.6710 6.8034 0.0552 6.3800 5.3552 5.2343 0.4760 0.4760 0.4721
0.3713 1.4079 0.0170 1.4995 1.3905 1.3364 0.1237 0.1256 0.1231

64 3.2478 4.6542 2.9888 4.6661 4.6283 4.5695 3.0098 3.0416 3.0128
0.8558 1.7518 0.0320 1.8733 1.8237 1.7680 0.3749 0.3790 0.3729
0.2067 0.5629 0.0084 0.5554 0.5428 0.5232 0.0987 0.0994 0.0981

Table 3. The AEs (first row), RMSEs (second row), and RABs (third row) of R(t).

(δ, θ) n m MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

(1, 1) 40 20 0.9816 0.9416 0.9847 0.9629 0.9647 0.9653 0.9826 0.9826 0.9827
0.0142 0.0401 0.0038 0.0274 0.0264 0.0255 0.0040 0.0039 0.0038
0.0110 0.0408 0.0034 0.0218 0.0203 0.0197 0.0033 0.0032 0.0031

32 0.9817 0.9648 0.9923 0.9737 0.9751 0.9754 0.9803 0.9800 0.9798
0.0127 0.0169 0.0025 0.0165 0.0158 0.0155 0.0041 0.0041 0.0042
0.0101 0.0172 0.0021 0.0129 0.0122 0.0118 0.0032 0.0032 0.0032

60 30 0.9820 0.9577 0.9828 0.9679 0.9692 0.9698 0.9821 0.9822 0.9820
0.0110 0.0240 0.0029 0.0210 0.0196 0.0189 0.0037 0.0035 0.0034
0.0089 0.0244 0.0024 0.0165 0.0153 0.0147 0.0030 0.0028 0.0027

48 0.9811 0.9693 0.9803 0.9762 0.9748 0.9759 0.9820 0.9819 0.9812
0.0108 0.0124 0.0031 0.0132 0.0130 0.0131 0.0032 0.0030 0.0029
0.0087 0.0126 0.0024 0.0101 0.0099 0.0101 0.0026 0.0024 0.0023

80 40 0.9814 0.9614 0.9822 0.9697 0.9705 0.9705 0.9814 0.9813 0.9820
0.0105 0.0203 0.0028 0.0181 0.0174 0.0173 0.0036 0.0035 0.0031
0.0085 0.0207 0.0023 0.0143 0.0137 0.0136 0.0029 0.0028 0.0025

64 0.9814 0.9727 0.9821 0.9774 0.9777 0.9779 0.9826 0.9825 0.9819
0.0093 0.0090 0.0023 0.0111 0.0110 0.0108 0.0025 0.0024 0.0023
0.0073 0.0091 0.0019 0.0087 0.0087 0.0083 0.0021 0.0020 0.0019

(3, 3) 40 20 0.9470 0.8917 0.9373 0.8940 0.9065 0.9127 0.9448 0.9454 0.9454
0.0262 0.0543 0.0134 0.0680 0.0573 0.0526 0.0109 0.0106 0.0104
0.0223 0.0574 0.0111 0.0586 0.0488 0.0432 0.0090 0.0088 0.0085

32 0.9457 0.8978 0.9447 0.9339 0.9425 0.9459 0.9447 0.9448 0.9460
0.0263 0.0482 0.0081 0.0351 0.0314 0.0308 0.0098 0.0096 0.0092
0.0220 0.0510 0.0067 0.0285 0.0264 0.0260 0.0080 0.0078 0.0077

60 30 0.9472 0.8787 0.9403 0.8778 0.8879 0.8919 0.9452 0.9460 0.9456
0.0222 0.0674 0.0107 0.0786 0.0686 0.0648 0.0099 0.0095 0.0094
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Table 3. Cont.

(δ, θ) n m MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

0.0186 0.0712 0.0087 0.0726 0.0628 0.0586 0.0081 0.0079 0.0078
48 0.9461 0.9158 0.9415 0.9373 0.9437 0.9452 0.9447 0.9453 0.9455

0.0226 0.0302 0.0087 0.0272 0.0236 0.0235 0.0080 0.0078 0.0075
0.0192 0.0320 0.0071 0.0224 0.0197 0.0199 0.0065 0.0065 0.0063

80 40 0.9471 0.8658 0.9417 0.8828 0.8880 0.8902 0.9444 0.9451 0.9453
0.0196 0.0802 0.0089 0.0708 0.0658 0.0637 0.0086 0.0085 0.0083
0.0164 0.0848 0.0072 0.0671 0.0617 0.0594 0.0070 0.0071 0.0069

64 0.9469 0.9232 0.9441 0.9405 0.9439 0.9452 0.9447 0.9457 0.9456
0.0185 0.0229 0.0067 0.0214 0.0200 0.0198 0.0068 0.0066 0.0065
0.0157 0.0242 0.0055 0.0179 0.0167 0.0166 0.0056 0.0055 0.0054

Table 4. The AEs (first row), RMSEs (second row), and RABs (third row) of h(t).

(δ, θ) n m MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

(1, 1) 40 20 0.2799 0.2284 0.2655 0.2426 0.2412 0.2419 0.2925 0.2932 0.2911
0.1561 0.0701 0.0505 0.1649 0.1682 0.1630 0.0637 0.0632 0.0624
0.4246 0.2349 0.1418 0.4630 0.4725 0.4563 0.1692 0.1673 0.1647

32 0.2830 0.2738 0.2942 0.3005 0.2952 0.2995 0.3181 0.3207 0.3232
0.1452 0.0247 0.0391 0.1618 0.1591 0.1573 0.0631 0.0633 0.0638
0.3956 0.0828 0.1051 0.4376 0.4257 0.4267 0.1608 0.1605 0.1616

60 30 0.2824 0.2389 0.2891 0.2525 0.2526 0.2562 0.2975 0.2972 0.2988
0.1266 0.0596 0.0425 0.1407 0.1366 0.1334 0.0589 0.0565 0.0558
0.3467 0.1995 0.1152 0.3948 0.3837 0.3710 0.1548 0.1494 0.1456

48 0.2938 0.2785 0.3170 0.2976 0.3040 0.3140 0.2970 0.2981 0.3065
0.1260 0.0201 0.0447 0.1351 0.1347 0.1342 0.0487 0.0468 0.0466
0.3436 0.0672 0.1166 0.3604 0.3575 0.3571 0.1300 0.1232 0.1212

80 40 0.2908 0.2480 0.2956 0.2538 0.2573 0.2608 0.3048 0.3062 0.2972
0.1188 0.0505 0.0405 0.1241 0.1224 0.1219 0.0544 0.0541 0.0492
0.3241 0.1691 0.1085 0.3400 0.3398 0.3371 0.1422 0.1415 0.1309

64 0.2930 0.2795 0.2958 0.2988 0.3038 0.3069 0.2898 0.2909 0.2971
0.1077 0.0191 0.0347 0.1164 0.1163 0.1159 0.0387 0.0383 0.0374
0.2865 0.0638 0.0929 0.3112 0.3185 0.3121 0.1050 0.1028 0.0996

(3, 3) 40 20 0.2882 0.2954 0.3373 0.2347 0.2474 0.2496 0.3070 0.3033 0.3026
0.1036 0.0031 0.0682 0.1266 0.1124 0.1097 0.0623 0.0607 0.0593
0.2776 0.0103 0.1756 0.3528 0.3114 0.3047 0.1619 0.1579 0.1538

32 0.2918 0.2919 0.3085 0.2913 0.2959 0.2987 0.3061 0.3053 0.3001
0.1026 0.0066 0.0468 0.0966 0.0955 0.0953 0.0556 0.0544 0.0526
0.2761 0.0224 0.1221 0.2602 0.2549 0.2589 0.1423 0.1410 0.1400

60 30 0.2889 0.2630 0.3238 0.2206 0.2278 0.2336 0.3046 0.3008 0.3014
0.0841 0.0355 0.0551 0.1232 0.1153 0.1106 0.0567 0.0544 0.0535
0.2260 0.1190 0.1414 0.3387 0.3161 0.3037 0.1473 0.1433 0.1410

48 0.2932 0.2872 0.3190 0.2937 0.2918 0.2978 0.3054 0.3028 0.3014
0.0872 0.0113 0.0458 0.0835 0.0815 0.0797 0.0452 0.0443 0.0428
0.2369 0.0380 0.1181 0.2254 0.2198 0.2137 0.1169 0.1166 0.1132

80 40 0.2925 0.2506 0.3183 0.2290 0.2382 0.2452 0.3063 0.3030 0.3028
0.0747 0.0479 0.0475 0.1090 0.1038 0.0987 0.0487 0.0481 0.0473
0.1997 0.1605 0.1224 0.2966 0.2825 0.2705 0.1260 0.1268 0.1236

64 0.2915 0.2799 0.3088 0.2887 0.2939 0.2972 0.3046 0.3012 0.3007
0.0731 0.0186 0.0370 0.0700 0.0691 0.0682 0.0385 0.0374 0.0373
0.1968 0.0623 0.0971 0.1864 0.1873 0.1830 0.1007 0.0990 0.0983
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Table 5. The ACLs for 95% ACI/HPD credible interval estimates of δ and θ.

(δ, θ) n m

δ θ

ACI BCI
E-BCI

ACI BCI
E-BCI

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

(1, 1) 40 20 2.0044 0.0843 0.0840 0.0906 0.0481 1.1463 0.5833 0.9092 0.9037 0.8850
32 1.1446 0.0702 0.0887 0.0762 0.0549 0.9350 0.5130 0.7191 0.7269 0.7016
60 30 1.5032 0.0926 0.0925 0.0875 0.0717 0.9131 0.5503 0.8247 0.7846 0.7614

48 0.8830 0.0902 0.0967 0.0734 0.0545 0.7451 0.4552 0.5996 0.5976 0.5928
80 40 1.2299 0.1085 0.1190 0.1087 0.0760 0.7773 0.5028 0.6792 0.6651 0.6610

64 0.7488 0.0915 0.0471 0.0359 0.0285 0.6398 0.4186 0.5104 0.5153 0.5096

(3, 3) 40 20 5.8344 0.0816 0.0984 0.0765 0.0787 2.4699 2.0037 2.4030 2.3875 2.3395
32 4.6630 0.0955 0.1171 0.0665 0.0686 2.2726 1.8446 2.1491 2.1066 2.0428

60 30 5.4633 0.1789 0.0448 0.0312 0.0551 2.1863 1.8007 2.2672 2.1761 2.0848
48 3.6915 0.1058 0.0424 0.0548 0.0235 1.8400 1.5243 1.7089 1.7117 1.6512

80 40 5.4671 0.0789 0.0238 0.0376 0.0364 2.0351 1.6101 1.8594 1.8458 1.8376
64 3.0330 0.1031 0.0263 0.0372 0.0316 1.5857 1.3843 1.4412 1.4631 1.4613

Table 6. The ACLs for 95% ACI/HPD credible interval estimates of R(t) and h(t).

(δ, θ) n m

δ θ

ACI BCI
E-BCI

ACI BCI
E-BCI

Prior 1 Prior 2 Prior 3 Prior 1 Prior 2 Prior 3

(1, 1) 40 20 0.0530 0.0091 0.0148 0.0146 0.0142 0.5925 0.1509 0.2429 0.2412 0.2391
32 0.0497 0.0096 0.0151 0.0146 0.0142 0.5766 0.1524 0.2326 0.2306 0.2262

60 30 0.0439 0.0104 0.0142 0.0134 0.0132 0.5025 0.1628 0.2282 0.2197 0.2168
48 0.0423 0.0107 0.0126 0.0117 0.0110 0.4892 0.1585 0.1900 0.1834 0.1772

80 40 0.0393 0.0104 0.0140 0.0137 0.0118 0.4431 0.1556 0.2117 0.2069 0.1891
64 0.0367 0.0089 0.0090 0.0088 0.0090 0.4284 0.1346 0.1468 0.1461 0.1488

(3, 3) 40 20 0.1006 0.0396 0.0413 0.0414 0.0408 0.3905 0.2208 0.2363 0.2352 0.2338
32 0.1003 0.0317 0.0381 0.0372 0.0353 0.3876 0.1805 0.2142 0.2107 0.2011

60 30 0.0854 0.0354 0.0388 0.0370 0.0366 0.3253 0.1927 0.2229 0.2120 0.2068
48 0.0823 0.0289 0.0305 0.0297 0.0291 0.3207 0.1607 0.1732 0.1694 0.1651

80 40 0.0761 0.0298 0.0329 0.0326 0.0325 0.2871 0.1677 0.1864 0.1847 0.1859
64 0.0714 0.0248 0.0259 0.0255 0.0256 0.2786 0.1383 0.1470 0.1451 0.1458

8. Real-Life Data Illustration

To examine the applicability of the proposed methodologies to a real phenomenon,
we shall use a real-life data set given by [40]. This data set represents n = 56 blood samples
from organ transplant recipients and assays an aliquot of each sample by a standard
approved method of high-performance liquid chromatography. Reference [41] stated
that the Lindley distribution can be considered an adequate model to fit this data set.
The ordered blood samples are reported in Table 7. Before further proceeding to discuss
the proposed estimators, one question arises about whether the given data set fit the GIED
or not. Thus, we use the MLEs to obtain the Kolmogorov–Smirnov (K–S) distance and the
associated p-value for the complete blood data set. The MLEs of model parameters δ and θ
are 325.37 and 3.2132, respectively. The K–S distance is 0.083 with p-value 0.836. This result
indicates that the GIED is fitting the complete blood data set quite well.

Table 7. Blood samples from organ transplant recipients.

35, 71, 77, 87, 93, 99, 104, 109, 109, 112, 118, 118, 125, 127, 129, 130, 148, 151, 153, 156,
159, 159, 162, 166, 185, 198, 203, 206, 221, 227, 241, 244, 245, 254, 266, 271, 275, 280, 285,
318, 327, 336, 339, 340, 346, 350, 370, 402, 428, 440, 498, 521, 556, 578, 653, 980.
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Moreover, to prove the existence and uniqueness of the MLEs, we propose to pro-
vide the contour plot of the log-likelihood function using the complete blood data set as
displayed in Figure 1. The maximum of the log-likelihood function is denoted by point x
in the innermost contour. The coordinates of x-point provide the MLEs of δ and θ which
are becomes δ̂ ' 325.37 and θ̂ ' 3.2132. Further, it shows that the MLEs exist and are
also unique.
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Figure 1. Contour plot of the log-likelihood function δ and θ for blood data set.

Using the data set listed in Table 7, we generate Type-II censored sample with m = 25,
and then the MLEs, BEs, and EBEs of the unknown parameters δ and θ as well as the
R(t) and h(t) at distinct mission time t = 100, are provided. To develop the BEs (using
Lindley and MCMC methods), we have assumed that the prior information about the model
parameters is not available, then the non-informative priors, i.e., τi, νi = 0, i = 1, 2, will
be used. Further, to develop the EBEs (using Lindley and MCMC methods), two different
choices of ci, si, zi, i = 1, 2 are taken as 0.5 and 1.5 which are namely Prior 1 and Prior 2,
respectively. Using the MCMC algorithms proposed in Sections 3.2 and 4.2, when the start
values of δ and θ are taken to be their MLEs δ̂ and θ̂, we generate 20,000 MCMC samples
and then first 5000 iterations have been discarded as a burn-in. Hence, using the generated
15,000 samples, the MLEs, BEs, and EBEs of δ, θ, R(t), and h(t) are computed and presented
in Table 8. It is clear that the EBEs for δ, θ, R(t), and h(t) are near to corresponding BEs and
MLEs under both Priors 1 and 2. Additionally, the different interval estimates of δ, θ, R(t),
and h(t) are calculated and listed in Table 9. From Table 9, it can be seen that the E-BCIs
based on Priors 1 and 2 perform better than the other interval estimates.

To judge how quickly the MCMC converges and to assess the bias of simulated
estimates at each iteration of any unknown parameter, the trace plot (or time-series diagram)
is an excellent way for this purpose. Hence, to monitored the convergence of the generated
15,000 EBEs as an example, trace plots of the posterior distributions of δ, θ, R(t), and
h(t) under Priors 1 and 2 are plotted in Figure 2. In each trace plot, the sample mean
(EBE) is displayed with a horizontal solid line (—), further, lower and upper bounds of
95% credible intervals are displayed as dashed (- - -) horizontal lines. It indicates that the
MCMC procedure converges well and it also shows that discarding the first 5000 samples
as burn-in is an appropriate size to erase the effect of the initial values. Furthermore,
the marginal posterior density estimates under Priors 1 and 2 of δ, θ, R(t), and h(t) using
the Gaussian kernel with their histograms based on the MCMC chain values are represented
in Figure 3. Similarly, in each histogram plot, the sample mean (EBE) of any unknown
parameter is displayed as a vertical dash-dotted line (:). It is evident from the estimates that
the generated posteriors of the unknown model parameters δ, θ as well as the reliability
characteristics R(t) and h(t) are fairly symmetric for both Priors 1 and 2. Moreover, some
vital properties such as mean, median, mode, standard deviation (SD), standard error (SE),
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and skewness (Sk) for MCMC posterior distributions of the unknown parameters δ, θ, R(t),
and h(t) after bun-in are computed and listed in Table 10.

Table 8. The MLEs, BEs, and EBEs of δ, θ, R(t), and h(t) from blood data set.

Parameter MLE

BE EBE

Lindley MCMC
Lindley MCMC

Prior 1 Prior 2 Prior 1 Prior 2

δ 287.60 611.61 276.72 606.09 597.36 287.59 287.60
θ 2.4777 25.917 2.3069 25.837 25.716 2.4549 2.3649

R(100) 0.8661 0.2760 0.8610 0.2872 0.3045 0.8673 0.8718
h(100) 0.0043 0.0004 0.0043 0.0005 0.0005 0.0042 0.0041

Table 9. The 95% ACIs, BCIs, and E-BCIs of δ, θ, R(t), and h(t) from blood data set.

Parameter ACI BCI
E-BCI

Prior 1 Prior 2

δ (280.22,294.97) (270.59,282.82) (287.59,287.61) (287.59,287.61)
θ (1.5041,3.4513) (2.2141,2.4011) (2.4548,2.4551) (2.3648,2.3650)

R(100) (0.8170,0.9152) (0.8580,0.8639) (0.8672,0.8673) (0.8717,0.8718)
h(100) (0.0026,0.0059) (0.0042,0.0043) (0.0041,0.0042) (0.0040,0.0041)
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Figure 2. MCMC trace plots of EBEs for Prior 1 (upper panel) and Prior 2 (lower panel) of δ, θ, R(t),
and h(t).
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Figure 3. Histogram and kernel density estimates of EBEs for Prior 1 (upper panel) and Prior 2
(lower panel) of δ, θ, R(t), and h(t).
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Table 10. Some posterior characteristics of E-Bayesian MCMC outputs from blood data set.

Prior Parameter Mean Median Mode SD SE Sk

1 δ 287.599 287.599 287.593 4.988× 10−3 4.072× 10−5 0.02918
θ 2.45493 2.45493 2.45482 7.850× 10−5 6.410× 10−7 0.02913

R(100) 0.86726 0.86726 0.86726 7.299× 10−6 5.959× 10−8 0.05423
h(100) 0.00422 0.00422 0.00422 1.963× 10−7 1.603× 10−9 −0.04048

2 δ 287.600 287.600 287.591 4.994× 10−3 4.077× 10−5 0.04724
θ 2.36489 2.36489 2.36476 7.164× 10−5 5.849× 10−7 0.04740

R(100) 0.87181 0.87181 0.87180 6.911× 10−6 5.642× 10−8 0.04185
h(100) 0.00406 0.00406 0.00406 1.829× 10−7 1.494× 10−9 −0.01283

9. Conclusions

This paper is primarily related to the E-Bayesian analysis of unknown parameters of
multi-parameter population models. The problem of estimating two unknown parameters,
reliability, and hazard rate functions of the generalized inverted exponential distribution are
discussed based on Type-II censored data. Firstly, the maximum likelihood and Bayesian
estimation methods are considered for this purpose. The asymptotic confidence intervals
for the unknown parameters as well as Bayesian credible intervals are also obtained.
Secondly, for the first time, the E-Bayesian estimation method is adopted to estimate the
two unknown parameters as well as the reliability and hazard functions. The E-Bayesian
credible intervals for these quantities are also investigated. The Bayesian and E-Bayesian
estimations are approximated using Lindley’s approximation and MCMC technique based
on squared error loss function under the assumption of independent gamma priors. We also
proposed an algorithm to determine the values of the hyperparameters using past samples
in Bayesian and E-Bayesian procedures. A Monte Carlo simulation is conducted to compare
the performance of the different point and interval methods. A practical example using a
real-life data set is discussed to demonstrate how the applicability of the proposed methods
in real phenomena. The simulation and real data analysis outcomes showed that the
proposed procedure to acquire the full model parameters using the E-Bayesian estimation
method provides satisfactory estimates and acceptable credible intervals. In future work,
one can consider the same inferential methods presented in this paper to other lifetime
models such as Weibull and gamma distributions and other sampling schemes such as the
progressive Type-II censoring scheme. We hope that the results and methodology discussed
in this paper will be beneficial to data analysts and reliability practitioners.
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