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Abstract: Murine behavior recognition is widely used in biology, neuroscience, pharmacology, and
other aspects of research, and provides a basis for judging the psychological and physiological
state of mice. To solve the problem whereby traditional behavior recognition methods only model
behavioral changes in mice over time or space, we propose a symmetrical algorithm that can capture
spatiotemporal information based on behavioral changes. The algorithm first uses the improved
DeepLabCut keypoint detection algorithm to locate the nose, left ear, right ear, and tail root of
the mouse, and then uses the ConvLSTM network to extract spatiotemporal information from the
keypoint feature map sequence to classify five behaviors of mice: walking straight, resting, grooming,
standing upright, and turning. We developed a murine keypoint detection and behavior recognition
dataset, and experiments showed that the method achieved a percentage of correct keypoints (PCK)
of 87± 1% at three scales and against four backgrounds, while the classification accuracy for the five
kinds of behaviors reached 93± 1%. The proposed method is thus accurate for keypoint detection
and behavior recognition, and is a useful tool for murine motion behavior recognition.

Keywords: murine behavior recognition; keypoint detection; DeepLabCut; ConvLSTM network

1. Introduction

Behavior is the body language of animals expressing psychology and physiology,
which can provide a theoretical basis for judging their psychological and physiological
state. Animal behavior research should seek to observe animals not only in their natural
state, but also in laboratory conditions. Animal behavior analysis has been widely used in
biological sciences, neuroscience, pathology, and genetics [1–4] to study neural functions,
psychological processes, and drug effects. Traditional behavioral analysis methods mostly
use manual observation and sensor methods [5–7], such as piezoelectric sensors, infrared
sensors, and micro-photoelectric systems, which are time-consuming, laborious, and inflex-
ible. More importantly, the influence of sound, light, electricity, and odor caused by sensors
and manual observation can interfere with the natural behavior of experimental animals,
resulting in deviations in the experimental data. Therefore, it is important to develop an
algorithm that can automatically identify animal behaviors and calculate related indicators.
This can reduce the workload of researchers, provide them with quantitative behavioral
analysis, and improve the objectivity of experiments. Refined behavioral analysis can
help researchers to capture some difficult-to-detect behavioral patterns. Since the 1990s,
computer image processing technology has been widely used in the field of animal behavior
analysis, providing an objective, quantitative, and precise analysis method. This allows
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researchers to stay away from the experimental scene to avoid interfering with it, and the
recorded video can be observed and analyzed at will.

In 2000, Heeren et al. [8] constructed a feature vector by extracting the Fourier de-
scriptors of rats’ contours and then using an artificial neural network to classify their
posture, achieving a performance of 96.9% on 11,090 images of different poses. In 2005,
Zhang [9] from Zhejiang University proposed a novel posture recognition method based
on contour curvature and hierarchical clustering analysis, and succeeded in recognizing
the five posture types of grooming, stretched attention, stationary rotation, sitting, and
rearing, with an accuracy of 89.58%. In 2018, Mackenzie et al. [10] from Harvard University
developed a markerless pose estimation method for user-defined body parts with deep
learning; using this tool, the nose, ears, and tail root of mice were tracked effectively in a
murine odor-tracking experiment. The method achieved a very small average variability
of 2.69 ± 0.1 pixels. In 2019, Nguyen et al. [11] applied I3D [12] and R(2+1)D [13] human
motion recognition models to neurobehavioral analysis of murine phenotypes, with ac-
curacies of 96.9% and 96.3%, respectively. In 2020, the Institute of Automation, Chinese
Academy of Sciences and the University of California, USA established a set of automatic
analysis systems [14] for caged mice. These systems could accurately segment mice’s
contours based on the U-Net [15] network—a convolutional network for biomedical image
segmentation—and calculated the change in mice’s centroids to assess their activity. Deep
learning technology [16–18] provides a broad potential for behavior analysis, but for the
murine behavior recognition task, it still has difficulty overcoming the problems of weak
pertinence, single analysis parameters, and lack of universality.

Behavior can be expressed as a posture that changes over time. Many studies have
modeled the time-dependent changes in the interrelationships between skeletal points to
identify animal behaviors. Wang et al. [19] introduced a method of action classification
based on dense trajectories and motion boundary descriptors by relying on differential opti-
cal flow. They evaluated it on nine human action classification datasets, and it approached
state-of-the-art results. Fu et al. [20] extracted relative distance and angular features be-
tween joints in a 3D model of a human skeleton, and achieved an accuracy of 92.1% on the
UTKinect-Action3D [21] dataset based on Bi-LSTM. Yan et al. [22] applied graph convo-
lution to human action recognition, constructed an ST-FCN to extract the temporal and
spatial features of sequence diagrams of skeletons, and obtained state-of-the-art results
on the NTU-RGB+D [23] datasets with an accuracy of 81.5%. Song et al. [24] proposed a
spatiotemporal attention network (STA-LSTM) that incorporated an attention mechanism
into the LSTM model to improve the accuracy of action recognition, and achieved an
accuracy of 91.5% on the SBU NTU-RGBD dataset.

Therefore, based on deep learning technology, we propose a symmetrical model to
identify the motion-related behavior of mice based on the fusion of a keypoint detection
network and a convolutional long short-term memory network (ConvLSTM). The resulting
tool could not only obtain the fine joint structure of mice, but could also use spatiotemporal
information about the mice’s posture to identify their behavior. It provides a new method
for behavior recognition of experimental animals.

2. Motion Behavior Recognition Model
2.1. Structure of Algorithm

This study included the construction of a murine motion behavior recognition model
based on the fusion of a keypoint detection algorithm and a ConvLSTM network. The
model’s structure is shown in Figure 1. First, the keypoints of the nose, left ear, right ear, and
tail root of the mouse were detected by the improved DeepLabCut algorithm. The keypoint
feature map sequences of adjacent images were then input into the ConvLSTM network to
extract the spatiotemporal information of behavioral changes. Finally, the five behaviors
of the mice were classified as walking straight, resting, grooming, standing upright, and
turning. Based on the keypoint detection and behavior classification results, the movement
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and behavior indicators in the murine behavioral experiments can be calculated. These
include motion speed, angular speed, trajectory, and frequency and time of behavior.
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Figure 1. Framework of the murine motion behavior recognition model: The DeepLabCut algorithm
detects the keypoints of the nose, left ear, right ear, and tail root of the mouse. The ConvLSTM network
extracts spatiotemporal information and classifies behaviors. The model horizontally extracts spatial
information, and vertically extracts temporal information.

2.2. Improved DeepLabCut Network

DeepLabCut is an open-source system for single-target pose estimation. Based on
transfer learning, it can accurately detect keypoints without large quantities of training
data, and has been tested and calibrated across species of mice, flies, and humans. The
structure of the algorithm is shown in Figure 2. Its backbone network is Resnet50, which has
been pre-trained in ImageNet [25]—a large target-recognition image database—eliminating
the need for a large number of training samples. Unlike the standard Resnet50 network,
DeepLabCut limits the downsampling multiple of the Resnet50 network to 16 times in
order to obtain a larger feature map size. Specifically, the positions of Block2, Block3,
and Block4 in Figure 2 are not downsampled, and Block represents the residual block in
Resnet50.
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Figure 2. Structure of the DeepLabCut algorithm: (a) Overall structure of the algorithm. (b) The 
structure of the block cell. DeepLabCut has four block cells and one transpose convolution, with a 
total of 8× downsampling. Each block consists of three, four, six, and three residual blocks from 
Block1 to Block4, respectively. 
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location information than the traditional method of using only a heatmap for prediction. 
Therefore, DeepLabCut needs two parts of the loss function during training: for the cat-
egory probability part, the binary cross-entropy loss is used, and for the coordinate offset 
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gory probability, 𝑥  is the predicted coordinate offset, and 𝛿 is a hyperparameter used 
to judge whether a point is a singular data point. When the predicted deviation is less 
than 𝛿, the mean square error (MSE) is adopted; when the predicted error is greater than 
𝛿, the linear error is adopted to prevent oversensitivity to outliers. 

In keypoint detection tasks, large receptive fields and multiscale information are 
crucial. First, the representation of different keypoints may require information at dif-
ferent scales. Second, large receptive fields and multiscale information can implicitly es-
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Figure 2. Structure of the DeepLabCut algorithm: (a) Overall structure of the algorithm. (b) The
structure of the block cell. DeepLabCut has four block cells and one transpose convolution, with
a total of 8× downsampling. Each block consists of three, four, six, and three residual blocks from
Block1 to Block4, respectively.

DeepLabCut uses a heatmap plus coordinate offset to predict keypoint locations. The
Resnet50 network outputs a feature map of 2048 channels and, by transpose convolution,
obtains the class probability feature map with the number of channels as the number of
keypoints, as well as the coordinate offset feature map, where the number of channels
is twice the number of keypoints. The coordinate offset provides more accurate location
information than the traditional method of using only a heatmap for prediction. Therefore,
DeepLabCut needs two parts of the loss function during training: for the category probabil-
ity part, the binary cross-entropy loss is used, and for the coordinate offset part, the Huber
loss is used. The loss function formula is as follows:

losssigmoid_cross_entropy = yc ∗ − log
(

1
1 + e−xc

)
− log

(
e−xc

1 + e−xc

)
∗ (1− yc)

= xc − xc ∗ yc + log
(
1 + e−xc

)
(1)

losshuber =

{
1
2 (yr − xr)

2 f or |yr − xr| ≤ δ

δ|yr − xr| − 1
2 δ2 otherwise

(2)

lossall = losssigmoid_cross_entropy + losshuber (3)

where yc is the category label, yr is the real coordinate offset, xc is the predicted category
probability, xr is the predicted coordinate offset, and δ is a hyperparameter used to judge
whether a point is a singular data point. When the predicted deviation is less than δ, the
mean square error (MSE) is adopted; when the predicted error is greater than δ, the linear
error is adopted to prevent oversensitivity to outliers.

In keypoint detection tasks, large receptive fields and multiscale information are cru-
cial. First, the representation of different keypoints may require information at different
scales. Second, large receptive fields and multiscale information can implicitly establish
spatial connections between keypoints. The convolutional pose machine (CPM) [26] and
stacked hourglass network (Hourglass) [27] algorithms use cascade networks to obtain
large receptive fields and multiscale information. To make the keypoint detection model
suitable for most murine behavioral scenarios, this study used atrous spatial pyramid
pooling (ASPP) in DeepLabV3 [28] to fuse context information at multiple scales. Specif-
ically, the intermediate convolution kernel of the residual unit in the residual block was
replaced by the ASPP module, as shown in Figure 3. The ASPP module consisted of one
1 × 1 convolution, three 3 × 3 dilated convolutions with different expansion rates, and a
global average pooling, and finally used the concatenation operation to fuse multiscale fea-
tures. In this paper, the effect of the ASPP module was verified by the ablation experiment,
and the effects of different sites and different expansion rates on the model were compared.
In the following sections, DLC_b1_r1 means that the ASPP module has been inserted into
Block1, and the expansion rates are 1, 2, and 4; DLC_b12_r2 means that the ASPP module
has been inserted into Block1 and Block2, and the expansion rates are 2, 4, and 6.
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Figure 3. Application of the ASPP module in the residual network: The arrows represent
3 × 3 convolution kernels, with a convolution step of one in the block replaced by the ASPP module.
The ASPP module consists of one 1 × 1 convolution, three 3 × 3 dilated convolutions with different
expansion rates, and global average pooling. All feature maps were fused by using concatenation.

The keypoint network plays two roles in this study: The first is to output precise
coordinates of the keypoints of the mouse’s nose, left ear, right ear, and tail root. The second
is to output a feature map containing the spatial posture information of the mice, which is
combined with context information to recognize murine behavior.

2.3. Convolutional Long Short-Term Memory Network

Behavior can be described as posture change over time. Traditional behavior recogni-
tion algorithms extract distance and angle features between keypoints and then use a long
short-term memory (LSTM) [29] model to represent the temporal relationships between
behaviors, as proposed by Fu et al. [20]. However, do the obtained features comprehen-
sively summarize the spatial connections between keypoints? Do they properly represent
the temporal change in posture? How should false and missing results in the keypoint
detection model be dealt with? Artificial features must address these considerations.

This paper introduces the ConvLSTM [30] to solve the above problem. ConvLSTM
replaces the fully connected layer in FC-LSTM with a convolution, which can capture
spatial features in multidimensional data. The information transmission mode is shown in
Equation (4). The state of the previous moment can be transmitted to the next moment in a
spatial form, so that spatiotemporal features can be extracted:

it = σ(Wxi ∗ Xt + Whi ∗ ht−1 + bi)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ ht−1 + b f

)
Ct = ft ◦ Ct−1 + it ◦ tan h(Wxc ∗ Xt + Whc ∗ ht−1 + bc) (4)

ot = σ(Wxo ∗ Xt + Who ∗ ht−1 + bo)

ht = ot ◦ tan h(Ct)

where it, ft, and ot are the input, forget, and output gates, respectively, with step size t, Xt
represents the input data, Ct is the storage cell state, ht is the output of the network at time
t, “*” represents the convolution operation, and “◦” is the Hadamard product.

In the murine behavior recognition task, the sequence of adjacent frames’ feature maps,
which is output by the keypoint detection algorithm, was used as input to the ConvLSTM
network to model dynamic changes in behavior. The structure of the ConvLSTM network
is shown in Figure 4, and its main functions are as follows: First, the keypoint feature maps
reduce redundant information in the images. Second, the keypoints contain not only the
spatial connections between keypoints, but also location information for the mice. For
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example, the position and spatial relationship of keypoints did not change during static
behavior, but the location and spatial relationship of keypoints changed simultaneously as
the mouse moved. Third, behavior is jointly determined by previous and current actions;
therefore, the keypoint feature maps of previous and current frames are used as inputs
to jointly determine current behavior, which is consistent with the definition of behavior.
Fourth, it does not require additional artificial design features—the network can implicitly
model the temporal relations of keypoints when behavior occurs, and even if there are false
and missing results, it can be used as a representation of behavior.
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Figure 4. ConvLSTM network architecture: The ConvLSTM network consists of four ConvLSTM
layers and a classification layer, where each layer has a convolution kernel of size 3 × 3 and a step
size of one. The information on the previous moment can flow to the next moment in the network,
and the final output contains the spatiotemporal information of the sequence of keypoint feature
maps.

Specifically, four ConvLSTM layers were used to extract spatiotemporal information;
the numbers of convolution kernels were 256, 128, 64, and 5, respectively, and the size
of the convolution kernels was 3 × 3. Global average pooling was then used to achieve
behavior classification. The resolution of the feature maps output by each layer remained
unchanged, which is more conducive to learning spatial information. The structure of the
ConvLSTM network is shown in Figure 4.

3. Experiments and Results
3.1. Dataset

In this study, a dataset containing four keypoints representing the mouse’s nose, left
ear, right ear, and tail root was produced, which was taken from the top in an open-field
experimental box, with an image resolution of 640× 480. The video was shot in a dark room
using the same device, using fill lights to fix the light intensity at 200 lux. In total, 24 videos
were captured, each of which was 5 min long and featured two mice. The videos were shot
at different heights and with different background colors. The dataset comprehensively
considered the influence of behavior, color, and scale on model performance. It included
five behaviors (walking straight, resting, grooming, standing upright, and turning), four
background colors (white, light gray, dark gray, and black), and three shooting heights (60,
70, and 80 cm). Figure 5 shows images from the dataset. There were 2700 images in the
training set—including only the scale of 70 cm, with a uniform distribution of colors—and
1200 images in the test set, with uniform distribution of colors and scales. Each image was
split from the videos above and randomly assigned to the training set or test set.
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Figure 5. Murine keypoint detection dataset: The dataset contained data on five behaviors (walking
straight, resting, grooming, standing upright, and turning), four background colors (white, light gray,
dark gray, and black), and three shooting heights (60, 70, and 80 cm).

For the behavior recognition task, to ensure consistency of spatial scale, the videos
were collected at a height of 70 cm. The behavior recognition dataset contained five types
of behaviors: walking straight, resting, grooming, standing upright, and turning. Each type
of behavior was represented by 600 labeled images, of which 75% were randomly selected
as the training set and 25% as the test set. All stages of a given behavior were covered as
much as possible in the labeling process. During training and testing, an image sequence
consisting of the annotated frame and several frames preceding the annotated frame was
used as an input to the model. Figure 6 shows an example of an image sequence of the five
types of behaviors, in which the sequence length is five and the interval between frames is
two.
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3.2. Evaluation Metrics

In this study, the percentage of correct keypoints (PCK) was used as the evaluation
metric for keypoint detection. The PCK refers to the proportion of the normalized distances
between the detected keypoints and their corresponding labels that is less than a set
threshold. In the FLIC dataset [31], the torso size was used as the scale factor to calculate
the normalized distance, while in the MPII dataset [32], the length of the head was used as
the scale factor. The calculation formula of the PCK is as follows:

PCKk
i =

∑p δ(
dpi

dde f
p
≤ Tk)

∑p 1
, δ(r) =

{
1 i f r = True
0 i f r = False

(5)

PCKk
mean =

∑p ∑i δ(
dpi

dde f
p
≤ Tk)

∑p ∑i 1
, δ(r) =

{
1 i f r = True
0 i f r = False

(6)

where i represents the particular keypoint, k is the threshold, p is the image, dpi is the
Euclidean distance between the predicted and true values of keypoint i in the pth image,
dde f

p is the scale factor of the pth image, PCKk
i represents the PCK for the keypoint of

category i under threshold Tk, and PCKk
mean represents the average PCK for all keypoints

under threshold Tk. In this study, the distance between the ears in each frame was denoted
by dde f

p . If the distance between the ears could not be calculated, the median of the scale
could be used as the scale factor—60 cm was 15.29, 70 cm was 12.85, and 80 cm was 10.81.
Tk ∈ [0, 0.1, 0.2, 0.3, 0.4].

For the behavior recognition task, the accuracy and the confusion matrix were used
as evaluation metrics. Accuracy was defined as the ratio of samples that were predicted
correctly to the total number of samples considered. Each column of the confusion matrix
represented the category of prediction, and the total number of items in each column repre-
sented the number of data items predicted for the relevant category. Each row represented
the true category, and the total number of items in each row represented the number of
data instances in that category.

3.3. Experimental Details

In the keypoint detection task, CPM [26], Hourglass [27], DeepLabCut, and the im-
proved DeepLabCut were used for comparison. CPM used six stage units and trained for
300 epochs. Stacked hourglass used four hourglass modules and trained for 1000 epochs,
with a learning rate of 0.0001. CPM and stacked hourglass needed to crop out the mouse in
the original image for detection and then map the coordinates back to the original image.
DeepLabCut and the improved DeepLabCut required a total of 1,030,000 iterations. The
learning rate was 0.005 for the first 10,000 iterations, 0.02 for 10,000 to 430,000, 0.002 for
430,000 to 730,000, and 0.001 for the final stage, using Resnet50 weights pre-trained on
ImageNet.

In the murine behavior recognition task, 3DCNN [33,34], LSTM, and Bi-LSTM [35,36]
were compared with ConvLSTM. The 3DCNN network also used the keypoint feature
map sequence as an input. This study used a four-layer 3D convolution; the numbers of
convolution kernels were 64, 64, 128, and 256, respectively, and the size of the convolution
kernel was 3 × 3 × 3. The 3DCNN network used the full connection and softmax functions
for classification, and trained for a total of 10 epochs. Eleven features were extracted from
the murine keypoints for training LSTM and Bi-LSTM, as shown in Figure 7. The LSTM
network consisted of four layers with 64, 64, 128, and 256 neurons, respectively, used full
connections for classification, and trained for a total of 50 epochs. The bi-LSTM network’s
training parameters were the same as those for LSTM, except that Bi-LSTM utilized the
information in the later frames.
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3.4. Results
3.4.1. Results of Keypoint Detection

Table 1 shows the results of a performance comparison between different keypoint
detection algorithms, with a threshold of 0.4. As can be seen from Table 1, among CPM,
Hourglass, and DeepLabCut, the accuracy of DeepLabCut for each keypoint was the
highest, and the detection speed was 18.4 frames per second. After the ASPP module
was added, DLC_b1_r2, DLC_b2_r2, and DLC_b12_r2 achieved high accuracy on each
keypoint, and the PCK increased by 2–3%, proving that the ASPP module can indeed
improve keypoint detection accuracy under a high expansion rate. At the same time,
the results at different scales show that this improvement in accuracy was related to the
improved accuracy of small-scale target detection, with the PCK at 80 cm increasing from
68% to 77%. However, the location where ASPP joined had little effect, but one bias was
that when the ASPP module was located in the shallow layers of the network, the accuracy
rate was higher. The reason for this may be that the shallow layer of the network contains
detailed features, the deep layer has semantic features, and the keypoints at different scales
have different detailed features rather than semantic information. The addition of the ASPP
module incurred extra calculation, and the FPS decreased, but this decline was acceptable.
Considering the amount of computation, DLC_b1_r2 was selected as the optimal model in
this paper.

The parameters were consistent during training, but the order of images was shuffled.
Each algorithm was trained 10 times; the results are reported as mean differences at a 95%
confidence interval. For detailed results, see the Data Availability Statement. “Keypoints”
represents the PCK of each algorithm at different keypoints; “Heights” represents the
PCK of each algorithm at different scales; “Avg” represents the average PCK of different
keypoints.
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Table 1. Comparison of algorithms between different keypoints and different scales (PCK).

Method
Keypoints Heights

Avg FPSNose Left Ear Right Ear Tail Root 60 cm 70 cm 80 cm

CPM 0.76± 0.01 0.79± 0.02 0.85± 0.02 0.80± 0.01 0.88± 0.02 0.84± 0.02 0.69± 0.03 0.80± 0.01 15.1
Hourglass 0.59± 0.04 0.65± 0.04 0.71± 0.02 0.50± 0.02 0.72± 0.02 0.67± 0.03 0.44± 0.05 0.61± 0.02 14.5

DeepLabCut 0.84± 0.03 0.85± 0.01 0.87± 0.02 0.81± 0.02 0.94± 0.04 0.91± 0.04 0.68± 0.01 0.84± 0.01 18.4
DLC_b1_r1 0.85± 0.05 0.85± 0.02 0.85± 0.01 0.84± 0.01 0.92± 0.02 0.92± 0.01 0.69± 0.04 0.85± 0.01 17.5
DLC_b1_r2 0.88± 0.01 0.88± 0.02 0.91± 0.02 0.82± 0.02 0.92± 0.03 0.92± 0.02 0.77± 0.04 0.87± 0.01 16.7
DLC_b2_r1 0.83± 0.02 0.81± 0.02 0.84± 0.02 0.81± 0.04 0.92± 0.02 0.91± 0.01 0.64± 0.03 0.82± 0.02 16.9
DLC_b2_r2 0.87± 0.01 0.86± 0.02 0.87± 0.03 0.83± 0.01 0.94± 0.03 0.92± 0.03 0.71± 0.04 0.85± 0.01 17.2
DLC_b12_r1 0.84± 0.03 0.83± 0.03 0.82± 0.02 0.80± 0.02 0.91± 0.02 0.91± 0.02 0.65± 0.01 0.82± 0.01 15.4
DLC_b12_r2 0.87± 0.02 0.88± 0.01 0.91± 0.01 0.83± 0.03 0.92± 0.01 0.92± 0.03 0.79± 0.03 0.87± 0.01 14.6

Figure 8 compares the performance of each algorithm under different thresholds.
The smaller the threshold, the smaller the prediction error. Although the DeepLabCut
series algorithms achieved high PCK when the threshold was 0.4, their performance was
worse than that of the CPM and stacked hourglass algorithms at a lower threshold. The
reasons for this may be as follows: First, the CPM and stacked hourglass algorithms both
use intermediate supervision, making location information more accurate in continuous
multistage learning. Second, the CPM and stacked hourglass algorithms both use the
method of cropping out the mouse region before detection, whereas the DeepLabCut
series directly detects on the original image. Analysis of the series of improvements in
DeepLabCut shows that the ASPP module with a high expansion rate not only improves
prediction accuracy, but also reduces prediction error.
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3.4.2. Results of Behavior Recognition

Table 2 shows the accuracy of each behavior under different input parameters. Clearly,
the accuracy of different behaviors varied greatly. The accuracy of resting behavior was
the lowest, at less than 80%; the accuracies for grooming and walking straight were the
highest, at greater than 95%. Second, the recognition rate varied greatly with different
input parameters. For example, for resting behaviors, when the sequence interval was 1,
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the accuracy was the lowest, but for most behaviors, the influence of the input parameters
did not adhere to obvious rules. Analyzing the input data leads to the conclusion that
the time scales of different behaviors—or even the same behaviors—are not always the
same, and that changes in input parameters lead to different information being received by
the network. When information is redundant or lacking, it is difficult to form a consistent
understanding of behaviors. Because the objective law of different scales exhibited by be-
havior cannot be changed, the key is to enable the network to adapt to different time scales,
which will be the focus of upcoming research. The results presented here demonstrate the
feasibility of ConvLSTM for behavior recognition. This network had the highest accuracy
of 0.93± 0.01 when the length of the sequence was seven and the sequence interval was
zero.

Table 2. Behavior recognition accuracy under different time scales.

Sequence
Length

Sequence
Interval Resting Grooming Standing

Upright
Walking
Straight Tuning Avg

6
0 0.72± 0.03 0.99± 0.01 0.95± 0.01 0.99± 0.01 0.91± 0.02 0.91± 0.01
1 0.56± 0.05 0.99± 0.01 0.95± 0.00 0.99± 0.01 0.92± 0.02 0.86± 0.01
2 0.63± 0.01 0.97± 0.02 0.93± 0.03 0.98± 0.02 0.91± 0.02 0.88± 0.01

7
0 0.78± 0.03 0.99± 0.01 0.95± 0.02 1.00± 0.00 0.97± 0.02 0.93± 0.01
1 0.70± 0.02 0.97± 0.01 0.95± 0.02 0.98± 0.01 0.92± 0.02 0.90± 0.01
2 0.77± 0.01 0.97± 0.02 0.90± 0.04 0.99± 0.01 0.94± 0.03 0.91± 0.02

8
0 0.72± 0.03 0.98± 0.01 0.93± 0.02 0.99± 0.01 0.94± 0.03 0.91± 0.01
1 0.55± 0.06 0.97± 0.02 0.91± 0.02 0.97± 0.02 0.97± 0.01 0.86± 0.02
2 0.78± 0.04 0.94± 0.02 0.92± 0.02 0.96± 0.02 0.94± 0.02 0.90± 0.01

Each algorithm was trained 10 times; the results are reported as mean differences at a 95% confidence interval.
“Sequence length” represents the length of the continuous image sequence; “Sequence interval” represents the
interval between adjacent frames in a continuous image sequence; “Avg” represents the average accuracy of
different behaviors.

Table 3 compares the recognition accuracy of different algorithms. It is apparent
that the algorithms of the long short-term memory network series—such as LSTM, Bi-
LSTM, and ConvLSTM—had higher accuracy than 3DCNN. Although 3DCNN can also
process time series, its output is only related to the input—not to the order of the input.
Thus, it could not handle the time series. Compared with the one-dimensional LSTM
network, ConvLSTM achieved the highest accuracy of 0.93 ± 0.01, indicating that the
implicit establishment of spatial temporal information is more conducive to the network’s
understanding of behavior. Finally, compared with LSTM, the accuracy of Bi-LSTM was
increased by 2.2%, indicating that the context information in the video sequence helped in
recognizing behavior. This provides inspiration for the next step to improve the ConvLSTM
network. A comparison of behaviors showed that the accuracy of the method in identifying
resting was significantly lower than that in identifying the other behaviors. We generated a
confusion matrix to analyze identifications by each algorithm to explore the reasons for the
low accuracy in identifying resting behavior, as shown in Figure 9.

Table 3. Behavior recognition accuracy of different algorithms.

Method Resting Grooming Standing
Upright

Walking
Straight Turning Avg

LSTM 0.72± 0.02 0.97± 0.02 0.98± 0.01 0.91± 0.02 0.95± 0.01 0.95± 0.01
Bi-LSTM 0.75± 0.04 0.99± 0.01 0.97± 0.02 0.98± 0.01 0.98± 0.01 0.92± 0.01
3DCNN 0.60± 0.02 0.92± 0.02 0.85± 0.03 0.96± 0.02 0.99± 0.01 0.83± 0.02

ConvLSTM 0.78± 0.03 0.99± 0.01 0.95± 0.02 1.00± 0.00 0.97± 0.02 0.93± 0.01
Each algorithm was trained 10 times, and the results are reported as mean differences at a 95% confidence interval.
“Avg” indicates the average accuracy of different behaviors.
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It is apparent that the misrecognition of behaviors by different algorithms was similar.
For resting and grooming behaviors, the misrecognition rate was high because, in both
behaviors, the mouse is generally immobile; although the keypoints fluctuate over a
small range in the grooming behavior, this jitter was reflected in the keypoint feature
map with little difference, where this resulted in similar spatial distribution of keypoint
feature maps. Therefore, it is difficult for the network to distinguish between resting and
grooming behaviors. On the other hand, the misrecognition rates of upright and turning
behavior were also high, because upright behavior often contains turning behavior. In
summary, this study reveals the complexity of behavior recognition, which cannot be
simply recognized directly through the network. One possible method is to decompose
behavior into behavioral elements that are easily recognized by the algorithm, and then to
infer behavior according to the combination of behavioral elements.

4. Discussion

We integrated the DeepLabCut algorithm with the ASPP module to detect the nose,
left ear, right ear, and tail root of mice, and achieved a PCK of 0.87 ± 0.01. Compared
with the original DeepLabCut, the overall performance improved by 3%. The performance
improved by 9% for small targets (shooting height at 80 cm). This shows that ASPP can
fuse multiscale information and enable the network to adapt to changes in the scale of the
object. The closer the ASPP module was to the shallow layer, and the higher the expansion
rate, the better the performance of the proposed method. The network delivered optimal
performance when the ASPP module was at Block1 and the expansion rates were 2, 4, and
6. This result was possibly obtained because the shallow layers of the network contain
more detailed information on objects, and the receptive field was smaller. The shallow
features were different for the representation of objects at different scales. The semantic
information tended to be consistent for deep layers of the network. As a result, the ASPP
module worked well at the shallow level. A higher expansion rate may be applicable to the
dataset in this paper. The optimal parameters of the expansion rate may be different for
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different detection tasks, and this requires more detailed research. In addition, we found
that when highly precise identification was required, the accuracy of the DeepLabCut
series algorithms was not as high as that of CPM and Hourglass, because of their low input
resolution. Finding ways to make use of finer local information will be the focus of our
next improvement to this algorithm.

The traditional analysis of the behavior of mice has focused only on the parameters
of their movement or posture [37–41], and has paid little attention to their behavior. We
propose an algorithm that integrates a keypoint detection model with the ConvLSTM
network to detect the motion behavior of mice. This algorithm achieved an average
accuracy of 93.8% in identifying the five behaviors of walking straight, resting, grooming,
standing upright, and turning, where this was higher than the accuracies of the LSTM,
Bi-LSTM, and 3DCNN. Behavior can be expressed as a pattern of spatiotemporal changes
in posture. The map of keypoint features containing posture-related information was
used as the input to the ConvLSTM network to implicitly establish the relationships
between keypoints. The ConvLSTM network passed the state information of the previous
moment to the next moment. This is consistent with the definition of behavior. The output
of ConvLSTM network thus contained temporal and spatial information on behavioral
changes. We experimentally demonstrated the feasibility of this method, and explored the
impact of behavioral factors at the temporal scale on network performance. The durations
for which different behaviors could be sustained were different, but the length of the
sequence of the network input was fixed, and led to varying network performance at
different time scales. Although we experimentally determined the optimal parameters
of the time scale parameters, the network did not have the ability to adapt to different
time scales of behavior. In addition, ConvLSTM could not distinguish between similar
behaviors, such as resting and grooming. One possible solution to this is to decompose
behaviors into behavioral elements that are easily identifiable by the algorithm, and then to
combine different behavioral elements into behaviors [42,43].

We can use DeepLabCut and the ConvLSTM network to detect both the parameters of
motion and the behavior of mice. For example, we can use keypoints to calculate the speed
of movement of a mouse, draw a trajectory map, and determine the difference between
its central and peripheral movements. The results of behavior recognition of each frame
can then be used to calculate the frequency and duration of each behavior. We provide
an accurate and quantitative tool for behavioral analysis that is important for reducing
the workload of researchers and objectively analyzing experimental data. However, the
proposed algorithm still has many limitations. For example, the FPS of the improved
DeepLabCut was reduced from 18.4 to 16.7 due to the addition of the ASPP module.
Although this still satisfies the requirements of use, this limitation renders it unsuitable for
some scenarios requiring real-time detection. In addition, the proposed algorithm requires
training two models, which is cumbersome. Implementing an end-to-end model will also
be the focus of our future research in this area.

5. Conclusions

In this study, we proposed a method to identify the motion behavior of mice based
on the DeepLabCut model and the ConvLSTM network. The results of our experiments
showed that the ASPP module can improve the multiscale representation capability of
the network. The average PCK of DeepLabCut increased from 84% to 87% after the ASPP
module was added, and the accuracy of the method at detecting small targets increased
by 9%. The performance of the network was better when the ASPP module was located
in the shallow layer of the network. We also demonstrated ConvLSTM’s ability to extract
temporal and spatial information from keypoint feature maps, and used it for behavior
classification. Moreover, we verified the effect of the temporal scale of behavior on the
performance of the model. When the length of the sequence was seven and the sequence
interval was zero, the proposed method delivered the best performance, with an average
accuracy of 93.8%, which was higher than those of the LSTM, Bi-LSTM, and 3DCNN.
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