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Abstract: In this paper, by applying the Lie group method and the direct symmetry method, Lie
algebras of the Benjiamin Ono equation are obtained, and we find that results of the two methods
are same. Based on the Lie algebra, Lie symmetry groups, relationships between new solutions
and old solutions, two kinds of ODEs as symmetry reductions are obtained. Making use of the
power series method, the exact power series solution of the Benjiamin Ono equation has been
derived. We also give the conservation laws of Benjiamin Ono equation by means of Ibragimovs new
conservation Theorem.
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1. Introduction

With the development of science and technology, people pay more and more attention
in nonlinear evolution equations (NLPDEs). The search for exact solutions of nonlinear
evolution equations becomes an important subject. To solve NLPDEs, a variety of effective
methods have been proposed, such as the Jacobi elliptic function method [1], the extended
tanh method [2], the Exp-function method [3,4], the Bäcklund transformation [5], the
generalized algebraic method [6] and so on. To the best of our knowledge, Lie group
analysis is an efficient and direct method for finding exact solutions of nonlinear differential
equations [7–10]. Many equations have been studied by this method [11–17]. In this paper,
we study the following Benjiamin Ono (BO) equation by means of the classical Lie group.
The BO equation is written as

utt + β
(

u2
)

xx
+ γuxxxx = 0, (1)

where β and γ are nonzero constants. The BO equation is a famous nonlinear model for
representing the water wave motion with damping structure. Some exact periodic solutions
were obtained using the Jacobi elliptic function expansion method in [18]. Wang studied
this equation using the Riccati expansion method [19].

We construct the paper as follows: Lie symmetry analysis of BO equation are presented
in Section 2. Symmetry reduction and the exact power series solutions for BO equation are
obtained in Section 3. The conservation laws are derived in Section 4. Finally, the discussion
and conclusions are given in Section 5.

2. Lie Symmetry Analysis of BO Equation

We apply the Lie group approach in this section to consider the BO equation.
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2.1. Direct Symmetry

A one-parameter Lie group of infinitesimal transformation:

t∗ = t + ετ(x, t, u) + o(ε2),

x∗ = x + ες(x, t, u) + o(ε2),

u∗ = u + εη(x, t, u) + o(ε2),

(2)

where ε is a small parameter. The corresponding vector field can be expressed by

V = ς(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (3)

If the vector field (3) produces a symmetry of (1), so V must satisfy the Lie’s symmetry
condition

pr(4)V(∆)
∣∣∣
∆=0

= 0, (4)

where ∆ = utt + β
(
u2)

xx + γuxxxx = 0. Applying the fourth prolongation pr(4)V to (1),
then we can get the following symmetry equations

ηtt + 4βηx + 2βuxxη + 2βuηxx + γηxxxx = 0, (5)

where

ηt = Dt(η)− uxDt(ς)− utDt(τ),

ηtt = Dt
(
ηt)− uxtDt(ς)− uttDt(τ),

ηx = Dx(η)− uxDx(ς)− utDx(τ),

ηxx = Dx(η
x)− uxtDx(τ)− uxxDx(ς),

ηxxx = Dx(η
xx)− uxxtDx(τ)− uxxxDx(ς),

ηxxxx = Dx(η
xxx)− uxxxtDx(τ)− uxxxxDx(ς).

(6)

Here, Di represents a differential operator, which is defined as

Di =
∂

∂xi + ui
∂

∂u
+ uij

∂

∂uj
+ . . . , i = 1, 2 (7)

and
(

x1, x2) = (t, x).
Solving (5) with the help of (6) gives

τ = c1t + c2, ς =
c1

2
x + c3, η = −(c1u + c4), (8)

where c1, c2, c3 and c4 are arbitrary constants.
Therefore, four-dimensional Lie algebras can be obtained

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = − ∂

∂u
, V4 = t

∂

∂t
+

x
2

∂

∂x
− u

∂

∂u
. (9)

It is easy to check that the vector fields are closed under the Lie bracket (see Table 1).
To get some exact solutions from known problems, we find the Lie symmetry group

from the corresponding symmetry and solve the following initial problem to obtain the Lie
symmetry group

(t̃, x̃, ũ)|ε=0 = (t, x, u). (10)
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Table 1. Commutator of the Lie algebra of (1).

V1 V2 V3 V4

V1 0 0 0 V1

V2 0 0 0 V2
2

V3 0 0 0 V3

V4 −V1 −V2
2 −V3 0

Therefore, we can obtain the following Lie symmetry group

g : (t, x, u)→ (t̃, x̃, ũ). (11)

Solving (10) can get the one-parameter group gi(ε) generated by Vi(i = 1, 2, 3, 4)

g1 : (t + ε, x, u),

g2 : (t, x + ε, u),

g3 : (t, x, u + ε),

g4 : (teε, xeε/2, ue−ε).

(12)

The symmetry groups g2 and g3 explain the time-and-space-invariance of the equation,
and g1 refers to scaling symmetry. Applying above group g1, g2, g3 and g4, we can get the
Lie symmetry theorem:

Theorem 1. If u = f (x, t) is a solution of (1) then the expression of the corresponding
function solutions

g1(ε) f (x, t) = f (t− ε, x),

g2(ε) f (x, t) = f (t, x− ε),

g2(ε) f (x, t) = f (t, x− ε),

g3(ε) f (x, t) = f (t, x, )− ε,

g4(ε) f (x, t) = e−ε f (te−ε, xe−ε/2).

(13)

In reference [18], Fu obtained the trigonometric function solution

u =
5
2

k2
(

1− 3csc2
(

k
2

x− 3k5t
))

. (14)

So we can obtain the new exact solution of (1) by applying g1 and g3 as follows

u =
5
2

e−
2
5 εk2

(
1− 3csc2

(
k
2

x−
1
5 ε − 3k5te−ε

))
, (15)

and

u =
5
2

k2
(

1− 3csc2
(

k
2
(x− ε)− 3k5t

))
. (16)

We can obtain many solutions by giving the arbitrary different constants.

Remark 1. A number of new invariant solutions can be found from the given solutions in [18] for
the BO equation.
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2.2. Generalized Symmetry

The symmetry group of (1) is obtained by classical Lie group method in Section 2.1.
Next, we will find the symmetries of (1) through the generalized symmetry method. The
essence of the generalized symmetry method is to find the symmetry of a known NPDE,

F(x, t, u, ux, ut, uxx, uxt, utt, . . .) = 0, (17)

σ satisfies the following equation

F′(u)σ = 0, (18)

where (18) reads as

F′(u)σ =
∂F
∂u

σ +
∂F
∂ut

σt +
∂F
∂ux

σx +
∂F

∂uxx
σxx +

∂F
∂uxt

σxt + . . . . (19)

From (18), the symmetry equation of (1) must satisfy

σtt + 4βσx + 2βσuxx + 2βuσxx + γσxxxx = 0. (20)

The symmetry of BO equation is

σ = aut + bux + cu + d, (21)

where a, b, c and d are functions of x, t which will be determined later.
Substituting (21) into (20) and using (1) to make the coefficients of the polynomial zero

after simplification, we can obtain

a = c1t + c2, b =
c1

2
x + c3, c = c1, d = c4, (22)

where c1, c2, c3 and c4 are arbitrary constants.
Equivalently, (21) can also be written as

σ = c1

(
t +

x
2
+ u

)
+ c2ut + c3ux + c4. (23)

The symmetry equivalent vector field can be represented as

V =
( c1

2
x + c3

) ∂

∂x
+ (c1t + c2)

∂

∂t
− (c1u + c4)

∂

∂u
. (24)

The vector field Vi(i = 1, 2, 3, 4) has been obtained in Section 2.1.

3. Symmetry Reduction and Exact Solutions for BO Equation
3.1. Symmetry Reduction

In this section, we present some discussions on (1) based on the symmetries (9). We
will discuss the following two situations:

case 1: V1 + µV2
From V1 + µV2 = 0, we obtain the invariants and reduced equation as u = f (ξ), where

ξ = x− µt. By substituting it into (1), we arrive at

µ2 f ′′ + 2β f ′2 + 2β f f ′′ + γ f (4) = 0, (25)

where f ′ = d f /dξ.
case 2: V4
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For this generator V4, we obtain u = t−1 f (ξ), where ξ = xt−
1
2 is the invariant solution.

By substituting it into (1), we get to the following ODE

ξ2 f ′′ + 7ξ f + 8 f + 8β f ′2 + 8β f f ′′ − 4γ f (4) = 0, (26)

where f ′ = d f /dξ.

3.2. Particular Solutions for BO Equation

We use the power series method to research the exact solution of (25) in this section.
For (25), we will assume that the series solution is in the form of

f (ξ) =
∞

∑
n=0

qnξn, (27)

where qn(0, 1, 2, 3, . . .) are coefficients that will be determined below. We obtain by substi-
tuting (27) into (25),

2µ2q2 + µ
∞

∑
n=1

(n + 1)(n + 2)qn+2ξn + 2βq1
2

+ 2β
∞

∑
n=1

n

∑
k=0

(k + 1)(n + 1− k)qk+1qn+1−kξn

+ 4βq0q2 + 4β
∞

∑
n=1

n

∑
k=1

(k + 1)(n− k)qk+1qn+1−kξn

+ 24γq4 + γ
∞

∑
n=1

(n + 1)(n + 2)(n + 3)(n + 4)qn+4ξn = 0.

(28)

For n = 0, by comparing all coefficients in (28), we obtain,

q4 = −µ2q2 + βq1
2 + 2βq0q2

12γ
. (29)

More generally, for n ≥ 1, we have

qn+4 =
1

(n + 1)(n + 2)(n + 3)(n + 4)γ
(µ(n + 1)(n + 2)qn+2

+ 2β
n

∑
k=0

(k + 1)(n + 1− k)qk+1qn+1−k + 4
n

∑
k=1

(k + 1) (n− k)qk+1qn+1−k)
(30)

from (28).
Clearly, a power series solution for (25) [20–23] can be found using the above process.

Hence, this power series solution (27) to (25) is an exact analytic solution.
In fact, the power series solution of (25) can be reached:

f (ξ) = q0 + q1ξ + q2ξ2 + q3ξ3 + q4ξ4 +
∞

∑
n=1

qn+4ωn

= q0 + q1ξ + q2ξ2 + q3ξ3 − µ2q2 + βq1
2 + 2βq0q2

12γ
ξ4

+
∞

∑
n=1

1
(n + 1)(n + 2)(n + 3)(n + 4)γ

(µ(n + 1)(n + 2)qn+2

+ 2β
n

∑
k=0

(k + 1)(n + 1− k)qk+1qn+1−k + 4
n

∑
k=1

(k + 1) (n− k)qk+1qn+1−k)ξ
n.

(31)

Thus, the power series solution of BO equation can be obtained from solution (31)
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f (ξ) = q0 + q1(x− µt) + q2(x− µt)2 + q3(x− µt)3 + q4(x− µt)4 +
∞

∑
n=1

qn+4(x− µt)n

= q0 + q1(x− µt) + q2(x− µt)2 + q3(x− µt)3 − µ2q2 + βq1
2 + 2βq0q2

12γ
(x− µt)4

+
∞

∑
n=1

1
(n + 1)(n + 2)(n + 3)(n + 4)γ

(µ(n + 1)(n + 2)qn+2

+ 2β
n

∑
k=0

(k + 1)(n + 1− k)qk+1qn+1−k + 4
n

∑
k=1

(k + 1) (n− k)qk+1qn+1−k)(x− µt)n,

(32)

where qi(i = 0, . . . , 4) are arbitrary constants. The other terms of the sequence qn(n ≥ 4)
can be defined continuously by (30).

Remark 2. Obviously, (26) can also be solved by the power series method, which has been ommitted
here. It is not difficult for us to find that the power series method is a useful method to solve PDEs
using the process above. As far as we know, the solutions obtained in this section were not found in
other references.

4. Conservation Laws of BO Equation

The conservation law of NLPDEs [24–27] plays an important role in nonlinear scientific
research. The law of conservation is widely used in the development of appropriate
numerical methods, mathematical analysis, in especially, uniqueness, existence, stability
analysis and so on. We will discuss the conservation law of (1) through using the adjoint
equation [28] and symmetry (9) in this section. The adjoint equation of (1) can be written as

vtt + 2βuvxx+γvxxxx = 0, (33)

and the formal Lagrangian for the system form is expressed as

L = v(utt + 2βuxx + 2βuuxx + γuxxxx). (34)

Next, we will recall the “new conservation theorem” proposed by Ibragimov [28].

Theorem 2. Any Lie point, non-local symmetry and Lie-Bäcklund

V = ς(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
(35)

of (1) supplies a conservation law Di

(
Ti
)

= 0 for the system comprising (1) and its adjoint
equation [29,30]. The conservation vector can be derived from the following formula

Ti = ξ i L+Wα

[
∂ L

∂ui
α
− Dj

(
∂ L

∂uij
α

)
+ DjDk

(
∂ L

∂uijk
α

)]

+ Di(Wα)

[
∂ L

∂uij
α
− Dk

(
∂ L

∂uijk
α

)
+ . . .

]
,

(36)

where Wα = ηα − ξ iuj
α is Lie characteristic function and L is determined by (34).

The operator V yields the conservation law Dt
(
Tt)+ Dx(Tx) = 0, where the conserved

vector T =
(
Tt, Tx) is given by (36) and has the components

Tt = ξt L+W(−vt) + Wt(v), (37)
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Tx = ξx L+W[4βuxv− Dx(2βuv)− Dxxx(γv)]
+ Dx(W)[2βuv + Dxx(γv)]
+ Dxx(W)[−Dx(γv)]
+ Dxxx(W)(γv).

(38)

Thus, the corresponding parts of the non-local conservation laws of (1) and (33) can be
defined using (37) and (38). The operator V of (1) has been obtained in Section 2.1.

We consider the conserved vectors for generators of BO equation. We have the
following cases for classical generators:

case 1: V = ∂
∂t . Using this operator, we can get W = −ut. Thus, the conservation vector

of (1) can be obtained as

Tt = 2βvux
2 + 2βvuuxx + γvuxxxx + utvt,

Tx = −ut(2βuxv− 2βuvx − γvxxx)− uxt(2βuv + γvxx) + γuxxtvx − γuxxxtv.
(39)

For example, let v = xt here, then

T1
t = 2βxtux

2 + 2βxtuuxx + γxtuxxxx + xut,

T1
x = −ut(2βxtux − 2βxu)− 2βxtuuxt + γtuxxt − γxtuxxxt.

(40)

The following situations are similar, and will not be explained one by one here.
case 2: V = ∂

∂x . Using this operator, we can get W = −ux. Thus, the conservation
vector of (1) can be obtained as

Tt = uxvt − uxtv,

Tx = v[utt + β(2ux
2 + 2uuxx + γuxxxx)]

− ux(2βuxv− 2βuvx − γvxxx)

− uxx(2βuv + γvxx) + γuxxxvx − γuxxxxv.

(41)

case 3: V = − ∂
∂u . Using this operator, we can get W = 1. Thus, the conservation vector

of (1) can be obtained as

Tt = −vt,

Tx = 2βuxv− 2βuvx − γvxxx.
(42)

case 4: V = t∂t + x
2 ∂x − u∂u. Using this operator, W = −u − tut − x

2 ux. Thus, the
conservation vector of (1) can be obtained as

Tt = tv[utt + β(2ux
2 + 2uuxx) + γuxxxx] + (u +

x
2

ux + tux)vt

− (2ut +
x
2

uxt + tutt)v.

Tx =
xv
2
[utt + β(2ux

2 + 2uuxx) + γuxxxx]− (u +
x
2

ux + tut)(2βuxv− 2βuvx − γvxxx)

− (
3
2

ux +
x
2

uxx − tuxt)(2βuv + γuxx) + (2uxx −
x
2

uxxx + tuxxt)γvx

− (
5
2

uxxx +
x
2

uxxxx − tuxxxt)γv.

(43)

This vector can obtain any solution V to the adjoint Equation (33) and provides an
unlimited number of conservation laws for the BO equation.

Remark 3. v is the solution of the adjoint equation. We can then find the solution u of Equation (1)
according to v. By taking different special solutions of V, more conservation laws of Equation (1)
can be obtained. The conservation laws listed here are trivial.
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Remark 4. The accuracy of the conservation vector
(
Tt, Tx) has been checked using Maple software.

5. Conclusions

In this paper, using the Lie group analysis symmetry of the nonlinear Benjamin–Ono
equation, the classical Lie group symmetry and the relationship between the new solution
and the old solution, we can solve the new special solution of the BO equation. At the same
time, by reducing the original equation, we get the particular solution of the correlation
generator. Finally, according to the obtained Lie symmetry generator, we construct the
conservation law of the related classical vector field of the equation. These conclusions
may help to explain some practical physical problems and provide a theoretical basis and
methods for solving practical problems.
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