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Abstract: Cost-effective wind energy harvesting by wind turbines in urban areas needs to strengthen
the required flow field properties, such as mean velocity, turbulence, and its distribution. This paper
conducts a series of CFD simulations to investigate the characteristics and related mechanisms of flow
within the cavity, considering the force–turbulence interactions at the RANS scales. The pressure–
velocity correlation term is formulated and solved by the elliptic relaxation equation to compensate
for the Reynolds stress overestimation. Numerical simulations of flow over an open cavity with the
proposed model are compared with corresponding PIV data. The results show that the mean velocity
and the fluctuation velocity along the streamwise direction exist a slightly favorable pressure gradient.
While the fluctuation velocity and fluctuation pressure show different correlation characteristics
along the streamwise direction. Moreover, the pressure–velocity fluctuation correlation becomes
obvious near the upper corner of the cavity due to the favorable pressure gradient. Hence, the leading
and trailing locations of the cavity are both obvious favorable regions and further emphasis should
be put on both high-accurate simulation methods and practical applications.

Keywords: pressure–velocity correlation; elliptic relaxation equation; Green’s function; cavity flow

1. Introduction

Due to the impacts on pressure, velocity, and density fluctuation, flow over an open
cavity has been investigated extensively in a variety of areas, such as pantograph cavities,
door gaps, open-window-induced air leakage in transportation, flow-induced structural
vibrations in civil engineering, and pipe networks in other energy-related side branches [1].
Because of its extensive presence and effects on the above areas, cavity flow has received
considerable investigations over the past few decades [2]. Especially as material constraints
in the turbine and complex aerodynamic solutions, it is imperative to study the interaction
between the secondary flow with the main circulation [3]. Thus, it is required to reduce
turbine energy losses by understanding of the interaction between the primary and the
secondary flow [4].

Most open-cavity-flow studies have carried out flow and pressure data collection by
visualization facilities [5]. Corresponding results have shown that a feedback mechanism of
the shear layer–cavity corner having obvious impacts on the unsteady turbulent flow in the
cavity is the intrinsic characteristic over a considerable quantity of Reynolds (Re) and Mach
numbers [6]. This feedback mechanism generates a stable recirculation zone in an open cav-
ity. Meanwhile, it is found that the unsteady pressure is fundamentally correlated with the
vorticity distribution within the cavity [7]. Therefore, accurate assessment of the pressure
distribution is indispensable in flow-induced vibrations [8]. Moreover, a deep understand-
ing of the fluctuations leads to a better understanding of the vorticity dynamics around
the cavity region [9]. It also should be noted that cavity flow of non-Newtonian materials
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can extend from mineral oil [10,11], melting material [12,13], painting [14], polymer [15], or
temperature effects [16].

Even the non-intrusive system, such as PIV, can serve high-precision flow field data;
pressure distribution is required to be calculated by instantaneous material acceleration
based on the Poisson equation after finishing the PIV tests. It is not only time-consuming but
also needs a high amount of computer power [17]. Recently, numerical methods for science
and engineering applications were also adopted to describe the complex flow such as shear
layer effects in an open cavity [18]. Compared to laboratory test technology, there are several
methods to model a flow field by numerical simulation. They are different in complexity,
accuracy, and cost of use and are more or less specifically derived for certain types of flows.
The large-eddy simulation (LES) method directly simulates turbulent flows by solving a
time-dependent Navier–Stokes (N-S) equation. This technique is a powerful tool, but its
application is limited to systems with moderate Re numbers and simple geometry shapes
because of the formidable computation requirements. The Reynolds-averaged Navier–
Stokes (RANS) offers a more practical option to simulate flows with a high Re number that
are always encountered in engineering practices. The RANS method, which solves the
Reynolds-averaged transport equations, can resolve the mean motion accurately [19]. A
turbulence model is adopted to represent the small-scale eddy flows [20,21]. This method
is simple to use and appealing for industrial problems. However, it is impossible to
build a universal RANS model that is able to cope with all kinds of engineering turbulent
flow [22]. RANS models should be modified according to various different flows. It has
been, however, reported that there are still several unsolved key issues in the simulation of
flow over an open cavity, which are large Re number, shear layer flow and recirculation
zones existing along the streamwise direction, strong streamline curvatures, and favorable
and adverse pressure gradients, etc., [23,24]. From a perspective of turbulence modeling,
the pressure–velocity correlation term in N-S equations are of significant relevance, which
is responsible for energy transfer between mean flow and fluctuations [25]. There still exists
the closure problem in the Reynolds stress function, which plays an important role in cavity
flow simulation [26].

It has been proved that the Green’s function can be reclaimed by cross-correlated
fluctuations at two locations for fluid and waves [27]. The extraction of the Green’s function
from fluctuations has recently received so much attention and been applied to acoustics [28],
seismology [29], and structural engineering [30]. More importantly, the capability of the
Green’s function in handling very thin boundary layers has been emphasized [31], such
as channel flow, Couette flow, and pipe flow, which are characterized by shear flows at
high Reynolds numbers. Those effects can be captured exactly by the analytic form of the
Green’s function [29].

With the aim to solve the above-mentioned key issues, it is imperative to calculate
the mean flow and turbulence quantities accurately. The pressure–velocity correlation that
exists in the Reynolds stress transport equations is associated with the volume integrals of
the two-point correlation between the velocity and pressure fluctuations [31]. Most of the
turbulence models of RANS methods do not consider the pressure–velocity correlation term
(denoted as Dij in the following sections), which are still based on a quasi-homogeneous and
local-equilibrium assumption [32]. Several models have been proposed in previous works
for modeling the Dij term by a realizability condition or Caley–Hamilton theorem, which
fulfill the closure requirement. Most of the models separate the Dij term into three parts,
which are simulated individually [33]. However, these models cannot be combined with
the wall boundary conditions, and thus fail to calculate the near-wall turbulent quantities
correctly [34]. With the purpose of improving this inadequacy, an ad hoc wall echo model
was adopted along the normal direction to damp the velocity fluctuations. However, this
method encounters great difficulties in numerical stability and applications. Therefore, it
still remains a challenging problem to evaluate the pressure–velocity correlation by clear
mathematical expression [35].
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In this study, the Reynolds stress model (RSM) is utilized as a basic turbulence-
modeling method and the pressure–velocity fluctuation correlation transport equations
are reconstructed by the elliptic relaxation theory [36]. The corresponding discretization is
carried out by Green’s function to make sure the whole sets of expressions are in accordance
with N-S functions [29]. Cavity flow calculation is performed to confirm the proposed
model by computation. The prominent advantage of this new method is that pressure–
velocity correlation terms are solved without any discarding. Corresponding results show
good agreement with PIV tests [37].

2. Methodology
2.1. Basic Model and Discussions on Pressure–Velocity Correlation Term

Before presenting the transport equation of the pressure–velocity correlation term, a
brief derivation of the pressure–velocity correlation term will be extracted based on the
TKE and turbulence energy dissipation equations. The TKE (k = u2+v2+w2

2 ) equation can
be deduced straightforwardly by Reynolds stresses transport equation. The steady TKE
equation is expressed as:

ρUi
∂k
∂xi

=
∂

∂xi

(
µ

∂k
∂xi
− pui − ρk′ui

)
︸ ︷︷ ︸

Dk

− ρuiuj
∂Ui
∂xj︸ ︷︷ ︸

Gk

− µ

(
∂ui
∂xj

)2

︸ ︷︷ ︸
ε

(1)

where ρ is the fluid density (kg/m3), Ui is the mean wind velocity components (m/s), µ
is the fluid viscosity (kg/m·s−1), and p and uj are fluctuation pressure and fluctuation
velocity; k′ denotes the instantaneous TKE. In other words, Equation (1) expresses the fact
that a small fluid element carries along its TKE changes among the processes. It is the result
of a net imbalance of diffusivity transport due to viscosity and turbulence (associated with
both velocity and pressure–velocity interactions),Dk′ production of TKE Gk′ and dissipation
of TKE by fluid viscosity ε.

Among all the terms mentioned in Equation (1), the term pui is denoted as Dp
ij in

the following. Especially in the buffer and outer regions of boundary layer, the Dp
ij term

makes the main contribution here. Additionally, in the central core of the flows, the Dp
ij

term should be paid attention to according to the direct numerical simulation (DNS) results.
However, the instantaneous turbulence energy term ρk′ui, contributing not that much,
can be combined into the turbulence kinetic viscosity ut in the TKE transport equation
without further modeling and calculation. Therefore, the reorganized TKE equation can be
expressed as:

ρUi
∂k
∂xi

= Gk − ε +
∂

∂xi

[(
µ +

µt

σk

)
∂k
∂xi

]
− ρ

∂

∂xi
(pui) (2)

where µt is the modified turbulence dynamic viscosity.
Previous methods usually use a third-order momentum function for the Dp

ij term,
which can be applied in homogeneous turbulent flows with the standard turbulence
models. However, it is challenging to apply the above method in inhomogeneous turbulent
flows. In this paper, the Dp

ij term will be evaluated by solving a second-moment closure
model expression of the pressure correlations in TKE equation. The pressure field of
incompressible turbulent flows satisfies the following Poisson equation

∇2 p(x) = −ρ

(
∂Ui
∂xj

∂uj

∂xi
+

∂Uj

∂xi

∂ui
∂xj

+
∂ui
∂xj

∂uj

∂xi
− ∂ui

∂xj

∂uj

∂xi

)
(3)

where Ui and ui (i = x,y,z) denote the three mean and fluctuation velocity components
along the streamwise, spanwise, and vertical directions, respectively. p(x) denotes the
kinematic pressure. The last term in Equation (3) is the average value of velocity gradients.
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Equation (3) can be solved by the Green function GΩ, which expresses p(x) in terms
of an integral of the entire volume of the velocity field, together with integrals over the
boundaries. The Green function for Laplacian operator is

G
(

x, x′
)
=

−1
4π|x− x′| (4)

The general solution of Equation (3) by the Green’s function in Equation (3) takes the
following expression

p(x) =
∫

Ω
∇2 p

(
x′
)
GΩ
(

x, x′
)
dV
(

x′
)

(5)

where x and x′ denote position vectors and dV(x′) the elementary volume. Based on Equa-
tions (4) and (5), the fluctuating pressure is usually decomposed into three components [9],
corresponding to rapid pressure, slow pressure, and wall influence terms, while in this
paper, Dp

ij will be treated as a whole term, which can be derived from the divergence
∂/∂xi−∂/∂ri of Reynolds stress transport equation, which leads to a Poisson equation for
Dp

ij. The integration of Equation (5) is:

ρp(x)uj = ρDp
ij =

∫
Ω

Dp
ijGΩ

(
x, x′

)
dV
(
x′
)

(6)

where Dp
ij suggests the correlation between the velocity and the Laplacian of the pressure:

Dp
ij = ui(x)p(x′) (7)

The right-hand part of the Poisson Equation (3) consists of linear and nonlinear velocity
fluctuation terms; hence, the pressure–velocity correlation terms in the evolution equation
are the n-point velocity moments.

2.2. The Elliptic Relaxation Equation

In Equation (7), the correlations between the velocity and the Laplacian of the pressure
need to be modeled by mathematical expression. Durbin defined a correlation function [32]:

Dp
ij = Dij

′ f
(
x, x′

)
(8)

f (x, x′) is modeled by:

f
(
x, x′

)
= exp

(
−|x− x′|

L

)
(9)

where L is the turbulence integral length scale, which will be defined in the following
section. The transport equation of Dp

ij can be constructed on the basis of the above expres-
sions. In a free space V using Equation (9), the pressure–velocity correlation term can be
written as:

ρDp
ij =

∫
Ω

Dij
′ exp(−|x′ − x|/L)

4πr
dV
(
x′
)

(10)

In the above equation, Dp
ij appears as a convolution product between Dij

′ and
exp(−|x′−x|/L)

4πr , which is the free-space Green’s function associated with the operator
−∇2 + 1/L2.

Based on the Durbin’s work [32], it is concluded that the existence of open cavity, wall
boundary, and the corresponding roughness effects not only extend the turbulent structures,
but also change Reynolds stresses normal to the wall. It appears that the correlation
function cannot be expressed by an elementary exponential function. Actually, the two-
point fluctuation quantities’ correlations are much stronger toward the wall boundary than
apart from the wall boundary. It is rationally derived that the fluctuation velocity and the
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fluctuation pressure share an identical behavior. In order to modify the elliptic relaxation
equation, a new model is derived based on DNS analysis results, which yields the elliptic
relaxation expression as:

Dp
ij − L2∇2Dp

ij = −
L2

ρ

(
ui(x)∇2 p(x′) + uj(x)∇2 p(x′)

)
(11)

The first purpose is to find ways to solve the above pressure–velocity correlation
Equation (11). For instance, the IP model assumed isotropization of the TKE production.
Rotta split the correlation term into rapid and slow parts. The corresponding simulation
results show that both of the IP and Rotta’s models overestimate the energy redistribution
in the logarithmic layer. Following Gibson and Launder’s method, the wall echo terms are
introduced into the TKE transport equation, which reimburse the TKE overestimation in
the logarithmic layer. These terms are expressed by the elliptic relaxation equation. For the
sake of simplification and practical application, Durbin proposed a quasi-homogeneous
model Dh

ij instead of the right-hand side of Equation (11), which leads to the original model
in [32]:

Dp
ij − L2∇2Dp

ij = Dh
ij (12)

In the logarithmic layer, the Reynolds stresses are consistent with y−1, while the
production and the dissipation behave with that value. Thus, Durbin’s proposal can be
treated as a simple way of extending the quasi-homogeneous models from the core of the
flow domain to the wall boundary with appropriate boundary conditions for Dh

ij. Thus,
in order to model the near-wall characteristic flows correctly, it is desirable to choose a
proper expression on the right-hand side in Equation (12), and this will be introduced in
Section 2.3.

2.3. Length Scales

The turbulence characteristic scales, which traditionally define the Re number, describe
the eddy influence on the mean flows. In isotropic turbulence, the characteristic scale has
only a single value. However, almost all the wind-engineering-related practical turbulent
flows are anisotropic, especially at the large scales. To model such flows, it is required to
find its predictable features.

In the near-wall region, from the DNS data, it is noted that the correlation length
scale L and the turbulent integral length scale behave differently. However, the correlation
length scale L is very close to the integral length scale in the main part of the flows. The
correlation function has great influence on the flow separations. To clarify the asymptotic
log-layer behavior, new formulations will be established to explain strong anisotropy
and inhomogeneity in the cavity and the wall boundary. Additionally, an asymmetric
transport equation will be proposed using spatially variable length scales Lij, which can be
expressed as:

Lij =
3
2

uiuj

k
LK (13)

where uiuj is defined in the equation as Reynolds stress transport equations. LK is the
Kolmogorov length scale, which is adopted in the near-wall flows:

LK = CLmax

(
Cη

ν3/4

ε1/4 ;
k3/2

ε

)
(14)

The above analysis addressed some important issues in the pressure–velocity correla-
tion calculations. It confirmed the necessity of restricting the length scale around the wall
by Kolmogorov length scale. It is also noted that modeling the correlation function f (x, x)
by a simple isotropic exponential function is too crude. Reformulations of the original
model will be introduced in the following part.
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2.4. Correction of the Dp
ij Transport Equation

The original correlation function f (x, x) does not consider the anisotropic effects. This
shortcoming will overestimate the turbulence quantities, especially for the TKE generation
and pressure terms. Taking the asymmetric normal to the wall into account, due to t, from
the DNS data, it can be noted that f (x′, x′) behaves with y′−2. With flow driving away
from the wall, f (x′, x′) becomes increasingly isotropic, and is only slightly elongated in the
streamwise direction. It is specified that the original pressure–velocity correlation term
does not account for the elongation in the streamwise direction, close to the near-wall
region. Meanwhile, the correlation expression (a function of distance r) cannot distinguish
different directions. Especially for complex practical flows, this shortcoming becomes
significant. Thus, a modified elliptic relaxation equation will be proposed in this section,
which combines different length scales in each direction to account for the anisotropy of
the turbulent flow structures.

When the integral is a convolution product, Equation (10) can be inverted to give an
appropriate expression of the above elliptic relaxation equation, which can be used in CFD
simulation. Moreover, in order to take length scale depending on the location into account,
the length scales of Equation (13) are introduced into the elliptic relaxation equation.

The Dp
ij equation can be expressed as:

Dp
ij − L2

α Akl Aml
∂2Dp

ij

∂xk∂xm
− L2

α Aml
∂Akl
∂xm

∂Dp
ij

∂xk
= Dh

ij (15)

The only difference between Equation (15) and Equation (11) is the third term, which
accounts for the length scales’ variations and near-wall flow redistribution.

To introduce the asymmetric characteristics to the correlation function and also to
satisfy the original transport equation, gradient of the length scale is adopted in this paper.
A matrix of length scales can be defined as Aij = Lij/Lα, which yields a new sort of the
elliptic relaxation expression:

Dp
ij − Lkl Lml

∂2Dp
ij

∂xk∂xm
− Lml

∂Lkl
∂xm

∂Dp
ij

∂xk
= Dh

ij (16)

The new formulation can consider length scale anisotropy, which has been found to
be very significant in the cavity flows. It also does overcome the spurious errors in the
logarithmic layer.

In fact, no matter what expression of Dh
ij is adopted, the same analysis will lead to an

expression of the form:
Dp

ij = ΓDh
ij (17)

The amplification factor Γ, which characterizes the effect of near-wall re-distribution
in the elliptic relaxation equation, can be expressed as:

Γ =
1

1 + γC2
LC−3/2

µ κ2
(18)

where CL, Cµ, and κ are the turbulence model coefficients. Manceau and Hanjalic derived
three different models (M1, M2, M3) of coefficient γ involving the gradient of the length
scales, aiming to account for the anisotropy. Among the three models, the parameter β of
model M3 can be chosen by the amplification factor from 0 to 1.51. The coefficient β enables
adjustment of weights of the diffusion and source terms. It can be easily concluded that the
model becomes neutral (Γ = 1) when β = 1/12.

The detailed results will show the merits using the proposed form of the elliptic
relaxation equation in cavity flow.
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3. Solution Strategy
3.1. Turbulence-Modeling Method and Mesh Schemes

As derived in the above sections, the pressure–velocity correlation model is based
on the RSM by introducing the pressure–velocity correlation term pui. The new model is
implemented into FLUENT, and the corresponding numerical results are compared with
the PIV data. The empirical constants of the transport equations and the k−ω SST model
adopted here are the same as the original ones. The modified functions are summarized
here: 

Duiuj
Dt = −uiuk

∂Uj
∂xk
− ujuk

∂Ui
∂xk

+ kD∗ij −
uiuj

k ε

+ ∂
∂xl

(
Cµ

σk
ulumT

∂uiuj
∂xm

)
+ ν∇2uiuj

Dε
Dt =

Cε1P−Cε2ε
T + ∂

∂xl

(
Cµ

σε
ulumT ∂ε

∂xm

)
+ ν∇2ε

Dp
ij − Lkl Lml

∂2Dp
ij

∂xk∂xm
− Lml

∂Lkl
∂xm

∂Dp
ij

∂xk
= Dh

ij

(19)

The cavity model considered in this study for comparison between the numerical
predictions and water tunnel test results is a scaled rigid model described by Liu and
Katz [34]. The numerical model for the pressure–velocity correlation simulation is shown in
Figure 1. The L (444.5 mm), W (50.8 mm), and H (120.0 mm) are length, width, and height of
the overall model, respectively. A 38.1 mm-long, 50.8 mm-wide, and 30.0 mm-deep cavity
is constructed, which is about 190.5 mm from the inlet boundary and 177.8 mm from the
outflow boundary. A contraction and a diffusion ramp are arranged along the leading wall
and downstream wall of the cavity, which is sketched in Figure 1. The mean velocity above
the cavity is about 10 m/s, which corresponds to Reynolds numbers of about 3.4 × 105.

Figure 1. Schematic of numerical model.

Although the geometrical shape of the model is simple, the mesh scheme should
take into account not only the near-wall flow characteristics, but also the computation
efficiency. The mesh adjacent to the ground wall and aligned with cavity surfaces must be
refined and located within the viscous boundary layer. A hexahedral mesh arrangement is
applied to the overall domain, including the cavity area. Since the local Re number around
the cavity is relatively large, it is required to ensure that the local Re number y+ satisfies
5 < y+ = ρuy/µ < 12. Thus, the height of the first-layer cell centroid is set to be 0.1 mm
and the growth ratio is 1.15, as shown in Figure 2.
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Figure 2. Schematics of mesh discretization.

3.2. Numerical Discretization and Boundary Conditions

All the transport equations are solved by the pressure-based method with the semi-
implicit method for pressure-linked equations (SIMPLE). The third-order scheme for con-
vective kinematics (QUICK) difference scheme is used for spatial discretization. Moreover,
second-order discretization is adopted for the turbulence transport quantities and pressure–
velocity correlation term.

It is obvious that different inlet profiles can cause resulting discrepancies, whether in
experiment measurements or numerical simulations. In order to obtain better agreement
between the experiment and numerical results, the boundary conditions adopted in the
numerical simulations should be the same as those in the experiments, especially for
the inlet profiles of mean and turbulent flow quantities. In this simulation, a uniform
velocity inlet boundary condition is adopted to simulate to water inflow. The pressure
outlet boundary condition is used for water outflow. Turbulence has great influences on
fluctuation pressure and fluctuation velocity, mainly on the dynamics of the shear layer.
In this study, turbulence is generated by the roughness robs in front of the flow domain.
It could be predicted that a turbulence intensity spike value would exist in the near-wall
region, which is larger than that generated in the water tunnel test. All the boundary
conditions are listed in Table 1.

Table 1. Boundary conditions summary.

Position Boundary Condition Expressions

Inflow Velocity–inlet Uin = 7.5 m/s
Outflow Pressure–outlet \

Cavity walls No-slip boundary wall Ux = Uy = Uz
Top, side and ground walls Slip boundary wall \

3.3. Grid Independence

Two structured mesh plans with different resolutions were tested to examine the grid
independence, namely mesh plan G1 and G2, as listed in Table 2. An O-type hexahedron-
structured grid was applied in the above two mesh schemes as shown in Figure 2. Attention
was focused on the grid sizes along the open cavity length and depth directions (∆x and
∆y). Therefore, the domain is divided uniformly into 15 grid points for all the two meshes
in the z direction. The open cavity between the front and rear walls is discretized by
Nx × Ny = 30 × 40, 40 × 50 grids, respectively, for G1 and G2. The first-layer grid distance
∆z equals 5 × 10−4 for both cases, which obeys the empirical function 0.1H/

√
Re.
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Table 2. Grid independence tests summary.

Mesh Plan Total Grid Numbers Total Mass (m3/s)

G1 1,936,990 0.0463
G2 3,228,316 0.0462

The results of the grid sensitivity analysis are shown with regard to the mass flow ma
across the central surface in Table 2. It is apparent that ma values are almost insensitive to
the grid plan G1 and G2. Therefore, mesh scheme G1 is considered fine enough, which is
chosen to resolve the present Reynolds number and the flow recirculation in the cavity. The
G1 mesh scheme is shown in Figure 2.

4. Results and Discussion

For examining the performance of the new model, the numerical results of mean
velocity distribution, Reynolds stresses, and pressure–velocity correlations are compared
with the corresponding water tunnel measurement data in this section.

4.1. Mean Flow Distributions

To illustrate the whole flow field of the cavity flow, Figure 3 gives the mean velocity
distributions along the streamwise direction. Due to the contraction of the section area
around the cavity, the maximum velocity is about 11 m/s, which is defined as reference
velocity Ue. The approaching flow from upstream of the cavity separates at the cavity lip
and begins to develop and reattaches downstream over the cavity space. The boundary
layer grows during this process. Compared with the PIV data, the recirculation center
of CFD is higher than that of the test as shown in Figure 3. It is more far away from the
ground of the cavity.

Figure 3. Mean wind velocity profile distributions along streamwise direction.

Figure 4 shows the mean streamwise velocity distribution overlapped with the stream-
lines in the open cavity. There exists an obvious large recirculation region within the cavity.
The maximum mean flow velocity is about 3.7 m/s around the recirculation core. Above
the recirculation region, there exists a small shear layer with large velocity gradients, the
thickness of which is about 3 mm. Above the shear layer, the mean horizontal velocity
increases slightly in the horizontal direction due to the contraction of the section area, the
growth of the shear layer, and the expansion of the boundary layer on the upper wall.
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Figure 4. Mean velocity and streamlines of the open cavity (CFD on left, water tunnel on right).

4.2. Reynolds Stress Distributions

The fluctuation part of the flow is represented by considering the normalized Reynolds
stress components u2/U2

e , v2/U2
e , and−uv/U2

e distributions, which are shown in Figure 5a,b,c,
respectively. It can be summarized that intense turbulent transports occur along the small
shear layer. The maximum Reynolds stress values exist at the upper corner of the trailing
wall (right wall) of the cavity, and remain high until close to the trailing edge. Along the
downstream direction, the turbulent transports extend into the cavity to the leading wall
(left wall) of the flow recirculation center.

Figure 5. Cont.
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Figure 5. (a) u2 Reynolds stress distributions (CFD on left, water tunnel on right), (b) v2 Reynolds
stress distributions (CFD on left, water tunnel on right), (c) −uv Reynolds stress distributions (CFD
on left, water tunnel on right).

Generally, the maximum u2/U2
e , v2/U2

e , and −uv/U2
e values are almost the same as

the test measurement data, compared with the PIV results, while it could be noted that the
peak value area is larger than that of the test results, which is caused by the thicker shear
layer predicted by RSM. The peak values and areas of the u2/U2

e component are similar
to the test data, while for the v2/U2

e component, the maximum value is about 27% larger
than that of the test data and it remains large along the trailing wall to the cavity ground.
The CFD data give smaller values, especially on the leading wall of the cavity. Similar to
the distribution of u2/U2

e , −uv/U2
e reaches its maximum value along the shear layer to the

trailing edge wall, while the peak value area is smaller than that of the test data.

4.3. Pressure–Velocity Correlation Distributions

Distributions of pu/ρU−3
e and pv/ρU−3

e , the pressure–velocity correlations, are pre-
sented in Figure 6a,b, respectively. As is obvious, fluctuation velocity u and fluctuation
pressure p are negatively correlated in most parts of the shear layer. This negative correla-
tion explains why the pressure increases with the fluctuation flow velocity decelerating in
the streamwise direction and vice versa. As shown in Figure 6a, the pu/ρU−3

e component
changes its sign from the shear layer to the trailing edge of the cavity. Meanwhile, the
pu/ρU−3

e value decreases its magnitude to zero gradually, and then increases to a positive
value of about 0.005, while for the pv/ρU−3

e correlation shown in Figure 6b, fluctuation
velocity v and fluctuation pressure p are positively correlated in most parts of the shear
layer. When approaching the trailing edge wall of the cavity, the pv correlation also changes
its sign and magnitude.

Generally, the pressure–velocity correlations pu/ρU−3
e and pv/ρU−3

e give similar
results to those of the test measurement data, compared with the PIV results. These trends
are associated with the adverse mean pressure gradients near the upper corner of the
trailing edge of the cavity wall. When the mean velocity increases due to the contraction of
the section area, the adverse pressure gradients also increase simultaneously. Then, there
exists a positive pressure–velocity correlation. Additionally, this procedure can be found in
the Reynolds stress component −uv/U2

e , which is presented in Figure 5c.
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Figure 6. (a) pu pressure–velocity correlations distribution (CFD on left, water tunnel on right),
(b) pv pressure–velocity correlations distribution (CFD on left, water tunnel on right).

5. Conclusions

By solving the pressure–velocity correlations individually and introducing these terms
into the RSM, the elliptic relaxation method is a promising way to model the pressure–
velocity correlation terms within the whole flow field correctly. The first modification is
based on the length scales in the elliptic relaxation equation that cannot be considered
locally as constant. A new formulation, considering this feature, includes the effects of
anisotropy of turbulence through a rather complicated tensor expression. In the second
modification, an asymmetric correlation function was introduced, by using the gradient of
the length scales to identify the directions of inhomogeneity. These modifications result
in a new formulation of the elliptic relaxation equation to model the pressure–velocity
correlations. Based on the physical insights gained through the water tunnel test PIV data,
CFD data are compared with the corresponding results.

Numerical simulations of water flows over an open cavity model were conducted as a
validation study. The performance of the modified turbulence model with a high Reynolds
number was investigated in detail. The corresponding numerical results were compared
with the water tunnel test PIV data and the conclusions are summarized below:

The mean velocity distributions along the streamwise direction suggest that there
exists a slightly favorable pressure gradient in the free stream region due to the contraction
of the section, with the growth of the shear layer. The fluctuation velocities and fluctuation
pressure show different correlation characteristics along the streamwise direction, which
also can be approved by Reynolds stress distributions.
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For most flow around an open cavity, the pressure is negatively correlated with the
streamwise velocity. Despite the favorable pressure gradient along the shear layer to the
trailing edge of the cavity, the pressure–velocity correlation becomes obvious near the
upper corner of the cavity. Thus, the pressure–velocity correlation should be emphasized
in RANS simulations of flow with obvious impact and separation flows.

Further studies, including the simulation of flows other models using the new for-
mulations, will be carried out using RANS and LES. It is predicted that the pressure–
velocity correlation could improve the flow and pressure distributions around the wind
turbine applications.
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