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Abstract: The stochastic differential equation (SDE) has been used to model various phenomena
and investigate their properties. Conditional moments of stochastic processes can be used to price
financial derivatives whose payoffs depend on conditional moments of underlying assets. In general, the
transition probability density function (PDF) of a stochastic process is often unavailable in closed form.
Thus, the conditional moments, which can be directly computed by applying the transition PDFs, may be
unavailable in closed form. In this work, we studied an inhomogeneous nonlinear drift constant elasticity
of variance (IND-CEV) process, which is a class of diffusions that have time-dependent parameter
functions; therefore, their sample paths are asymmetric. The closed-form formulas for conditional
moments of the IND-CEV process were derived without having a condition on eigenfunctions or the
transition PDF. The analytical results were examined through Monte Carlo simulations.

Keywords: conditional moment; constant elasticity of variance process; Feynman–Kac formula
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1. Introduction

The stochastic differential equation (SDE) has been used to model various phenomena
and investigate their properties, such as the moments, variance and conditional moments,
which are beneficial for estimating parameters that play significant roles in several practical
applications. For example, financial derivative prices, such as moment swaps, can be
obtained by calculating the conditional moments of their payoffs under the risk neutral
measure; see for more concrete studies Araneda et al. [1], Cao et al. [2], He and Zhu [3]
and Nonsoong et al. [4]. Actually, such moments can be directly computed by employing
SDE’s transition probability density function (PDF). However, the transition PDF is often
unavailable in closed form; so is the formula for those conditional moments of the SDE.
Investigating properties of those SDEs is still imperative and challenging.

There are several empirical studies confirming that a mean-reverting drift process, such
as the Vašíček, Ornstein–Uhlenbeck (OU) [5] and Cox–Ingersoll–Ross (CIR) [6] processes,
should not necessarily be linear. Indeed, the behaviors and dynamics of interest rate and its
derivatives prefer nonlinearity in the mean-reverting drift rather than linear drift processes;
see for more details in [7–10]. In order to extend the OU process, a nonlinear diffusion
process was introduced by Cox [11], namely, the constant elasticity of variance (CEV)
process. The CEV process is useful and has many applications in various fields. However,
the drift term of Cox’s CEV process is still linear. For many reasons described in the
existing literature [7,8], an extended case of Cox’s CEV process was first studied by Marsh
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and Rosenfeld [12]. The process is sometimes called the Marsh–Rosenfeld (MR) process,
and its transition PDF that can be straightforwardly calculated by using Itô’s lemma and
the transition PDF of the CIR process are very complicated; the closed-form formula for
conditional moments of the MR process is also complicated or unavailable in general; see for
more details in [13]. It gets even more complicated for an inhomogeneous-time MR process
that extends the MR process by replacing the constant parameters in the process with
time-dependent functions. From now on, we subsequently call the inhomogeneous-time
MR process in general an inhomogeneous nonlinear drift constant elasticity of variance
(IND-CEV) process.

Conditional moments have been extensively used in modern financial markets. For
example, they can be used to price moment swaps. Unfortunately, the conditional moments,
which can be directly computed by applying the transition PDFs, are often unavailable in
closed form because the transition PDFs are hardly known. The Feynman–Kac technique is
used to overcome this problem for calculating the conditional moments of many stochastic
processes. There has still been little research on the analytical formula for conditional
moments regarding the IND-CEV process. In this work, a novel approach is developed
based on the Feynman–Kac theorem, where the partial differential equation (PDE) is solved
analytically, and some combinatorial techniques are used to simplify the system of recursive
ordinary differential equations (ODEs) associated with the conditional moment.

The rest of the paper is organized as follows. Section 2 provides an overview of the
IND-CEV process and sufficient conditions of the time-dependent parameter functions
in the process. The key methodology and main results are given in Section 3. Section 4
proposes some essential properties such as conditional moments, conditional variance
and central moments, conditional mixed moments, conditional covariance and correlation.
Section 5 provides the formula of the unconditional moments of the IND-CEV process with
constant parameters. Experimental validations for our results applied with Monte Carlo
(MC) simulations are addressed in Section 6. Conclusions, limitations and future researches
are discussed in Section 7.

2. IND-CEV Process

This section presents the IND-CEV process and sufficient assumptions for the process
in order to have a unique positive solution. The dynamics of the short-term interest rate
over time are assumed to follow the SDE:

drt = κ(t)
(

θ(t)r2β−1
t − rt

)
dt + σ(t)rβ

t dWt, (1)

with the initial condition r0 > 0, where κ(t), θ(t) and σ(t) are smooth and bounded
time-dependent parameter functions and Wt is a standard Brownian motion, which has
asymmetric sample paths, under a probability space (Ω,F ,P) with filtration {Ft}t≥0. In
this study, we only focus on the case that β < 1 in the SDE (1). Let ` := 2− 2β. Henceforth,
the dynamics of the process rt are considered via the following SDE:

drt = κ(t)
(

θ(t)r−(`−1)
t − rt

)
dt + σ(t)r

−( `−2
2 )

t dWt (2)

where ` > 0. The process rt in (2) is called an IND-CEV process. In addition, the SDE (2) is
called the extended Cox–Ingersoll–Ross (ECIR) process when ` = 1; see for more details
in [14–17]. From (2), if the parameters κ(t), θ(t) and σ(t) are constants written by κ, θ and
σ, respectively, then the SDE (2) can be rewritten as:

drt = κ
(

θr−(`−1)
t − rt

)
dt + σr

−( `−2
2 )

t dWt (3)

where ` > 0. We will consider SDEs (2) and (3) on a time domain [0, T].
We first discuss the solution of SDE (2).
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Assumption 1. The parameter functions θ(t), κ(t) and σ(t) in SDE (2) are strictly positive and
continuously differentiable on [0, T]. Moreover, κ(t)/σ2(t) is locally bounded on [0, T].

Assumption 2. 2κ(t)θ(t) > σ2(t) for all t ∈ [0, T].

Theorem 1. For SDE (2), if Assumptions 1 and 2 hold with r0 > 0, then there exists a pathwise
unique strong solution process rt > 0 for all t ∈ [0, T].

Proof. Transforming vt = r`t with the Itô lemma yields:

dvt = (`)r`−1
t

(
κ(t)

(
θ(t)r−(`−1)

t − rt

)
dt + σ(t)r−

`−2
2

t dWt

)
+

1
2
(`)(`− 1)r`−2

t

(
σ(t)r−

`−2
2

t dWt

)2

=

(
`κ(t)

(
θ(t)− r`t

)
+

1
2
(`)(`− 1)σ2(t)

)
dt + `σ(t)r

1
2 `
t dWt

= `κ(t)
(

θ(t)− r`t +
(`− 1)σ2(t)

2κ(t)

)
dt + `σ(t)r

1
2 `
t dWt

= `κ(t)
(

θ(t) +
(`− 1)σ2(t)

2κ(t)
− vt

)
dt + `σ(t)

√
vtdWt

= A`(t)(B`(t)− vt)dt + C`(t)
√

vtdWt,

where A`(t) = `κ(t), B`(t) = θ(t) + (`− 1)σ2(t)/2κ(t) and C`(t) = `σ(t). Thus, vt is an
ECIR process. Under Assumptions 1 and 2, the functions A`, B` and C` are strictly positive,
smooth and continuous time-dependent parameter functions on [0, T]. Additionally, we
have that:

2A`(t)B`(t) = 2`κ(t)
(

θ(t) +
(`− 1)σ2(t)

2κ(t)

)
= `
(

2κ(t)θ(t) + (`− 1)σ2(t)
)

> `
(

σ2(t) + (`− 1)σ2(t)
)
= C2

` (t).

By the Feller condition [18], the SDE (2) has a pathwise unique strong solution in which vt
avoids zero almost surely under measure P for all 0 < t ≤ T and so does rt.

From now on, we will always assume Assumptions 1 and 2 with r0 > 0.

3. Main Results

In this section, we give the closed-form formula of conditional moments of processes (2)
and (3). Applying the Feynman–Kac technique and assuming a special form of the condi-
tional moment, we can express the solution of the resulting PDE as an infinite series and
solve the system of recursive ODEs to obtain coefficients for the closed-form formula. The
results for some special cases are also displayed.

In this work, under the probability measure P and σ−field Ft, we first propose the
integral-form formula for the conditional moment of an IND-CEV process for γ > 0:

u〈γ〉` (r, τ) := E
[
rγ

T | rt = r
]
, (4)

for all r > 0 and τ := T − t ∈ (0, T]. Obviously, u〈γ〉` (r, 0) = rγ. The key idea involves a
system with a recurrence differential equation that brings about the PDE by involving an
asymmetric matrix. The form of PDE’s solution associated with the conditional moment (4)
is a polynomial expression motivated by [16,17,19–24]. Hence, we can solve its coefficients
to obtain a closed-form formula directly.
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Theorem 2. Let rt be an IND-CEV process satisfying (2). Assume that the γth conditional moment
can be expressed in the form:

u〈γ〉` (r, τ) =
∞

∑
k=0

A〈k〉` (τ)rγ−`k (5)

in which the infinite series uniformly converges on D〈γ〉` ⊆ (0, ∞)× (0, T]. Then, the coefficients
in (5) can be expressed recursively by:

A〈0〉` (τ) := e−
∫ τ

0 P〈0〉` (T−ξ)dξ ,

A〈k〉` (τ) :=
∫ τ

0
e−
∫ τ

η P〈k〉` (T−ξ)dξ Q〈k−1〉
` (T − η)A〈k−1〉

` (η)dη,
(6)

for all k ∈ N, where:

P〈j〉` (τ) := (γ− `j)κ(τ), (7)

Q〈j〉` (τ) := (γ− `j)
(

1
2
(γ− `j− 1)σ2(τ) + κ(τ)θ(τ)

)
. (8)

Proof. Applying the Feynman–Kac formula to the SDE (2), we have that the function
u := u〈γ〉` (r, τ) satisfies the PDE:

uτ −
1
2

σ2(T − τ)r−(`−2)urr − κ(T − τ)
(

θ(T − τ)r−(`−1) − r
)

ur = 0 (9)

for all r > 0 and 0 < τ ≤ T, with the initial condition:

u〈γ〉` (r, 0) = E
[
rγ

T | rT = r
]
= rγ. (10)

From (5), u〈γ〉` (r, 0) =
∞
∑

k=0
A〈k〉` (0)rγ−`k. Comparing this with (10) implies that A〈0〉` (0) = 1

and A〈k〉` (0) = 0 for all k ∈ N. Substituting (5) into (9), we have that:

0 =
∞

∑
k=0

d
dτ

A〈k〉` (τ)rγ−`k

− 1
2

σ2(T − τ)r−(`−2)
∞

∑
k=0

(
(γ− `k)(γ− `k− 1)A〈k〉` (τ)rγ−`k−2

)
− κ(T − τ)

(
θ(T − τ)r−(`−1) − r

) ∞

∑
k=0

(
(γ− `k)A〈k〉` (τ)rγ−`k−1

)
or it can be simplified as:

0 =

(
d

dτ
A〈0〉` (τ) + γκ(T − τ)A〈0〉` (τ)

)
rγ

+
∞

∑
k=1

(
d

dτ
A〈k〉` (τ) + P〈k〉` (T − τ)A〈k〉` (τ)−Q〈k−1〉

` (T − τ)A〈k−1〉
` (τ)

)
rγ−`k.

Under the assumption that the solution is in the form (5) over D〈γ〉` , this equation can be
solved through the system of ODEs:

0 =
d

dτ
A〈0〉` (τ) + γκ(T − τ)A〈0〉` (τ),

0 =
d

dτ
A〈k〉` (τ) + P〈k〉` (T − τ)A〈k〉` (τ)−Q〈k−1〉

` (T − τ)A〈k−1〉
` (τ),

(11)
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with initial conditions A〈0〉` (0) = 1 and A〈k〉` (0) = 0 for k ∈ N. Hence, the coefficients in the
infinite series (5) can be directly acquired by solving the system (11), which turns out to be
the recursive relation given in (6).

Note that when we define variables or notations using the := sign, e.g., Equations (6)–(8),
we will use those variables or notations throughout this work.

Observe that (5) becomes a finite sum when one of the two factors for Q〈j〉` (τ) in (8)
is zero. For fixing ` > 0, we give the consequence of (5) in Theorem 2 when γ/` ∈ Z+.
The infinite sum in (5) is cut off at a finite order and can be presented as in the following
corollary.

Corollary 1. Let rt be an IND-CEV process satisfying (2). For the positive real number γ such
that γ/` ∈ Z+, the γth conditional moment is explicitly given by:

u〈γ〉` (r, τ) =
γ/`

∑
k=0

A〈k〉` (τ)rγ−`k, (12)

for all (r, τ) ∈ (0, ∞)× (0, T].

Proof. From (8), when j = γ/`, we acquire that Q〈j〉` (τ) = 0. From (6), the coefficients

A〈k〉` (τ) = 0 for all integers k ≥ γ/`+ 1. Hence, the infinite sum (5) is actually just the
finite sum (12). Since any integration of a continuous function over a compact set is finite,
the finite sum (12) exists for all (r, τ) ∈ (0, ∞)× (0, T]; hence, the infinite sum (5) uniformly
converges to the finite sum (12) and D〈γ〉` = (0, ∞)× (0, T].

Another consequence of (5) in Theorem 2 is shown in the following corollary.

Corollary 2. Assume that rt follows SDE (2) and there exists m ∈ Z+
0 such that:

γ = 1− 2κ(τ)θ(τ)

σ2(τ)
+ `m (13)

for all τ ∈ (0, T]. Then,

u〈γ〉` (r, τ) =
m

∑
k=0

A〈k〉` (τ)rγ−`k, (14)

for all (r, τ) ∈ (0, ∞)× (0, T].

Proof. From (8), when j = m, we have that Q〈j〉` (τ) = 0. From (6), the coefficients A〈k〉` (τ) =
0 for all integers k ≥ m + 1. With the same reasoning as in the proof of Corollary 1, we
acquire the desired result.

One main concern when we investigate the conditional moments described by the IND-
CEV process is that the integral terms (6) in Theorem 2 cannot be directly evaluated. Thus,
a very accurate numerical integration scheme is applied via the Chebyshev integration
method; see [25–28] for more details.

Next, we consider the case when κ(τ), θ(τ) and σ(τ) are constant functions.

Theorem 3. If rt follows the SDE (3) and the γth conditional moment can be expressed in the
form (5), then the γth conditional moment is given by:

u〈γ〉` (r, τ) =
∞

∑
k=0

e−γκτ

k!

(
eκτ` − 1

κ`

)k(k−1

∏
j=0

Q̃〈j〉`

)
rγ−`k, (15)
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for all (r, τ) ∈ D〈γ〉` , where:

Q̃〈j〉` :=
(

γ− `j
)(1

2
(γ− `j− 1)σ2 + κθ

)
. (16)

Note that the product from 0 to −1,
−1
∏
j=0

Q̃〈j〉` , is defined to be 1.

Proof. We will prove by induction that:

A〈k〉` (τ) =
e−γκτ

k!

(
eκτ` − 1

κ`

)k(k−1

∏
j=0

Q̃〈j〉`

)

for all k ∈ N ∪ {0}. From (6) with the constant parameters κ, θ and σ, we have that
A〈0〉` (τ) = e−γκτ and

A〈k〉` (τ) = Q̃〈k−1〉
`

∫ τ

0
e−(τ−η)(γ−`k)κ A〈k−1〉

` (η)dη, (17)

for all k ∈ N. By substituting k = 1 in (17), we obtain:

A〈1〉` (τ) = e−γκτ

(
eκτ` − 1

κ`

)
Q̃〈0〉` .

Let k ∈ N. Assume that:

A〈k−1〉
` (τ) =

e−γκτ

(k− 1)!

(
eκτ` − 1

κ`

)k−1(k−2

∏
j=0

Q̃〈j〉`

)
.

From (17), we have that:

A〈k〉` (τ) = e−(γ−`k)κτQ̃〈k−1〉
`

∫ τ

0
e(γ−`k)κη A〈k−1〉

` (η)dη

=
e−(γ−`k)κτ

(k− 1)!(κ`)k−1

(
k−1

∏
j=0

Q̃〈j〉`

) ∫ τ

0
e−k`κη

(
eκη` − 1

)k−1
dη

=
e−γκτ

k!

(
eκτ` − 1

κ`

)k(k−1

∏
j=0

Q̃〈j〉`

)
.

From Corollaries 1 and 2, when κ(τ), θ(τ) and σ(τ) are constant functions, we have
the following corollaries.

Corollary 3. Assume that rt follows SDE (3). For a positive real number γ such that γ/` ∈ Z+,
the γth conditional moment is explicitly given by:

u〈γ〉` (r, τ) =
γ/`

∑
k=0

e−γκτ

k!

(
eκτ` − 1

κ`

)k(k−1

∏
j=0

Q̃〈j〉`

)
rγ−`k, (18)

for all (r, τ) ∈ (0, ∞)× (0, T]. Note that the product of Q̃〈j〉` in (18) for k = 0 is defined to be 1.

Corollary 4. Assume that rt follows the SDE (3). If there exists m ∈ Z+
0 such that

γ = 1− 2κθ

σ2 + `m, (19)
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then

u〈γ〉` (r, τ) =
m

∑
k=0

e−γκτ

k!

(
eκτ` − 1

κ`

)k(k−1

∏
j=0

Q̃〈j〉`

)
rγ−`k, (20)

for all (r, τ) ∈ (0, ∞)× (0, T].

For SDE (3), characterization for the convergence of the series (15) can be provided.

Theorem 4. Assume that rt follows SDE (3) and Q̃〈j〉` 6= 0 for all j ∈ Z+
0 . Then, the series (15)

diverges for all (r, τ) ∈ (0, ∞)× (0, T].

Proof. Since Q̃〈j〉` 6= 0 for all j ∈ Z+
0 , we have that γ− `k 6= 0 and (γ− `k− 1)σ2/2+ κθ 6= 0

for all k ∈ Z+
0 .

lim
k→∞

∣∣∣∣∣A〈k+1〉
` (τ)rγ−`(k+1)

A〈k〉` (τ)rγ−`k

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣∣∣∣∣
e−γκτ

(k+1)!

(
eκτ`−1

κ`

)k+1
(

k
∏
j=0

Q̃〈j〉`

)
rγ−`(k+1)

e−γκτ

k!

(
eκτ`−1

κ`

)k
(

k−1
∏
j=0

Q̃〈j〉`

)
rγ−`k

∣∣∣∣∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣∣∣∣
(

eκτ` − 1
)(

γ− `k
)(

1
2 (γ− `k− 1)σ2 + κθ

)
(k + 1)κ`r`

∣∣∣∣∣∣∣.
The above expression is O(k) as k → ∞; hence, the limit diverges. By ratio test, the
series (15) diverges for all (r, τ) ∈ (0, ∞)× (0, T].

From Corollaries 3 and 4, and Theorem 4, we have the following result.

Corollary 5. Assume that rt follows SDE (3). Then, the series (15) converges for all (r, τ) ∈
(0, ∞)× (0, T] if and only if:

1. γ
` ∈ Z+, or

2. 1
`

(
γ− 1 + 2κθ

σ2

)
∈ Z+

0 .

The convergent results for case 1 and 2 are given in Corollaries 3 and 4, respectively.

4. Probabilistic Properties

This section illustrates some usefulness of our results from Section 3 including the first,
second and fractional conditional moments; conditional variance and central moments;
conditional mixed moments; and conditional covariance and correlation.

Example 1 (The conditional moments). From Corollary 1, the nth conditional moment of an
IND-CEV process when the parameter ` = 1/L for some L ∈ N is given by:

E[rn
T | rt = r] = u〈n〉` (r, τ) =

nL

∑
k=0

A〈k〉` (τ)rn− k
L ,

where:

A〈0〉` (τ) = e−
∫ τ

0 P〈0〉` (T−ξ)dξ ,

A〈k〉` (τ) =
∫ τ

0
e−
∫ τ

η P〈k〉` (T−ξ)dξ Q〈k−1〉
` (T − η)A〈k−1〉

` (η)dη,



Symmetry 2022, 14, 1345 8 of 16

for k ∈ N, where:

P〈j〉` (τ) =

(
n− j

L

)
κ(τ),

Q〈j〉` (τ) =

(
n− j

L

)(
1
2

(
n− j

L
− 1
)

σ2(τ) + κ(τ)θ(τ)

)
.

For constants κ, θ and σ, we use u〈1〉` (r, τ) and u〈2〉` (r, τ) in Corollary 3. Then, for L = 1, the first
and second conditional moments are given by:

E[rT | rt = r] = (r− θ)e−κτ + θ (21)

and

E
[
r2

T | rt = r
]
=e−2κτr2 +

(σ2/2 + κθ)e−2κτ

κ

(
r(eκτ − 1) + θ(eκτ − 1)2

)
. (22)

For L = 2, the first and second conditional moments are given by:

E[rT | rt = r] = e−κτ

r + θ
(

e
κτ
2 − 1

)2r
1
2 +

(
e

κτ
2 − 1

)
κ

(
−σ2

4
+ κθ

) (23)

and

E
[
r2

T | rt = r
]
=e−2κτ

r2 +
(

e
κτ
2 − 1

)(σ2

2
+ κθ

) 4
κ

r
3
2 +

6
(

e
κτ
2 − 1

)
κ2

(
σ2

4
+ κθ

)
r


+ e−2κτ

4
(

e
κτ
2 − 1

)3

κ2

(
σ2

2
+ κθ

)(
σ2

4
+ κθ

)
θr

1
2

+ e−2κτ

(
e

κτ
2 − 1

)4

κ2

(
σ2

2
+ κθ

)(
σ2

4
+ κθ

)(
−σ2

4
+ κθ

)
θ. (24)

Additionally, for ` = 3/4, the conditional moment with γ = 3/2 is given by:

E
[

r
3
2
T | rt = r

]
=e−

3
2 κτr

3
2 + 2e−

3
2 κτ

(
e

3
4 κτ − 1

κ

)(
σ2

4
+ κθ

)
r

3
4

+ e−
3
2 κτ

(
e

3
4 κτ − 1

κ

)2(
σ2

4
+ κθ

)(
−σ2

8
+ κθ

)
. (25)

Next, we propose the consequences of Example 1, which are the conditional vari-
ance and central moments, conditional mixed moments, and conditional covariance and
correlation, as follows.

Example 2 (The conditional variance and nth central moment). By applying Corollary 3, (21)
and (22), the conditional variance of the IND-CEV process can be given by:

Var[rT |rt = r] =E
[
(rT − E[rT | rt])

2 | rt = r
]
= u〈2〉` (r, τ)−

(
u〈1〉` (r, τ)

)2
,
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where u〈1〉` (r, τ) and u〈2〉` (r, τ) are derived in (21) and (22) for the CIR process. In general, the nth
central moment is presented by:

µn(r, τ) := E
[
(rT − E[rT | rt])

n | rt = r
]
=

n

∑
j=0

(−1)n−j
(

n
j

)(
u〈j〉` (r, τ)

)(
u〈1〉` (r, τ)

)n−j

where u〈0〉` (r, τ) := 1.

Example 3 (The conditional mixed moments). By applying the tower property for 0 ≤ t <
T1 < T2, where τ1 = T1 − t and τ2 = T2 − T1 and Corollary 1, the conditional mixed moment of
the IND-CEV process (2) with ` = 1/L is given by:

E
[
rn1

T1
rn2

T2
| rt = r

]
=E
[
rn1

T1
E
[
rn2

T2
| rT1

]
| rt = r

]
= E

[
rn1

T1
u〈n2〉
` (rT1 , T2 − T1) | rt = r

]
=

n2L

∑
k=0

A〈k〉` (τ2)E
[

rn1+n2− k
L

T1
| rt = r

]

=
n2L

∑
k=0

A〈k〉` (τ2)u
〈n1+n2− k

L 〉
` (r, T1 − t)

=
n2L

∑
k=0

(n1+n2)L−k

∑
j=0

A〈k〉` (τ2)A〈j〉` (τ1)rn1+n2−
k+j

L . (26)

In addition, the general formula for conditional mixed moments E
[
rn1

T1
rn2

T2
· · · rnk

Tk
| rt = r

]
, where

n1, n2, . . . , nk ∈ Z+ and 0 ≤ t < T1 < T2 < · · · < Tk, for the process (3) can be analytically
derived by using Corollary 3.

Example 4 (The conditional covariance and correlation). The conditional covariance of the
CIR process for 0 ≤ t < T1 < T2, where τ1 = T1 − t and τ2 = T2 − T1, is given by:

Cov
[
rT1 , rT2 | rt = r

]
:= E

[(
rT1 − E

[
rT1 | rt

])(
rT2 − E

[
rT2 | rt

])
| rt = r

]
= E

[
rT1 rT2 | rt = r

]
− E

[
rT1 | rt = r

]
E
[
rT2 | rt = r

]
=

1

∑
k=0

2−k

∑
j=0

A〈k〉` (τ2)A〈j〉` (τ1)r2−k−j − u〈1〉` (r, τ1)u
〈2〉
` (r, τ2). (27)

Applying the results from (26) and (27), we obtain that the conditional correlation of the CIR process
is given by:

Corr[rT1 , rT2 | rt = r] : =
Cov[rT1 , rT2 | rt = r]

Var[rT1 | rt = r]1/2 Var[rT2 | rt = r]1/2

=

1

∑
k=0

2−k

∑
j=0

A〈k〉` (τ2)A〈j〉` (τ1)r2−k−j − u〈1〉` (r, τ1)u
〈2〉
` (r, τ2)(

u〈2〉1 (r, τ1)−
(

u〈1〉1 (r, τ1)
)2
)1/2(

u〈2〉1 (r, τ2)−
(

u〈1〉1 (r, τ2)
)2
)1/2 . (28)

We can generalize (27) and (28) by using (26) as the closed forms of Cov
[
rn1

T1
, rn2

T2
| rt = r

]
and

Corr
[
rn1

T1
, rn2

T2
| rt = r

]
, where n1 and n2 are positive integers.

5. Unconditional Moments of the IND-CEV Process

This section provides the formula of the unconditional moments of the IND-CEV pro-
cess with constant parameters as τ → ∞ reduced from the formula of conditional moments.
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Theorem 5. Assume that rt follows SDE (3). Then, for all γ/` ∈ Z+,

lim
τ→∞

u〈γ〉` (r, τ) =
γ/`

∏
j=1

2κθ + (`j− 1)σ2

2κ
. (29)

Proof. Let s = γ/` ∈ Z+. By considering (18) in Corollary 3, the coefficient terms of rγ−`k

converge to 0 as τ → ∞ for k = 0, 1, 2, . . . , s− 1. Thus, the summation (18) is reduced to
only one term, where k = s,

lim
τ→∞

u〈γ〉` (r, τ) = lim
τ→∞

e−γκτ

s!

(
eκτ` − 1

κ`

)s(s−1

∏
j=0

Q̃〈j〉`

)
rγ−`s

=
1

s!(κ`)s

(
s−1

∏
j=0

Q̃〈j〉`

)
lim

τ→∞
e−γκτ

(
eκτ` − 1

)s

=
1

s!(κ`)s

(
s−1

∏
j=0

Q̃〈j〉`

)
lim

τ→∞

(
1− e−κτ`

)s

=
1

s!(κ`)s

(
s−1

∏
j=0

Q̃〈j〉`

)
,

where Q̃〈j〉` is defined in (16). By expressing Q̃〈j〉` to the above equation, it can be performed
to

lim
τ→∞

u〈γ〉` (r, τ) =
1

s!(κ`)s

s−1

∏
j=0

(
γ− `j

)(1
2
(γ− `j− 1)σ2 + κθ

)
=

γ/`

∏
j=1

2κθ + (`j− 1)σ2

2κ
.

Note that the formula for unconditional moments does not rely on the initial value r,
and these unconditional moments represent the moments of the stationary distribution of
the process (3).

6. Experimental Validation

In this section, we validate the closed-form formulas presented in Theorem 2 and
Corollaries 1 and 2. The Euler–Maruyama (EM) method was applied to simulate the
process (2) and approximate the conditional moments based on the symmetry concept. For
an interval [0, τ], let ∆ = τ/N for a fixed N ∈ N and ti = ∆i for i = 0, 1, . . . , N. We denote
a numerical solution of the IND-CEV process at time ti by r̂ti . The EM approximation of (2)
on the interval [0, τ] is defined as r̂0 = r and

r̂ti+1 = r̂ti + κ(ti)
(

θ(ti)r̂
−(`−1)
ti

− r̂t

)
∆t + σ(ti)r̂

−(`−2)
2

ti

√
∆Wi+1 (30)

where W1, W2, . . . , WN are N independent standard normal random variables. In this
validation, the MC simulations based on the EM method (30) were conducted by MATLAB
R2021a software on a quadcore Intel Core i5-1035G1 with 8 GB RAM.

Example 5. In this example, we apply the MC simulations based on the CEV process [15]:

drt = κ

(
σ2

0 de2σ1t

4κ
r−(`−1)

t − rt

)
dt + σ0eσ1tr−

`−2
2

t dWt (31)

where κ and σ0 are positive constants, σ1 is a non-negative constant and d is a positive integer
greater than 2. By considering (31) and (2), the parameter functions for SDE (31) are κ(t) = κ,
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θ(t) = dσ2
0 e2σ1t/4κ and σ(t) = σ0eσ1t. Note that Assumptions 1 and 2 hold for these parameter

functions. By Theorem 2, we have that:

u〈γ〉` (r, τ) = e−γκτ
∞

∑
k=0

ξk (32)

where:

ξk :=
1
k!

k−1

∏
j=0

(γ− `j)(d + 2(γ− `j− 1))

σ2
0 e2σ1(T−τ)

(
e2σ1τ+κτ` − 1

)
4(2σ1 + κ`)

k

rγ−`k. (33)

However, Formula (32) can be reduced to a finite sum for a particular situation. By Corollary 1, if
γ/` ∈ Z+, then:

u〈γ〉` (r, τ) = e−γκτ
γ/`

∑
k=0

ξk. (34)

By Corollary 2, if there exists m ∈ Z+
0 such that γ = 1− 2κ(τ)θ(τ)/σ2(τ) + `m, which is

1− d/2 + `m in this example, for all τ ∈ (0, T], then:

u〈γ〉` (r, τ) = e−γκτ
m

∑
k=0

ξk. (35)

Our experiments are classified into three cases: (i) γ/` ∈ Z+, (ii) (γ− 1 + d/2)/` ∈ Z+
0 ,

and (iii) γ/` /∈ Z+ and (γ − 1 + d/2)/` /∈ Z+
0 . The algorithm of our validation is given in

Algorithm 1. The parameters ` = 2/3, σ0 = 0.01, σ1 = 0.02, κ = 0.03 and T = 10 in the
process (31) are set for all of these three cases. MC simulations were performed at each initial value
r = 0.1, 0.2, . . . , 2 and τ = 1, 2, . . . , 10.

Algorithm 1 MC validation for the process (31)

1: Set the values for parameters `, γ, d, κ, σ0, σ1, T

2: N0 ←


γ/` ifγ/` ∈ Z+

(γ− 1 + d/2)/` if(γ− 1 + d/2)/` ∈ Z+

the number of terms in (32) ifγ/` /∈ Z+and(γ− 1 + d/2)/` /∈ Z+

3: Compute u(r, τ) = e−γκτ
N0
∑

k=0
ξk according to (33) for a refined grid of variables r and τ

4: Plot a surface of u(r, τ) representing the conditional moments from our formulas
5: Construct a grid of variables r and τ to perform MC simulation
6: For each initial value r and final time τ, apply the EM method with 1000 time steps to

the process (31) to get r̂τ with 1000 sample paths and compute the average value of r̂γ
τ

7: Plot the resulting values and compare them with the surface of u(r, τ)

For the case when γ/` ∈ Z+, we set d = 3 and consider two different values of γ. Here, we
choose γ = 2 and 8/3. Figure 1 shows the comparison between Formula (34) and MC simulations.
The results from MC simulations are presented by blue star markers, and Formula (34) is presented by
the solid surfaces. All markers perfectly match with the surfaces. This indicates that our formula from
Corollary 1 is correct. The validation runtimes for γ = 2 and 8/3 were 23.82 and 22.30 s, respectively.

For the case when (γ − 1 + d/2)/` ∈ Z+
0 , we set d = 4 and consider γ = 1 and 5/3.

Figure 2 demonstrates the comparison between Formula (35) and MC simulations. Evidently,
the results from MC simulations and the surfaces from Formula (35) are completely coincident.
Validation runtimes for γ = 1 and 5/3 were 22.34 and 22.63 s, respectively.
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(a) γ = 2 (b) γ = 8
3

Figure 1. The validation of conditional moments for process (31) where ` = 2/3, σ0 = 0.01, σ1 = 0.02,
κ = 0.03, T = 10 and d = 3 with MC simulations.

(a) γ = 1 (b) γ = 5
3

Figure 2. The validation of conditional moments for process (31) where ` = 2/3, σ0 = 0.01, σ1 = 0.02,
κ = 0.03, T = 10 and d = 4 with MC simulations.

For the case when γ/` /∈ Z+ and (γ − 1 + d/2)/` /∈ Z+
0 , we set d = 5 and consider

γ = 1. Observe that from (33), |ξk+1/ξk| is O(k) as k → ∞; thus, limk→∞|ξk+1/ξk| = ∞ for
(r, τ) ∈ (0, ∞)× (0, T]. By the ratio test, the summation ∑∞

k=0 ξk diverges; hence, Formula (32)
diverges for all (r, τ) ∈ (0, ∞) × (0, T]. This means that the conditional moment cannot be
expressed in the form (5). However, our experiment shows that finite terms of the summation in
Formula (32) can be used to approximate the conditional moment. Figure 3 shows the comparison
between the formula

Sn(r, τ) := e−γκτ
n

∑
k=0

ξk (36)

for n = 10, 1000 and MC simulations. The results from MC simulations coincide with the surface
from Formula (36) with n = 10. For n = 1000, the results from Formula (36) could not be computed
by our machine. This supports our theory that Formula (32) diverges. Validation runtimes for
n = 10 and n = 1000 were 22.76 and 26.98 s, respectively.
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(a) n = 10 (b) n = 1000
Figure 3. The validation of conditional moments for process (31) where ` = 2/3, γ = 1, σ0 = 0.01,
σ1 = 0.02, κ = 0.03, T = 10 and d = 5 with MC simulations.

The next example shows a similar result of the third case in Example 5 for the IND-CEV
process with constant parameter functions.

Example 6. For SDE (3) with ` = 2/3, κ = 0.03, θ = 0.003, σ = 0.01, γ = 1 and T = 10,
we have that γ/` /∈ Z+ and (γ− 1 + 2κθ/σ2)/` /∈ Z+

0 . From Corollary 5, u〈1〉2/3(r, τ) cannot be
expressed in the form (5). However, our experiment shows that finite terms of the summation in
Formula (15) can be used to approximate the conditional moment. Let:

S̃n(r, τ) :=
n

∑
k=0

e−κτ

k!

(
e2κτ − 1

2κ

)k
k−1

∏
j=0

(
1− 2j

)(
κθ − jσ2

)r1−2k. (37)

Figure 4 shows the comparison for Formula (37) between n = 10, 1000 and MC simulations. All
blue markers match with the surface from the formula with n = 10, even though S̃n(r, τ) diverges
as n→ ∞. Validation runtimes for n = 10 and n = 1000 were 22.79 and 26.96 s, respectively.

(a) n = 10 (b) n = 1000
Figure 4. The validation of conditional moments for process (3) where ` = 2/3, γ = 1, κ = 0.03,
θ = 0.003 and σ = 0.01 and T = 10 with MC simulations.

7. Conclusions, Limitations and Future Researches

In this study, we focused on the IND-CEV process (2) and a special case when the
parameter functions are constants, which leads to process (3). We gave the sufficient
conditions for SDE (2) in order to have a unique positive path-wise strong solution. We
have derived the explicit formulas of conditional moments for this process. The derived
formula for process (2) is shown in Theorem 2 in terms of infinite series. The formula can be
reduced from infinite sum to finite sum for two situations: (i) the case when γ/` ∈ Z+, and
(ii) condition (13), which are shown in Corollaries 1 and 2. Furthermore, we have presented
the formula for process (3), where the parameter functions are constant, in Theorem 3. As
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a consequence, formulas for special situations are expressed in Corollaries 3 and 4. The
characterization for the convergence of the infinite sum in the formula for process (3) is
discussed in Theorem 4 and summarized in Corollary 5.

The use of our results was illustrated. This includes conditional moments, conditional
variance and central moments, conditional mixed moments, conditional covariance and
correlation. In addition, the moments of the stationary distribution of process (3) were
proposed in Theorem 5.

Moreover, we have validated our closed-form formulas for process (2) by comparing
the calculated values of conditional moments from our formula with the MC simulations
via a number of experimental examples in Section 6. Our results in each situation have
completely matched with MC simulations. Moreover, for some moments γ whose formula
cannot be reduced to a finite sum, we can approximate the conditional moments by display-
ing the numerical result of the finite sum with suitable order. It turns out that the obtained
results have good accuracy when compared with the MC simulations.

One major concern is that our proposed formulas in Theorem 2 and Corollaries 1 and 2
are not in closed form when integral terms cannot be analytically computed. In this case, a
numerical method can be applied to calculate the coefficients numerically; see [28,29].

In the context of future works, our proposed closed-form formulas under the IND-CEV
process have further beneficial aspects for pricing financial derivatives, such as moment
swaps and the asset whose payoff can be generated by the conditional moments, see more
details in [23,30]. In addition, since the transition PDF of process (2) is complicated and
does not exist in closed form, our closed-form formulas can also be applied for parameter
estimations of the behavior and dynamic of observed data; see more details in [9].
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CEV Constant elasticity of variance diffusion
CIR Cox–Ingersoll–Ross
ECIR Extended Cox–Ingersoll–Ross
EM Euler–Maruyama
IND Inhomogeneous nonlinear drift
MC Monte Carlo
MR Marsh–Rosenfeld
ODE Ordinary differential equation
OU Ornstein–Uhlenbeck
PDE Partial differential equation
PDF Probability density function
SDE Stochastic differential equation
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