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Abstract: This research explores the solitary wave solutions, including dynamic transitions for a
fractional low-pass electrical transmission (LPET) line model. The fractional-order (FO) LPET line
mathematical system has yet to be published, and neither has it been addressed via the extended
direct algebraic technique. A computer program is utilized to validate all of the incoming solutions.
To illustrate the dynamical pattern of a few obtained solutions indicating trigonometric, merged
hyperbolic, but also rational soliton solutions, dark soliton solutions, the representatives of the
semi-bright soliton solutions, dark singular, singular solitons of Type 1 and 2, and their 2D and 3D tra-
jectories are presented by choosing appropriate values of the solutions’ unrestricted parameters. The
effects of fractionality and unrestricted parameters on the dynamical performance of achieved soliton
solutions are depicted visually and thoroughly explored. We furthermore discuss the sensitivity
assessment. We, however, still examine how our model’s perturbed dynamical framework exhibits
quasi periodic-chaotic characteristics. Our investigated solutions are compared with those listed in
published literature. This research demonstrates the approach’s profitability and effectiveness in
extracting a range of wave solutions to nonlinear evolution problems in mathematics, technology,
and science.

Keywords: conformal fractional derivative; new extended algebraic method; soliton solutions;
nonlinear low-pass electrical transmission line

1. Introduction

The extraction of solutions based on propagating waves to integer-order nonlinear
evolution equations (NLEEs) has progressed, surpassing estimates. NLEEs of FO have
attracted attention in recent decades as a result of their suitability in genuine applications
as classical numerical methods based on integer-order derivatives, especially nonlinear
systems, fail to improve well in many situations [1]. Fractional calculus, which was intro-
duced in 1965, is employed to represent the issue regulating FO-NLEEs [2] and is thought
to be involved in the numerous innovations happening in various sectors of technology
and modern science [3]. As a consequence, especially the development of symbolic com-
puting programs such as Maple throughout the past few decades, it has attracted a deal of
interest among modern sciences [4]. Several representations for introducing a calculus have
been described, including conformable derivation, fractional Riemann–Liouville derivative,
beta derivative, Atangana’s conformable derivative, Caputo–Fabrizio derivative, Riesz
and Weyl derivatives, and so on [5,6]. Non-locality, as well as heredity, are two standard
features of fractional derivatives (FDs) formulas [7], which depart significantly from the
Newton–Leibniz calculus [8]. FD concepts and some essential formulations can convert frac-
tional nonlinear partial differential equations (PDEs) into nonlinear integer-order ordinary
differential equations (ODEs).
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In terms of FD concepts, conformable derivation (CD) established by Khalil et al. [9]
piqued the researcher’s curiosity [10] due to numerous advantages over other FDs [11]. To
predict the actual solution to NLEEs of FO, a broad range of trustworthy techniques has been
recommended. Among the successful approaches are the homotopy analysis method [12],
the fractional reduced differential transform methods [13], the homotopy perturbation
technique [14], and the fractional iterative method [15]. The adomian decomposition
method [16], the

(
G′
G2

)
-expansion technique [17], exp function technique [18], modified

simple equation technique [19,20], the solitary ansatz technique [20], and the extended
tanh–coth technique [20], the modified Kudryshov approach [21], extended sinh–Gordon
expansion approach [22], auxiliary equation approach [23], new auxiliary equation ap-
proach [24] and so forth. It is essential to note that a new auxiliary equation approach
is used in ref. [24]. Notwithstanding all of the initiatives for the solution of nonlinear
FDEs using diverse approaches, a consistent approach remains elusive. With many of the
approaches, the newly suggested innovative analytical

(
G′
G2

)
-expansion method [25] has

received significant attention due to its flexibility and applicability.
Investigating a family of temporal time-FNEE models, including time-FCDs, is essen-

tial in many nonlinear wave dispersion situations. In addition, to do this, a highly accurate
semi-analytical technique is created as well as constructed with the residual error factors
in mind towards addressing a category of fifth-order time-FCKdVEs [26]. This work [27]
investigates the dynamical activity with its dispersive extended nonlinear Schrödinger
equation (NLSE). A novel φ6 model expansion approach is employed to investigate unique
solitary waveforms of such investigated model. The essential purpose of this strategy is
to establish a medium enabling Jacobian elliptic formulations by incorporating numerous
parameters. Investigators create a stochastic approach to address a FO differential sys-
tem focused on breast cancer progression during the immune-chemotherapeutic therapy
phase [28]. The former work [29] investigates two distinct models: the NLSE exhibiting
power-law non-linearities as well as the (3 + 1)-D NLSE. We are engaged in the nonlinear
Kadomtsev–Petviashvili equation (KP) with competitive dispersion. Furthermore, the
overall stability of the related dynamical network is explored by employing phase plane
theory [30]. Specialists established throughout this research study that wave profiles vary
with changes in the fundamental attributes affiliated to phenomena and are influenced
mainly by linear impacts [31]. The topic of optical solitons is intriguing because soliton
solutions have been examined in numerous mathematical physics models. Observing
optical solitons is one of the most important aspects of nonlinear fibre optics. In applied
science and engineering, soliton has a number of uses. Nonlinear differential equations
can be solved using a variety of strategies. The new extended direct algebraic technique
provides such illustration[32–34].

The entirety of such a composition is structured as follows: The model description
and system of algebraic equations, along with the corresponding solution set, may be
found in the Section 2 “Mathematical Configuration”. Section 3 “Implementation of the
Extended Direct Algebraic Method” discusses the expansion method’s application to the
FO-LPET line model. In Section 3 “Sufficient Conditions for the Stability of the Results”,
the stability and sufficient conditions of outcomes are discussed. Section 4 “Graphical
Interface Structure for the Results” offers a discussion of some of the investigated results
with the sensitivity assessment and quasiperiodic behaviors in subsections. In Section 5,
there is a discussion and results analysis about the influence of free parameters as well as
fractionality factor. In Section 6, we discussed a comparative analysis via different FDs.
Ultimately, in the Section 7, a broad conclusion of the study is provided.

2. Mathematical Configuration

The space-time FDE regulating wave propagation in LPET lines will be solved using
the extended direct algebraic technique. We consider the FO-LPET line model as follows
in order to use the extended direct algebraic approach to create the exact results of the
space-time fractional LPET line model:
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C0LD2α
tt v(x, t)− D2α

xxv(x, t)− δ2

12 D4α
xxxxv(x, t)− C0LνD2α

tt v2(x, t) + C0LβD2α
tt v3(x, t) = 0, (1)

in which δ, ν and β are the aforementioned constants, and Dα
t v and Dα

xv indicates the
conformal derivative (CD) [9] of v(x, t) of FO α as for regard to t and x, correspondingly.
The variable x represents the propagation distance, while the value t provides the slow
time. It is worth noting that Equation (1) is identical towards the space–time FDE guiding
direction of dispersion in the low–pass electrical transmission (LPET) line described in
refs. [3,35] if LC0 = 1 is taken into account.

Employing this same transformation v(x, t) = V(ξ), ξ = µ xα

α + σ tα

α , (where σ and µ
are non zero parameters) for Equation (1). By trying to integrate the resultant equation two
times with regard to and reducing the constants to zero, one can get the ensuing ODE:

(C0Lσ2 − µ2)V − C0Lνσ2V2 + C0Lβσ2V3 − δ2µ4

12
V
′′
= 0, (2)

where V
′
= dV

dξ , i-e prime indicates derivative with respect to independent variable ξ.

3. Implementation of the Extended Direct Algebraic Method

The whole portion provides a concise but thorough overview as well as implementa-
tion of the present approach [32–34]. We analyze the nonlinear fractional PDEs listed below:

u∗(v, Dα
t v, Dα

xv, D2α
t v, Dα

t Dα
xv, D2α

x v) = 0, α > 0, t ≥ 0, (3)

v(x, t) is the unspecified independent variables’ function x and t in Equation (3), where
u∗ is a polynomial of v as well as its partial FDs. The preceding procedures must be taken to
investigate an exact solution based on the traveling waves of Equation (3). In most cases, a
linear fractional transformation is employed. That would be v(x, t) = V(ξ), ξ = µ xα

α + σ tα

α ,
Where σ and µ are non zero parameters. It might be beneficial to convert Equation (3) to
another ODE, as shown underneath.

U(V, V
′
, V
′′
, ...) = 0. (4)

Thus, prime denotes the derivative of ξ. According to this technique, the general
solution approaches Equation (4) as the solution:

V(ξ) = b0 +
N

∑
i=1

[
biP(ξ)i

]
, (5)

where

P′(ξ) = ln(ρ)
(

m1 + m2P(ξ) + m3P2(ξ)
)

, ρ 6= 0, 1 (6)

as of m1, m2, and m3 represent real fixed quantities thus N could be derived by balancing
the nonlinear components as well as the largest order derivative in Equation (4).

We acquire balancing coefficient N = 1 by comparing the highest power of nonlinear
term V3 with the highest order derivative term V′′ from Equation (2) that relates towards
the assumed solution pattern (Equation (5)):

Vj(ξ) = b0 + b1Pj(ξ), for j = 0, 1, 2, ... (7)
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where P(ξ) satisfies Equation (6). When plugging Equation (7) into Equation (2) then
comparing the coefficients of distinct powers of Pr(ξ), (r = 0, 1, 2, 3) to zero, we would
achieve the following algebraic equation system:

P0(ξ) : 12δ2µ4b2
1m2

1 ln ρ2 − 72LC0βσ2b4
0 + 96LC0νσ2b3

0

− 12δ2µ4b2
0LC0σ2 + 12δ2µ6b2

0 + c = 0,

P1(ξ) : 24δ2µ4b2
1m1 ln ρ2m2 − 288LC0βσ2b3

0b1 + 288LC0νσ2b2
0b1

− 24δ2µ4b0b1LC0σ2 + 24δ2µ6b0b1 = 0,

P2(ξ) : 24δ2µ4b2
1m1 ln ρ2m3 + 12δ2µ4b2

1m2
2 ln ρ2 − 432LC0βσ2b2

0b2
1

+ 288LC0νσ2b0b2
1 − 12δ2µ4b2

1LC0σ2 + 12δ2µ6b2
1 = 0,

P3(ξ) : 24δ2µ4b2
1m1 ln ρ2m3 − 288LC0βσ2b0b3

1 + 96LC0νσ2b3
1 = 0,

P4(ξ) : 12δ2µ4b2
1m2

3 ln ρ2 − 72LC0βσ2b4
1 = 0.

After, we evaluate the preceding equations for the parameters σ, and µ, we would
achieve corresponding solution set:

σ = ± 18ν

(9β− 2ν2)δ ln ρ

[√
2β

3LC0m2
2 − 12LC0m1m3

]
,

µ = ± 2ν

δ ln ρ

[√
6

8ν2m1m3 − 2ν2m2
2 − 36βm1m3 + 9βm2

2

]
,

b0 =
ν

3β
θ, b1 =

2m3ν

3m2β
θ, where: θ =

[
4m1m3 −m2

2 ±
√
−4m1m2

2m3 + m4
2

(4m1m3 −m2
2)

]
.

The following are general solutions to Equation (6) for the parameters m1, m2, and m3,
whereby Θ1 = (m2

2 − 4m1m3).
Case 1. If Θ1 < 0 and m3 6= 0, then
After that, by inserting the values of b0, and b1 into Equation (7), it will offer the

corresponding results for this same integrated equation, i.e., Equation (2) and thereafter,
using the transformation V(ξ) = v(x, t), since ξ = µ xα

α + σ tα

α , this would eventually
provide the solution to Equation (1):

V∗1 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
+

√
−Θ1

2m3
tanρ

(√
−Θ1

2

[
µ

xα

α
+ σ

tα

α

]))
,

or

V1 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
+

√
−Θ1

2m3
tanρ

(√
−Θ1

2
ξ

))
.

As a result, the corresponding solutions are retrieved, operating along virtually simi-
lar patterns.

V2 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
−
√
−Θ1

2m3
cotρ

(√
−Θ1

2
ξ

))
,

V3 = ν
3β θ + 2m3ν

3m2β (θ − 1)

(
− m2

2m3
+
√
−Θ1

2m3

(
tanρ

(√
−(Θ1)ξ

)
±
√

mn secρ

(√
−(Θ1)ξ

)))
,
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V4 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
+

√
−Θ1

2m3

(
cotρ

(√
−Θ1ξ

)
±
√

mn cscρ

(√
−Θ1ξ

)))
,

V5 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
+

√
−Θ1

4m3

(
tanρ

(√
−Θ1

4
ξ

)
− cotρ

(√
−Θ1

4
ξ

)))
.

Case 2. If Θ1 > 0 and m3 6= 0, then

V6 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
−
√

Θ1

2m3
tanhρ

(√
Θ1

2
ξ

))
,

V7 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
−
√

Θ1

2m3
cothρ

(√
Θ1

2
ξ

))
,

V8 = ν
3β θ + 2m3ν

3m2β (θ − 1)

(
− m2

2m3
+
√

Θ1
2m3

(
− tanhρ

(√
Θ1ξ

)
±
√
−mn sechρ

(√
Θ1ξ

)))
,

V9 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
+

√
Θ1

2m3

(
− cothρ

(√
Θ1ξ

)
±
√

mn cschρ

(√
Θ1ξ

)))
,

V10 =
ν

3β
θ +

2m3ν

3m2β
(θ − 1)

(
− m2

2m3
−
√

Θ1

4m3

(
tanhρ

(√
Θ1

4
ξ

)
+ cothρ

(√
Θ1

4
ξ

)))
.

Case 3. If m1 = 0 and m2 6= 0 then

V11 =
2m3ν

3m2β

(
mm2

m3
(
coshρ(m2ξ)− sinhρ(m2ξ) + m

)),

V12 =
2m3ν

3m2β

(
m2
(
sinhρ(m2ξ) + coshρ(m2ξ)

)
m3
(
sinhρ(m2ξ) + coshρ(m2ξ) + n

)).

Case 4. If m2 = p, m3 = pq, (q 6= 0 and m1 = 0) then

V13 =
2m3ν

3m2β

(
mρpξ

m− qnρpξ

)
.

Sufficient Conditions for the Stability of the Results

In mathematics, stability refers to the situation where a minor disruption inside a
system does not have a significant impact on the system. In physical problems, solution
stability is essential because if minor deviations from the mathematical model induced
by unavoidable measurement errors have no correspondingly minor influence upon that
solution, the mathematical equations characterizing the dilemma will fail to foretell the
prospective outcome precisely.

As we have solitary wave solutions, the sufficient conditions for stability are as follows:

• 2β

3LC0m2
2−12LC0m1m3

> 0, for σ

• 6
8ν2m1m3−2ν2m2

2−36βm1m3+9βm2
2
> 0, for µ

• m4
2 − 4m1m2

2m3 > 0, for θ .

4. Graphical Interface Structure for the Results

This entire section is centered on highlighting the representational assessment of
some of the key findings from this study. It is worth mentioning that wave propagation
spans several types of soliton solutions. Because V6 represents dark class soliton solutions.
V8 is associated with the semi-bright soliton solution group, and the soliton solutions
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associated with the dark-singular type are V10, but V9 is associated with the class of singular
results of Type 1 and 2, while V7 is associated with the type of singular solution of Type 2.
Figures 1–8 depict 2D visuals, 3D graphics, and 2D contour graphics of a handful of the
soliton solutions for different parameters.

Figures 1 and 2:
One such diagram depicts a physical understanding of V6 as it pertains to the do-

main of dark solutions. Here is a graphical representation of the examination using the
parameters, b0 = 0.10714, b1 = −0.03174, µ = σ = 1, ν = −0.0025, β = 0.035, ρ = e,
m1 = 1, m2 = 3, m3 = 2 with in the interval (0, 2).

(a) (b) (c) (d)

(e)

Figure 1. 2D-Graphical representation for V6. (a) α = 0.25. (b) α = 0.50. (c) α = 0.75. (d) α = 0.95.
(e) Combine effect for different fractional values of α.

(a) (b) (c) (d)

Figure 2. Cont.
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0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(e)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(f)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(g)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(h)

Figure 2. 3D and 2D-Contour graphs for V6. (a) α = 0.25. (b) α = 0.50. (c) α = 0.75. (d) α = 0.95.
(e) α = 0.25. (f) α = 0.50. (g) α = 0.75. (h) α = 0.95.

Figures 3 and 4:
A diagram depicts a physical understanding of V8 that pertains to the domain of semi-

dark solutions. Here is a graphical representation of the assessment using the parameters,
b0 = 0.10714, b1 = −0.03174, µ = σ = 1, ν = −0.0025, β = 0.035, ρ = e, m1 = 1, m2 = 3,
m3 = 2 with in the interval (0, 2).

(a) (b) (c) (d)

(e)

Figure 3. 2D-Graphical representation for V8. (a) α = 0.40. (b) α = 0.60. (c) α = 0.75. (d) α = 0.99.
(e) Combine effect for different fractional values of α.
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(a) (b) (c) (d)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(e)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(f)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(g)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(h)

Figure 4. 3D and 2D-Contour graphs for V8. (a) α = 0.40. (b) α = 0.60. (c) α = 0.75. (d) α = 0.99.
(e) α = 0.40. (f) α = 0.60. (g) α = 0.75. (h) α = 0.99.

Figures 5 and 6:
This graphic juxtaposes a structural observation of V11. Here is a graphical representa-

tion of the inspection using the parameters, b0 = 0, b1 = 0.71428, µ = σ = 1, ν = −0.0025,
β = 0.035, ρ = e, m1 = 1, m2 = 3, m3 = 2 with in the interval (0, 2).

(a) (b) (c) (d)

(e)

Figure 5. 2D-Graphical representation for V11. (a) α = 0.25. (b) α = 0.60. (c) α = 0.75. (d) α = 0.99.
(e) Combine effect for different fractional values of α.
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(a) (b) (c) (d)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(e)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(f)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(g)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(h)

Figure 6. 3D and 2D-Contour graphs for V11. (a) α = 0.25. (b) α = 0.60. (c) α = 0.75. (d) α = 0.99.
(e) α = 0.25. (f) α = 0.60. (g) α = 0.75. (h) α = 0.99.

Figures 7 and 8:
The graphic juxtaposes a structural observation of V13. Here is a graphical representa-

tion of the inspection using the parameters, ρ = e, b0 = 0, b1 = 12, µ = σ = 1, ν = −0.015,
β = −0.0025, m1 = 0, m2 = p = 3, m3 = pq = 9, q = p = 3, m = n = 1, with in the
interval (0, 2).

(a) (b) (c) (d)

(e)

Figure 7. 2D-Graphical representation for V13. (a) α = 0.60. (b) α = 0.75. (c) α = 0.85. (d) α = 0.99.
(e) Combine effect for different fractional values of α.
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(a) (b) (c) (d)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(e)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(f)
0.0 0.5 1.0 1.5 2.0

0.0
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1.5

2.0

(g)
0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

(h)

Figure 8. 3Dand 2D-Contour graphs for V13. (a) α = 0.60. (b) α = 0.75. (c) α = 0.85. (d) α = 0.99.
(e) α = 0.60. (f) α = 0.75. (g) α = 0.85. (h) α = 0.99.

4.1. The Sensitivity Assessment

From Equation (2), we can derive the following system:

V
′′
=

12
δ2µ4 (C0Lσ2 − µ2)V − 12

δ2µ4 C0Lνσ2V2 +
12

δ2µ4 C0Lβσ2V3. (8)

Equation (8), can be written as:

V
′′
= a1V + a2V2 + a3V3, (9)

where, V
′
= dV

dξ , a1 = 12
δ2µ4 (C0Lσ2 − µ2), a2 = − 12

δ2µ4 C0Lνσ2, a3 = 12
δ2µ4 C0Lβσ2.

Equation (9) may also be expressed by a planer dynamical system using the Galilean
transformation, simply: {

V
′
= w,

w
′
= a1V + a2V2 + a3V3.

(10)

We shall immediately investigate the sensitive phenomena of the perturbed system
shown below. Following that, the schemes Equation (9) is decomposed in the autonomous
conservative dynamical system (ACDS), as illustrated below:{

V
′
= w,

w
′
= a1V + a2V2 + a3V3 + n0 cos f ξ.

(11)

In which f appears to be the frequency and n0 is the strength of the perturbed com-
ponent [36]. The superficial periodic force can be seen in the system (11); however, not
within the system (10). To analyze Equation (2)’s sensitive performance in the emergence
of a perturbation component including the parameters a1, a2, and a3. We would investigate
how whether the frequency term impacts the model under discussion across the current
part of the study. To do so, we shall determine the physical properties of the examined
model and explain the impact of the perturbation’s force and frequency.
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As a result, we wish to investigate the sensitivity of such a solution to the perturbed
dynamical structural scheme (11) by applying six unique initial conditions in the component
(see Table (1)):

Table 1. Sensitive behaviour of the perturbed system (11).

Figure 9 Red Doted Curve Solid Blue Line
(a) (0.00, 0.00) (0.10, 0.10)
(b) (0.10, 0.10) (0.25, 0.25)
(c) (0.15, 0.15) (0.20, 0.20)
(d) (0.35, 0.35) (0.50, 0.50)
(e) (0.75, 0.75) (0.90, 0.90)
(f) (0.875, 0.875) (1.30, 1.30)
(g) (1.00, 1.00) (1.70, 1.70)

Though the remaining parameters would be the same for every component in Figure 9a–g.
The parametric constraints are as follows:

ρ = e, a1 = 0.1050844884, a2 = 0.0003940668314, a3 = 0.005516935639, m1 = 1,
m2 = 3, m3 = 2, β = −0.035, ν = −0.0025, δ = 15.1125, C0 = 3, L = 1, f = 4.2, n0 = 0.92,
and µ = σ = 1.

The sensitivity test is a procedure for determining how sensitive our system is. The
system will have poor sensitivity if it suffers a little change as a result of tiny changes in the
starting circumstances. However, if the system is significantly altered as a result of a little
change in the original conditions, the system will be extremely vulnerable. The graphs
below demonstrate how the amplitude pattern of the waves changes, suggesting that these
curves do not overlap, indicating that the system is sensitive in that area.

The Figure 9a plot shows the sensitivity illustrating the dynamical system (11) assum-
ing the similar parameters as stated earlier for the initial constraints as (V, w) = (0, 0) in
the red dotted curve and (V, w) = (0.10, 0.10) throughout the solid blue line. The system
has very low sensitivity from the beginning (i.e., from 0 to 40) and the system has high
sensitivity till the end (i.e., from 40 to 100). Figure 9b shows the sensitivity assuming similar
parameters for the initial constraints as (V, w) = (0.10, 0.10) in the red dotted curve and
(V, w) = (0.25, 0.25) throughout the solid blue line. The system has very low sensitivity
from the beginning (i.e., from 0 to 20) and the system has high sensitivity till the end (i.e.,
from 20 to 100). Figure 9c shows the sensitivity for the initial constraints (V, w) = (0.15, 0.15)
in the red dotted curve and (V, w) = (0.20, 0.20) throughout the solid blue line. The system
has very low sensitivity from the beginning (i.e., from 0 to 20) and the system has high
sensitivity till the end (i.e., from 20 to 100). For Figure 9d, the initial constraints are as
(V, w) = (0.35, 0.35) in the red dotted curve and (V, w) = (0.50, 0.50) throughout the solid
blue line. The system has very low sensitivity from the beginning (i.e., from 0 to 50) and the
system has high sensitivity till the end (i.e., from 50 to 100). In Figure 9e, (V, w) = (0.75, 0.75)
appears as the red dotted curve and (V, w) = (0.90, 0.90) is the solid blue line. The system
has very low sensitivity from the beginning (i.e., from 0 to 30) and the system has high
sensitivity till the end (i.e., from 30 to 100). Figure 9f shows the sensitivity for the stated
initial constraints as (V, w) = (0.875, 0.875) in the red dotted curve and (V, w) = (1.30, 1.30)
throughout the solid blue line. The system has very low sensitivity from the beginning
(i.e., from 0 to 10) and the system has high sensitivity till the end (i.e., from 10 to 100). The
sensitivity for Figure 9g regarding the stated initial constraints as (V, w) = (1.00, 1.00) in
the red dotted curve and (V, w) = (1.70, 1.70) throughout the solid blue line. The system
has very high sensitivity from the beginning (i.e., from 0 to 70) and the system has low
sensitivity till the end (i.e., from 70 to 100).
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Figure 9. A FO-LPET line model being used to test sensitivity. (a) sensitivity illustrating the dynami-
cal system (11) having the same values as stated earlier for the initial constraints as (V, w) = (0, 0)
in the red dotted curve and (V, w) = (0.10, 0.10) for the solid blue line. (b) sensitivity with initial
constraints for red dotted curve and solid blue line with (V, w) = (0.10, 0.10), (V, w) = (0.25, 0.25)
respectively. (c) (V, w) = (0.15, 0.15) in the red dotted curve and (V, w) = (0.20, 0.20) through-
out the solid blue line. (d) (V, w) = (0.35, 0.35) in the red dotted curve and (V, w) = (0.50, 0.50).
(e) (V, w) = (0.75, 0.75) appears as the red dotted curve and (V, w) = (0.90, 0.90) is the solid blue line.
(f) (V, w) = (0.875, 0.875) in the red dotted curve and (V, w) = (1.30, 1.30). (g) (V, w) = (1.00, 1.00) in
the red dotted curve and (V, w) = (1.70, 1.70) throughout the solid blue line.

4.2. Quasiperiodic Behaviors

In this subsection, we will look at the quasiperiodic and chaotic dynamics of the
perturbed system (11). The superficial periodic force is represented by the system (11), here
f is the frequency, and n0 is the intensity of the perturbed component. It was carried out
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to examine the periodic and chaotic behavior of the model in the context of an uncertain
perturbation factor. We will look at how the frequency term impacts the model we are
looking at in this paper. To do so, we will define the physical properties of the model under
investigation and examine the impact of the perturbation’s force and frequency.

Figures 10–13 depict a three-dimensional phase picture, Poincar’e section, and time-
series graph with different values of f , i.e., the frequency and n0 is the strength of the
perturbed component as already mentioned in the caption of each figure. The perturbed
dynamical framework (11) exhibits periodic behavior. While there is a precise arrangement
accessible in the Poincar’e section, all of these periodic waves may be observed in the
time-series graph, which supports the periodic behavior at such parameter values.

(a) (b)

Figure 10. Phase-portrait with perturbation term having a1 = −2, a2 = 3, a3 = 5, n0 = 0.91, f = 4.2,
µ = σ = 1, C0 = 3, L = 1, δ = 12, ν = −1, β = 5

3 for the dynamical system. (a) Phase-portrait with
perturbation. (b) Poincar’e section.

(a) (b)

Figure 11. Phase-portrait with perturbation term having a1 = −3, a2 = 4, a3 = 6, n0 = 0.92, f = 4.1
for the dynamical system. (a) Phase-portrait with perturbation. (b) Poincar’e section.
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(a) (b)

Figure 12. Phase-portrait with perturbation term having a1 = −4, a2 = 5, a3 = 7, n0 = 0.93, f = 4.3
for the dynamical system. (a) Phase-portrait with perturbation. (b) Poincar’e section.

(a) (b)

Figure 13. Phase-portrait with perturbation term having a1 = −4, a2 = −5, a3 = −7, n0 = 0.94,
f = 4.4 for the dynamical system. (a) Phase-portrait with perturbation. (b) Poincar’e section.

5. Discussions and Results Analysis

In [37], the ( G′
G2 ) -expansion approach is used to obtain soliton solutions to the FO

differential equation regulating wave propagation in low-pass electrical transmission lines.
Because the extended direct algebraic method is more versatile than the ( G′

G2 ) -expansion
approach. The extended direct algebraic method provides us with a variety of solitary wave
solutions. In this work, a variety of mathematical models were employed and transformed
into the same type of ODE, yet resulted in diverse solutions after transformation. We
receive the same mathematical functions since the process is similar, but we find distinct
visualizations because of distinct parameter’s selection.
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We offer graphical representations of several sample solutions in this part to explain
their physical significance. For gaining new analytical solutions to nonlinear differential
equations, the extended direct algebraic approach is very competent and feasible, determin-
ing the exact solution in a well-understood manner. It is easier and faster when employing
a computation system and is an effective method to tackle the various aspects of analytical
solitary solutions. The approach is used to find dark soliton solutions (hyperbolic tangent
is arising), semi-dark soliton solutions (both hyperbolic tangent and hyperbolic secant is
arising), dark-singular solutions (hyperbolic tangent and hyperbolic cotangent), Type 1
and 2 singular solutions (hyperbolic cotangent and hyperbolic cosecant), Type 2 singular
solutions (hyperbolic cotangent), as well as additional LPET line equation solutions. It
is pertinent to assert here, based on the conclusions addressed, that now the approach
used can effectively address the problem of concern to us through the use of the prag-
matic computational program Maple, which might quickly handle the complicated and
time-consuming mathematical computations and substantially cut computing time. The
graphical results of the aforementioned solutions are shown in Figures 1–8. In exchange
for free components of the examined standard model provided Equation (1), the effects of
fractionality are discussed in the following subsections via some of the obtained solutions.

The Influence of Fractionality:
The consequences of fractionality are examined using several approaches of the FO-LPET

line equation, which are depicted in Figures 1–8 for clarity. The images (Figures 1 and 2) show
that when the fractionality increases, the profile takes on the entire form of the dark pattern
soliton. In Figures 3 and 4, when the fractionality increases, the shape accomplishes the
semi-bright feature soliton’s appearance. Furthermore, in Figures 5 and 6, it is apparent
that when the fractionality increases, the amplitudes of the wave solutions drop, as seen by
their trajectories. The graphs in Figures 7 and 8 indicate that when fractionality rises, the
amplitudes of the wave solution grow as well.

The Influence of unrestricted parameters:
The impacts of the model equation’s unrestricted parameters via solution V8, which

is a semi-dark solution, can be seen in Figures 14 and 15. To obtain the figures, several
variations of the unrestricted components are used.

ν=-0.0045

ν=-0.0005

ν=-0.0025

↙

↙

↙

0 0.5 1.0 1.5 2.0

0.01

0.02

0.03

0.04

Figure 14. Combine influence for different values of free parameter ν.

Considering such statistics, it is clear from Figure 13 that the levels of intensity of the
semi-bright wave profiles drop as ν, where ν < 0 increases.

Since these facts are taken into account, it is evident from Figure 14 that the levels of
intensity of the semi-bright wave description grow as β, where β > 0 declines. Based on
the preceding explanation, this is fair to deduce that the negative and positive amount of
the model’s non-linearity elements, i.e., ν and β can have an impact on raising and reducing
the wave profile intensity.

In the “the sensitivity assessment” part, we can observe the sensitivity appraisal for
Equation (1) of the perturbed dynamical structural network (11) by adopting seven unique
beginning conditions in Figure 9a–g. A sensitivity evaluation is a test that assesses the
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level of sensitivity in our network. The network will have low sensitivity if it suffers a little
modification as a consequence of minor changes in the starting circumstances. The system,
on the other hand, will be extremely sensitive if it endures a considerable modification as
a consequence of minor changes in the original circumstances. These people will surely
make a significant contribution to this virtue. Soliton offers a wide variety of applications
in science and engineering.

β= 0.0055
↙

↙

↙

β= 0.0035

β= 0.0015

0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

Figure 15. Combine influence for different values of free parameter β.

The superficial periodic force is represented by the system (11), where f is the fre-
quency, and n0 is the intensity of the perturbed component. The perturbed dynamical
structure (11) is thought to exhibit quasiperiodic-chaotic behavior in Figures 10–13. The
points on the Poincar’e section are dispersed, yet they have a different profile for such
values, indicating that there is a quasi-periodic structure for that specific parameter values.

6. Comparative Analysis via Different FDs

Because of the different descriptions of FDs (conformable derivative (CD), modified
Riemann-Liouville (mRL), beta derivation (BD), etc.), fractional form solutions offer unique
graphical observations and applications when the fractional value of these FDs is taken
into account. It is exceedingly challenging for scientists to determine which of the FDs
is the most accurate and reliable. In this part, meanwhile, a comparison of the outcomes
found during this research with many others derived by the use of the mRL and BD is
provided. Teodoro et al. and [5,38] conducted a thorough examination of the descriptions
and characteristics of mRL and BD and a comparative study of the optical solitons of the
FO complex GL equation with conformable, M-truncated, and beta derivatives. It should
be noted that the transformations take place here, v(x, t) = V(ξ), ξ = µ xα

Γ(1+α)
+ σ tα

Γ(1+α)
,

for mRL derivation, and v(x, t) = V(ξ), ξ = µ
α

(
x + 1

Γ(α)

)α

+ σ
α

(
t + 1

Γ(α)

)α

, for the BD

are utilised for Equation (1) and after integrating the resultant equation two times and
reducing the integrating constants to zero, the ODE described by Equation (2) is derived.
Two wave solutions are provided in each case to compare the performance of the findings
produced in this analysis with those achieved using the mRL derivative and BD. The
solutions Equations V6, V8, and V13 produced with the sense of the CD are created with the
concept of the mRL derivative and BD, respectively, and thus are stated as follows:

We provide the findings by the corresponding FD in Figures 16–18 to compare the
accuracy and reliability of our generated solutions via the CD with those acquired by the
mRL derivative and BD. The trend of all of the solution profiles for the stated derivatives
can be seen in all these figures above, but the solutions produced in this investigation can
be determined to be in good correlation with those derivatives. As a result, it is possible to
verify that the solutions obtained with the CD are in between both of the derivatives, i.e.,
the mRL derivative and BD.
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Figure 16. Comparative investigation of the dark soliton solution (V6) via the mRL derivative, CD
and BD’s for the fix value of FO α = 0.75 defined by these FDs.
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Figure 17. Comparative investigation of the semi-dark soliton solution (V8) via the mRL derivative,
CD and BD’s for the fix value of FO α = 0.75 defined by these FDs.
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Figure 18. Comparative investigation of the soliton solution (V13) via the mRL derivative, CD and
BD’s for the fix value of FO α = 0.75 defined by these FDs.



Symmetry 2022, 14, 1377 18 of 20

There exist a comparable number of articles in the literature with particularly good
results. Here, we write a short comparison with this article [39]. Here in this paper, the
results were obtained by factorization and written in terms of the Weierstrass function.
For particular values of the involved parameters, few results are shown in terms of the
hyperbolic and trigonometric functions. On the other hand, we have more general results
in the form of hyperbolic, trigonometric, exponential, and rational. Moreover, we obtain
the bright, dark, periodic, singular, and other soliton solutions to this nonlinear model.

7. Conclusions

We have retrieved the trigonometric, mixed hyperbolic, and rational soliton structure
to the NLEEs characterizing wave motion in nonlinear LPET lines using the extended
direct algebraic method with fractional transformation. We have displayed some obtained
ideal solutions in 2D, and 3D layouts, including dark soliton solutions, the representa-
tives of the semi-bright soliton solutions, dark singular, singular solitons of Type 1, and
soliton outcomes by picking appropriate values for the free parameters, and examined
the repercussions of fractionality as well as the unrestricted factors of the model equation.
The effects of fractionality have been investigated utilizing graphical representations of
different solutions to the FO-LPET line problem. When the fractionality (0 < α < 1) rises,
the amplitude either increases or drops. Relying on the explanation mentioned earlier,
It makes sense to assume that negative and positive values of the model’s nonlinearity
elements, ν along with β, can influence the intensity of the wave characteristics. Moreover,
a comparison was performed between the findings obtained in this research and those
obtained using the same approach while considering the FDs in terms of the modified
Riemann-Liouville and beta derivation. We discussed sensitivity assessment. A sensitivity
evaluation is a test that assesses the sensitivity of our system. If the system suffers a minor
change due to minor modifications in the starting conditions, the system will have low
sensitivity. We, however, still examined how our model’s perturbed dynamical framework
exhibits quasiperiodic-chaotic characteristics. The validity of the resultant outcomes was
tested by re-entering the obtained solutions into the equation of our choice using computer
software. As a result, the entire study shows that such implemented approach is an effective
productivity tool for achieving a diverse variety of traveling wave solutions to NLEEs in
science, engineering, and mathematical physics. Because solitons may be used in telecom-
munication systems to communicate information and increase information data rates, the
findings of such a study may be valuable in studying the soliton solutions of LPET lines.
Solitons’ capacity to travel with low dispersion can be utilized to send data modulated
as brief pulses over vast ranges. One of the productive frameworks for discussing the
many kinds of exact optical solitary solutions is the extended direct algebraic method. the
sufficient conditions for the stability of the results, which refers to the situation where a
minor disruption inside a system does not have a significant impact on the system, is also
discussed. A quick and straightforward assessment reveals that the offered solutions are
unique and special. The study’s findings presented in this paper are novel and have never
been published before.
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