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Abstract: The integrated collection of personal health data represents a relevant research topic,
which is enhanced further by the development of next-generation mobile networks that can be
used in order to transport the acquired medical data. The gathering of personal health data has
become recently feasible using relevant wearable personal devices. Nevertheless, these devices do
not possess sufficient computational power, and do not offer proper local data storage capabilities.
This paper presents an integrated personal health metrics data management system, which considers
a virtualized symmetric 5G data transportation system. The personal health data are acquired using
a client application component, which is normally deployed on the user’s mobile device, regardless
it is a smartphone, smartwatch, or another kind of personal mobile device. The collected data are
securely transported to the cloud data processing components, using a virtualized 5G infrastructure
and homomorphically encrypted data packages. The system has been comprehensively assessed
through the consideration of a real-world use case, which is presented.

Keywords: data privacy; homomorphic encryption; personal health data; 5G data links; data privacy;
distributed system

1. Introduction

The ubiquity of personal wearable devices essentially changes the collection of per-
sonal health metrics data. These devices are normally featured by sensors, which acquire
the necessary medical data. This assertion suggests that the patients’ medical parameters
can be relatively easily collected, and used in the context of relevant medical scenarios. This
data collection process generates significant amounts of personal health information data.
The restricted storage and computational features of the personal wearable devices imply
that the local processing of the acquired data is impossible. Consequently, the collected data
must be handled by external software components. Considering the personal and medical
nature of the acquired data, any relevant system should implement the necessary data
privacy mechanisms. In this context, the data privacy denotes two aspects of the relevant
problematic. First, the data transportation channel that links the wearable mobile devices to
the data processing components should deliver data in a secure manner. This requirement
is implemented through the proper configuration of virtualized 5G data channels, and also
considering homomorphically encrypted data packets. Second, the data processing com-
ponents should address the acquired data without any knowledge regarding the patient’s
identity, or the values of the acquired personal health information data. The integrated
system that is presented in this paper considers a comprehensive homomorphic encryption
model that implements a complete data privacy mechanism. It also relies on the properly
implemented secure 5G data channels. The homomorphic encryption routines implement
the proper computations on encrypted data. The results of the data processing routines are
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encrypted and fully consider the bit (binary) values of the related plain text data [1]. Conse-
quently, the decrypted results correspond to the outcomes that are obtained considering
the same operations that are conducted on plain text data.

1.1. Remarks Concerning the General Principle of Data Privacy in e-Health Systems

This type of approach to preserve the data privacy is efficient regarding the system
that is presented in this article. Furthermore, this is a necessary approach considering
the use cases that involve personal health data, which are collected by mobile wearable
devices in the realm of e-Health systems. The following paragraphs discuss on the relevant
contributions that have been accomplished in the scope of privacy-preserving informa-
tion systems.

The contributions that are reported in [2] discuss on certain encryption schemes [3] that
ensure data privacy [4]. Nevertheless, the collected data are aggregated at the level of
the client [5]. Thus, the Sum aggregate and Min aggregate routines are specified using an
additive homomorphic encryption model in [2]. It is relevant to note that these operations
consider a set of values as input, and generate one value as output. Moreover, they represent
flexible and computationally efficient routines that are used in other contexts that presume
the aggregated processing of data. As an example, let us consider the queries that are
conducted on relational databases, which involve multiple table columns. The relevant
computations are designed to be conducted on the client devices in the case of most of the
currently available similar approaches. The operations that implement the homomorphic
encryption routines are generally computationally expensive. The computational models
that are reported by the existing literature are generally unsuitable for the use case that is
presented in this paper. The contributions that are reported in [3,4] consider the transfer of
required data processing operations to the cloud. Moreover, the authors of [5] described
a privacy preserving sum aggregation, which performs a significant part of the data
processing operations at the level of the client devices. Furthermore, the authors of [6]
proposed a homomorphic encryption scheme that is solely proper in order to perform
the sum operation, which is essentially insufficient for the computational use case that
this paper describes. It is immediate to understand that it is necessary to describe a data
computation mechanism, which allows for the basic arithmetic operations to be conducted
over the encrypted data. This is referred to as verifiable computation.

The concept of verifiable computation has been initially described by Gennaro et al. [7].
This mechanism generally allows computationally constrained mobile client devices to
offload their data processing tasks to one or several third-party workers. Furthermore,
the client devices have the opportunity to check the correctness of the results that are
received. In [8], the authors presented a verifiable computational approach, which considers
the input in a plain text format. Moreover, [9] described a data processing scheme, which
conducts the homomorphic data aggregation relative to e-Health information systems.
Nevertheless, this model cannot reliably check the correctness of the obtained results,
which is essential for the integrated system that is described in this paper. Moreover, this
paper also proposes a publicly verifiable data processing scheme, which pertains to large
polynomials and matrices. Additionally, the authors of [10] proposed a verifiable delegated
data processing model, which uses set structures and operations, such as set union, set
intersection, and set difference. It is relevant to note that these algorithmic models are
applicable only to input data that are supplied in plain text format.

1.2. Relevant Existing Contributions and Essential Research Gaps

The contribution that is reported in [11] concerns a verifiable data processing model,
which is applied to encrypted input data relative to m-Health (mobile health) information
systems. The algorithmic model of the accumulation tree is described in [12], with the
goal to check the results of geographical proximity tests. Moreover, the authors of [13]
presented the results that were obtained regarding the verifiable computation, which
considers encrypted input data. Thus, the majority of the existing approaches conduct the
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data processing on the client devices. This approach is essentially unfeasible relative to the
integrated data management system that is described in this paper.

The positive aspects regarding the data storage and processing in the cloud are easily
discernible. Nevertheless, some drawbacks may be easily identified [14]. The determination
of the proper security models, which provide the security of private data, represents a
relevant problematic that poses significant issues to the cloud service providers [15].

These service providers generally design and deploy multiple layers of complex
security models. Nevertheless, the unencrypted data may still be used through the con-
sideration of appropriate intrusion techniques. Therefore, it is necessary to encrypt the
data prior to sending them to the external data processing components, and retrieve them
using various search techniques relative to the encrypted data. The surveyed relevant
contributions determine a significant computation overhead relative to the mobile client
devices [16]. This remark is particularly applicable to the personal mobile devices, which
acquire the medical data that are processed by the integrated system that is described
in this paper. Generally, it can be stated that there are approaches, such as those that
are reported in [17], which do not implement proper security mechanisms that should
protect the data privacy [18], during their transmission through the proper data channels.
The adequate manipulation of personal health information (PHI) data is related to ethical
principles and formal regulations [19]. The integrated data processing system is based on
an architecture that considers all the necessary constraints. The authors of [20] presented
the general features and the life cycle of the services that are deployed into a cloud-based
data processing environment.

Since C. Gentry proposed the concept of homomorphic encryption in 2009 [1], a sub-
stantial research effort has been put into the improvement [21] of this computationally
expensive approach. Therefore, it should have been normally compatible with particular
real-world scenarios, which required certain powerful hardware resources [22]. Addi-
tionally, the early homomorphic encryption models were excessively computationally
expensive relative to the intended use cases [23]. Consequently, the related algorithmic
apparatus has been enhanced considering multiple development stages [24]. The au-
thors of papers presented relevant mathematical and algorithmic models, which make
the homomorphic encryption routines more efficient. It is equally relevant to mention the
papers [25–27], as they extended the initial set of algorithms with useful computational
features. The algorithmic apparatus that is described in [28] has been considered during
the specification of the integrated data management system’s data processing compo-
nents [29,30]. Nevertheless, the comprehensive validity assessment that we conducted [31]
showed that even the optimized homomorphic encryption models are not feasible [32]
for the timely processing of the acquired medical data on the mobile client devices [33].
Moreover, it is significant to mention the relevant contributions that pertain to the realm
of ubiquitous systems. Thus, the scientific contribution that is reported in [34] presents a
software application that is determined by two interesting functional requirements. First,
the system is capable to perform the semantic analysis of data that are generated by user
interactions relative to various contextual parameters during the usual activities of daily
living (ADL). This is accomplished with the purpose to determine the set of relevant be-
havioral patterns that support the involved complex activities. Furthermore, the software
system includes an algorithmic routine that is used in order to support the appropriate
decision-making processes. The architectural model that is reported in this paper may
influence the specification and implementation of a near real-time cardiac abnormality
detection module, which may be included in a future version of the integrated medical
data management system. It is relevant to mention the related contribution reported in [35].
Furthermore, the authors of [36] presented a general architecture of an ubiquitous system
that is intended for general medical use case scenarios. Additionally, it is also useful to
mention the survey work that is reported in [37].

The existing relevant computational models are usually improper for the design and
implementation of an efficient privacy-preserving personal data processing system relative
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to the four fundamental functional aspects: the collection of the medical data using the
mobile client devices, their transfer to the central data processing components, the proper
and secure storage of these data, and the privacy-preserving data processing [38]. The inte-
grated data processing system is one of the few relevant information systems that considers
both the distinction between the long-term data storage and data processing paths, and the
functional requirement to efficiently enroll any compatible client medical data collection
devices [39]. Moreover, the data processing components are able to use the storage and
processing services that are used by the related cloud-based platform. This ensures the
long-term scalability of the system [40]. The following sections describe the integrated
data management system relative to the features that distinguish it from most existing
similar approaches. Furthermore, it is the only relevant similar system, which considers
virtualized 5G data transmission channels. This contributes to the versatile and economical
deployment of its components on virtually any physical computational infrastructure.

The rest of the paper is structured considering the following sections. The next section
describes the system considering its architectural components. The following section
describes the technical architecture of the broadband 5G data transmission subsystem.
Furthermore, relevant considerations concerning the optimization model are discussed.
Consequently, the necessary implementation details relative to the specific use case are
provided, and the practical system performance is evaluated through the consideration of
a real-world use case. The last section concludes the paper.

1.3. Conclusive Remarks Concerning the Literature Review

The survey that was conducted suggests that although certain progresses have been
made regarding the verifiable computation over encrypted data, no suitable system archi-
tecture was described, which would accommodate the requirements that are considered
by the integrated data management system that is described in this paper. These are
the following.

• The collection of the medical data using the mobile client devices.
• The data transfer to the central data processing components.
• The proper and secure storage of these data, and the privacy-preserving data processing.
• The specification of a flexible and decoupled system architecture, which would allow

for an efficient extension and re-structuring of the system to occur in the future.
• The consideration of all the legal and formal requirements that are enforced by Ameri-

can and European regulations.
• The efficient integration of the system in the software frameworks of hospitals, clinics,

and other medical facilities, while considering the logical differences that exist among
the relevant types of actors, such as patients, doctors, and nurses.

The integrated medical data management system, which is described in this paper,
considers all of these requirements.

2. Essentials Concerning the System Architecture

The generally considered encryption schemes, such as AES (Advanced Encryption
Standard), are not compatible with the implementation of arithmetic operations relative to
the encrypted data, because their arithmetic architecture does not support the specification
of the basic mandatory operations, addition and multiplication, directly over the encrypted
data. Thus, using the secret decryption key in order to obtain the plain text data represents
the only possible operation. Consequently, it can be stated that the standard encryption
models propose a mechanism that allows for the secure storage of the data, without the
possibility to compute them.

The Fully Homomorphic Encryption (FHE) models provide the opportunity to imple-
ment data processing routines relative to the encrypted data, while completely disregarding
the significance of the original unencrypted data. The integrated data processing system
relates to the usage of the fully homomorphic encryption models, which implies that the
personal health information (PHI) is safely acquired and processed. The personal health
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data are computed by the data processing components considering their encrypted form.
Thus, the implemented data privacy model is optimal for the considered use case, and the
resulting system performance does not negatively impact the end user’s experience.

The architecture of the integrated data processing system is described in Figure 1.
The blue arrows represent an indication concerning the directional flow of the data between
the human actors and the relevant system components, and also through the internal
system structures. The privacy of the processed data is relevant considering the four
main stages that support the operation of the data transmission pipeline. Thus, the first
stage pertains to the data acquisition using each enrolled individual’s wearable or mobile
device. Consequently, the second stage relates to the safe data transmission to the backend
components using the secure 5G data channels. The third stage pertains to the actual
storage of the collected personal health information data, while the last stage implements
the privacy-preserving data processing. The relevant components are installed on the
IBM Cloud [41] platform. Furthermore, the acquired data are effectively stored using IBM
Cloudant [42]. The relevant entities are modeled through the appropriate JSON documents,
which essentially retain the informational structure of the main classes that are part of the
integrated data management system’s solution. The relevant non-disclosure agreement,
which legally formalizes this research process, prevents the full structure of the database
to be revealed. Nevertheless, the interested reader may consult the main database entities
in the component diagram that is presented in Figure 3. Moreover, the required data
computations are conducted through the consideration of the Apache Spark platform.
The data processing events are handled using the Apache OpenWhisk programming
service [43]. The following sections provide further details concerning this integrated data
storage and processing system.

Figure 1. General System Architecture.

The data transmission channel is essentially connected to the data processing com-
ponents relative to the last two stages: the data storage, and the privacy-preserving data
processing. The outcomes of the operations are returned to the mobile client devices in an
encrypted form using the available secure 5G data transmission channel. This integrated
system architecture fundamentally differs from most of the existing similar approaches,
considering that it implements an end-to-end privacy-preserving data protection mecha-
nism, which discloses the data only when they arrive on the requesting mobile client data
device, without significantly affecting the execution times and the end user’s experience.
These features are not characteristic to most of the existing similar approaches.

Technical Architecture of the 5G Data Transmission Pipeline

The personal health data collection devices mostly use 5G data communication chan-
nels in order to send the acquired data to the central data processing components. Therefore,
it is essential that the architecture of the 5G data collection channels ensure an additional
layer of data security, which is added to the intrinsic private nature of the homomorphi-
cally encrypted data. This essentially creates a system that ensures absolute data privacy
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end-to-end between the mobile data collection devices, which are worn by the enrolled
patients, and the data processing components.

The design of efficient and secure architectural models for the design and implemen-
tation of 5G data networks represents the object of intense research efforts. Thus, any
proper approach envisions two perspectives [44]. The data perspective determines the
real-time analysis of the transported data using software-defined data channels. The control
perspective is connected to the proper implementation of the administrative tasks.

3. Essential Concepts Regarding the Optimization Model
3.1. Fully Homomorphic Encryption Model

The fully homomorphic encryption model that the integrated data management system
considers is thoroughly presented in [26]. It is generally known as the Brakerski–Gentry–
Vaikuntanathan (BGV) fully homomorphic encryption (FHE) model. We have extensively
assessed and tested the existing FHE schemes considering simulated test infrastructures.
It was determined that most of the FHE schemes are excessively resource intensive, even
relative to sufficiently powerful hardware, particularly as a consequence of the expensive
noise elimination (recrypt) operations, which are performed after each multiplication oper-
ation [1,27]. We have found the BGV model to be the only computationally proper solution
relative to the integrated data management system. This is justified by the BGV scheme,
which specifies a leveled FHE scheme that disregards the noise elimination operations.
This approach envisions a more efficient noise management algorithm, which is referred to
as modulus-switching. This optimization model is completely explained in [21]. It implies
that cascaded homomorphic multiplications (Xh) can be performed, while circumventing
the possibility to face decryption errors. This potential problem would render the precise
privacy-preserving function of the system impossible. The following paragraphs present
the four FHE operations that are implemented. Essentially, the system considers a param-
eter L (the Level), which must be precisely determined before starting any effective data
processing instruction. The level L depends on the number of the multiplication operations
that are necessary considering the particular computational context.

The first kind of FHE operation that the integrated data management system imple-
ments is the homomorphic addition (+h). This operation takes as input two ciphertexts that
relate to slot-wise XOR operations of the respective unencrypted elements. The second
type of FHE operation that the integrated data management system implements is the
homomorphic multiplication (Xh). This operation takes as input two ciphertexts that
relate to a slot-wise AND function that is applied on the respective unencrypted elements.
Each multiplication increments by 1 the related level L. Thus, the depth of the multipli-
cation operations determines the calibrated value of the level L. Following, the rotate
(<<<h,>>>h) represents an operation that allows for the defining storage bits to be
rotated. Additionally, the select(selmask) is an operation that, in essence, recovers the po-
tentially altered slots (bits) of the data elements that are generated by the rotate operation.
Consequently, the select operation preserves the consistency of the processed data.

3.2. The Improved Fully Homomorphic Encryption Model

The integrated data management system considers the optimal implementation of the
data processing components, which must safely compute, as required, the personal health
information data. The communication data path is described in Figure 2, which suggests
that each bit of the unencrypted data is adequately concatenated to the related plain text
message. The generation of the ciphertext occurs according to the steps determined by the
top data path. The direct processing of the encrypted data is the fundamental advantage
of this privacy-preserving data processing scheme. The transformation of the processed
data into a binary format is related to the bottom data processing path illustrated in
Figure 2. It is implemented using the functions that are called computation ( fc(.)) and
aggregation ( fa(.)).
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Figure 2. Basic Secure Data Flow.

Furthermore, let us observe the architectural structural of the main data management
module, as it is described by the component diagram, which is represented in Figure 3.

Figure 3. Component Diagram Concerning the Main Data Management Module.

In Figure 3, the component that is labeled Data Collection Interface represents the
software routines that are necessary in order to properly acquire the data that are collected
by the user-side devices. Moreover, the components that are depicted in the central part
of the diagram describe the main types of actors that can interact with the system: the
medical actors, and the administrative users. Furthermore, the rightmost section of the
diagram relates to the secure data management components. This includes the software
module that realizes the connection to the Cloudant non-relational database engine, which
is distinctly highlighted.

3.3. Scope of the System

The system considers a functional architecture, which offers sufficient flexibility that
is enough to accommodate any use case scenario that requires the collection of sensitive
client data using a particular mobile or wearable device, and their safe transportation,
storage and processing by the data processing components. The system can be customized
in order to accommodate various current and future data collection sensors. The validity
and appropriateness for the intended scope of the integrated data management system is
assessed through the collection of cardiac rhythm data. The data storage and processing
components possess the functional capability to persist the processed medical data and
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supply them as necessary to the requesting client using the available secure 5G data
channels. Moreover, the system also evaluates the medical condition, which is called the
delayed repolarization of the heart syndrome (DRHS) [29].

4. Relevant Implementation Details
4.1. Remarks Regarding Virtualized Wireless Network Function

The virtualized wireless network function (VWNF) is fundamental for the efficient
design and implementation of 5G networks. This has been considered in order to deploy the
core of the virtual 5G network that supports the function of the integrated data management
system. This approach allows for the self-sufficient specification of the logical 5G network,
which supports the overall operation of the integrated data management system. Moreover,
it also creates the possibility for the specialized logical 5G network that supports the
function of the integrated data management system to be deployed on certain hardware
and software infrastructures, such as those that are offered by cloud service providers
or telecommunications service providers [45,46]. This mechanism was used in order to
specify and deploy the necessary specialized networked services. We have observed
that the virtualized networked environment supplies the necessary logical flexibility and
scalability [47].

We have effectively observed that this logical mechanism is compatible with the proper
processing of the personal health information data traffic that is sent through the logically
defined 5G network. The contribution that is presented in [48] describes a possible use case
of this logical networking mechanism [49].

We have also analyzed the logical 5G networked structure considering the utilization of
the radio resources, and it was determined that this approach optimizes the allocation and
usage of the necessary radio resources. Thus, we were able to define logical sub-networks
that are conducting distinct analyses of the 5G data traffic using individual instances of
the integrated data management system. It is immediate to note that the findings that
are reported in this paper extend and refine the research effort that is reported in [50]. It
can further be stated that the experimental work that we conducted acknowledges that
logical 5G networks that are adequately defined and sized are capable to support even
information systems that work with large amounts of real-time data, such as the integrated
data management system.

4.2. General Algorithmic Remarks

The real-world operation of the integrated data management system relies on two
variables. Thus, the properly calibrated level L is essential for the time efficiency of the
system. Furthermore, the efficient functional behavior of the system depends on the
number of multiplication and rotation operations, which are computationally expensive.
The multiplication operation is also important because it determines the calibration of the
level L. The integrated data management system implements a series of enhancements
that relates to the decrease of the level L, and the general number of the considered FHE
iterations. They also ensure that the number of FHE operations is kept at the minimum
possible level. It can easily be understood that the system is designed in order to efficiently
calibrate the level L. This essential operation uses NCT ciphertexts as input data. This
encrypts an array of n bits that privately stores cardiac rhythm data. The complexity of the
main processing algorithmic routine depends on the value of the level L. Thus, ignoring the
logarithmic factors, the model is characterized by a complexity of Õ(L2), which depends
on the value of the level L. It is immediate to note that it is required to maintain the
value of the level L at an appropriate low level during the fully homomorphic encryption
computational processes.

4.3. The Detection of the Average Heart Rate

The determination of this physiological parameter is based on NCT ciphertexts. The al-
gorithmic optimization that is implemented designates two main types of enhancements.
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The first one relates to the decrease of the computationally expensive multiplication opera-
tions. Moreover, the decrease of the computation operations depth is also applied, while
the level L is also optimally calibrated.

The addition operation is enhanced considering two functional aspects. They are
referred to as the additive compression and the prefixed parallel addition. The additive com-
pression translates three data inputs (H, M, F), each of them structured considering n bits,
into two outputs. The outputs are designated by the AR (addition result), and LOVER
(leftover). The AR = H∆M∆F, and LOVER = [(H × M)∇(H × F)∇(M × F)]. Here, ∆
designates an additive single instruction multiple data (SIMD) operation. Furthermore,
the nabla operand (∇) refers to a SIMD operation that relates to the entire set of n bits of the
input data considering a parallel data processing model. The prefixed parallel addition has
been designed and implemented using the algorithmic model, which is described in [27].

The calculation of the average heart rate uses NCT ciphertexts. These encrypt the input
messages that are described by n bits. The first stage of this data processing mechanism con-
siders the additive compression in order to translate NCT ciphertexts into two ciphertexts.
Moreover, the two ciphertexts that are obtained are summarized using the operation of
prefixed parallel addition. The comprehensive real-world performance assessment suggests
that the system efficiently processes the personal health information data, while the 5G
data channels do not place a perceptible overhead on the enrolled users’ experience.

4.4. Determination of the Delayed Repolarization of the Heart

The determination of this abnormal cardiac condition relates to the computational
model that is presented in [33]. The fundamental equation that is described in [33] is
improved. Consequently, let us study the following two mathematical expressions.

TQT√
TRR

> 475ms⇒ TQT
2 > TRR × 225, 625 (1)

⇒ TQTH > TRRH (2)

The expressions TQT
2 = TQTH and TRR × 225, 625 = TRRH are processed by the client

mobile devices, which are illustrated in Figure 1. The TQT and TRR denote the time in-
tervals that are measured and recorded during any electrocardiogram test. Thus, TQT
describes the time that is required for the ventricular depolarization and repolarization,
and TRR quantifies the variability concerning the timing of the heartbeats. The subscript H
suggests the homomorphic nature of the comparison, which is required in order to detect
the presence of the DRHS condition. It is relevant to note that a comprehensive set of
calibration tests has been implemented, which was used in order to fine-tune Equation (1).
Thus, the equation is improved concerning the accuracy of the detection results, and also
regarding the efficient usage of the computational resources. The equation ensures that the
integrated data management system precisely detects this problematic medical condition
with no false positives. This is accomplished using just the absolutely required FHE opera-
tions. The data processing components aggregate the results of the particular comparison
operations. The data processing flow implies that the mobile client devices send a request
to the data processing components, which essentially asks for a medical report relative to
a certain period of time. The mobile client device decrypts the results that are received
and checks whether at least one bit is equal to 1. If at least one such bit is found, then
it is immediate to infer that the comparison TQTH > TRRH was true at least once. As a
consequence, it can be stated that the DRHS cardiac malfunction occurred, with a high
probability, at least once.

4.5. Determination of the Minimum and Maximum Heart Rates

The determination of minimum and maximum heartbeat rates represents a functional
feature of the integrated data management system. This is specified through the consid-
eration of the fc(.) function, which is described in Figure 2. This function converts the
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input data in a binary manner. This is efficiently computed by the relevant components
of the integrated data management system. The relevant considerations that have been
made in Sections 5.1 and 5.2 suggest that two n-bit numbers are effectively compared,
and they produce an output that is also coded through a proper sequence of n bits. Let us
suppose that the first number is greater than the second number. Consequently, it is valid
to assert that the output of the operation is determined by one bit of 1, and n-1 bits that are
0. Additionally, it is relevant to note that the result is composed only of bits that are 0 if
the first number is less than the second number. The integrated data management system
preserves the validity of the processed data through the usage of the basic rotate and select
operations. In essence, the result of this algorithmic model is specified through n bits that
represent only values of 1.

The quantitative assessment of the minimum and the maximum cardiac rate values
essentially calculates the minimum and maximum values of NCT ciphertexts. This algorith-
mic and computational model encrypts an array of messages, which are composed of n
bits. Therefore, the computational process considers the following functions: min( fc(.))
and max( fc(.)). Here, the value of the level L, which supports the data processing flow of
the fully homomorphic encryption routines, is computed through the following formula
that ensures the continued calibration of this fundamental parameter.

L > (log2 n + 2)× log2 NCT (3)

5. Real World System Performance
5.1. Considerations Regarding the System Architecture

The architecture of the integrated data management system is described in Figure 1.
The system is compatible with any type of mobile data acquisition device, with the condition
that it is technically suitable and proper for the data collection process. The structural
stability of the system, which is demonstrated in Figure 1, is determined by the invariability
of the data processing components.

The software component that is installed on the mobile client devices sends the
acquired data to the data processing components considering a real time pattern. If the
5G data connection is not available, then the acquired data are cached locally. The locally
stored data are transferred to the data processing components through a secure 5G data
channel in a homomorphically encrypted format, as soon as the 5G data transfer channel
becomes available.

It can be stated that several cardiac sensors have been assessed. Thus, it was deter-
mined that the Polar H10 Heart Rate Sensor produced the most precise results [51]. Thus, it
has been selected as the user-side data collection device in order to assess the field trial de-
ployment of the integrated data management system. The personal health information data,
which are necessary to evaluate the system’s capacity to detect the delayed repolarization
of the heart syndrome (DRHS), are supplied by a medical dataset that stores 750 patients.
The Polar H10 sensor has been used by all the individuals that are enrolled into the system
during the field trial.

The system architecture relates to the usage of certain software and hardware compo-
nents. The cardiac data are acquired by the Polar H10 personal sensor. The data that are
gathered are sent to each patient’s Android smartphone, which uses the allocated secure
5G data channel in order to communicate with the data processing components. The inte-
grated data processing system’s client component is installed on the patient’s smartphone.
It collects the data, which are effectively acquired by the Polar H10 sensor. Furthermore,
the data are encrypted, and they are transmitted to the data processing components, which
are deployed on the IBM Cloud infrastructure.

The central data processing components’ algorithmic core is designed and imple-
mented using an improved version of the algorithmic model that is presented in [31].
This version includes the enhancements that have been presented in the previous section.
The central data processing components are installed on the IBM Cloud platform through
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an adequate buildpack. The Apache Spark engine is considered in order to enhance the
data access layer. The data that are acquired by the client software components are securely
stored, in a fully homomorphically encrypted format, through the utilization of the IBM
Cloudant platform. This is a non-relational database engine, which has been found as
suitable for the storage of the collected and processed medical data. The newly collected
personal health information data are detected by the Apache OpenWhisk programming
service. As a consequence, the proper event handlers are called. This ensures that the
newly imported data are automatically processed and safely stored. The data processing is
conducted by the data processing components using the algorithmic structure and data
processing pathways, which have been described.

5.2. Performance Metrics

The real-world evaluation of the system is made through the usage of four relevant
metrics. The first one is the network capacity that is necessary in order to send the data
between the client mobile devices and the data processing components, considering both
directions. This metric is relevant considering the large amount of data that are generated by
the fully homomorphic encryption modules. Thus, the XFERIN determines the data that are
sent from the mobile client data collection devices to the data processing components, while
the XFEROUT represents the data that are transferred from the data processing components
to the user-side mobile devices.

The second performance metric is related to the load that is placed on the 5G data
channel, relative to the entire capacity of this data link. Let us designate this metric
with L5G.

The third metric is determined by the storage ratio (SR). This quantifies the storage
capacity that is required in order to persist one byte of plain text data using the fully
homomorphic encryption. Thus, if SR = 1000, then it is immediate to state that considering
one byte of plain text data, 1000 bytes are necessary in order to store the respective byte in
the fully homomorphically encrypted format.

The fourth metric is defined by the processing speed (PS). This metric is determined
by the following expression.

PS =
PTO
PIN

(4)

Relative to this mathematical expression, the numerator designates the time that is
necessary to transmit the data from the client devices to the data processing components.
The denominator represents the time that is necessary for the backend components to
process the data that are received.

5.3. Outcomes of the Performance Evaluation

The evaluation considers the data that are collected from the enrolled 750 patients
using the Polar H10 cardiac sensors. The field trial has lasted for a period of two months.

The actual states of the presented metrics are described in Table 1. The table columns
present, in this order, the load of the 5G data channel, the number of ciphertexts, the level
L, the data that are received and sent by the data processing components in Gigabytes (GB),
the storage ratio, and the processing speed. The values of the performance parameters scale
efficiently with the size of the input data, and it is more efficient than similar reported contri-
butions, such as the one that is presented in [31]. The integrated data management system
that is presented in this paper essentially differs from existing similar approaches, consider-
ing that it offers a unified platform for the collection, transport, processing, and storage of
the medical data in a fully private manner. Moreover, it can be stated that the system is
scalable, as it can be observed in Table 1. Furthermore, the values of the main performance
parameters, L5G, NCT , the level L, XFERIN , and XFEROUT , are kept at lower values, which
further demonstrates the efficient behavior of the system.
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Table 1. Values of performance metrics (lower is better).

Data
Reading
Interval

L5G NCT Level L XFERIN XFEROUT SR PS

One
minute 0.01 2 10 5.3 3201.3 32.1 0.54

Five
minutes 0.07 12 12 6.4 1298.8 39.4 0.24

Fifteen
minutes 0.19 40 15 6.9 669.2 47.5 0.23

Thirty
minutes 0.33 44 16 10.6 1102.6 88.3 0.36

One hour 0.39 86 18 8.1 643.7 91.4 0.35

Three
hours 0.52 258 20 9.6 221.9 101.2 0.37

Six hours 0.63 519 21 11.6 108.8 108.5 0.36

Twelve
hours 0.72 1021 23 12.1 45.9 117.4 0.39

One day 0.81 2099 25 15.2 26.4 128.1 0.42

5.4. Comparative Performance Evaluation

We have conducted a comparative study regarding the real-world performance of our
algorithmic model relative to the reference Brakerski–Gentry–Vaikuntanathan (BGV) fully
homomorphic encryption model. Thus, two instances of the system have been implemented
and deployed under identical software and hardware conditions through the consideration
of the general system architecture that is presented in Figures 1 and 2.

The value of the performance metrics that are presented in Table 2 prove that our
algorithmic variant performs better than the reference BGV model. This is particularly
important, as it ensures a superior level of scalability considering the inherently large
amounts of transferred and processed data.

Table 2. Values of performance metrics for the BGV variant (lower is better).

Data
Reading
Interval

L5G NCT Level L XFERIN XFEROUT SR PS

One
minute 0.02 2 11 6.42 4104.3 32.1 0.79

Five
minutes 0.09 12 14 9.47 1681.8 39.4 0.41

Fifteen
minutes 0.22 40 18 8.1 865.2 47.5 0.32

Thirty
minutes 0.36 44 21 11.79 1602.9 88.3 0.43

One hour 0.42 86 24 9.85 814.8 91.4 0.41

Three
hours 0.55 258 27 10.87 314.8 101.2 0.44

Six hours 0.67 519 31 12.9 198.9 108.5 0.39

Twelve
hours 0.76 1021 35 13.84 87.9 117.4 0.45

One day 0.86 2099 39 16.86 26.4 208.1 0.46
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5.5. Analytical Discussion Regarding Similar Contributions

The theoretical and practical value of the contribution that is reported in this paper
may be better understood by the interested reader through an analytical analysis relative to
relevant existing contributions. Thus, the following paragraphs discuss on this problematic.

The contribution that is reported in [52] focuses on an extensive review of current and
existing approaches and mechanisms that are used in order to handle security and privacy
related matters relative to e-Health software systems. Thus, strengths and weaknesses
of some of these approaches are enumerated. Reviewed articles were narrowed down
to the respective reported scientific contributions because of similarity observed in the
models adopted by some researchers. Additionally, the authors provided an acceptable and
standard definition regarding the general concept of e-Health system. Furthermore, a clas-
sification of cloud-based models was accomplished, and the relevant security and privacy
requirements, as recommended by the Health Insurance Portability and Accountability
Act (HIPAA) [53], were also discussed and analyzed. The authors proposed a secured
and dependable architecture, which is suitable for electronic health scenarios that could
guarantee efficiency, reliability, and a properly regulated access framework to health in-
formation. Nevertheless, the proposed architecture does not ensure the distributed nature
of the system and its required scalability, while the encryption mechanisms are based on
standard asymmetric encryption models that do not ensure the required level of health
data privacy.

The paradigm of cloud-based healthcare computing has changed the face of healthcare
in many ways. The main advantages of cloud computing in healthcare are represented by
the scalability of the required services, and the possibility to upscale or downsize the data
storage, or the required computational resources. There are papers that examine various
research studies, which assess the relevant aspects that relate to the mandatory specification
and implementation of the relevant security and data privacy preserving mechanisms.
In this respect, there are various significant legal and technological aspects that should be
analyzed. Thus, the authors of [54] analyzed a series of scientific contributions that lack,
at least, some of the technical features that clearly distinguish them from the integrated
data management system, such as the end-to-end data privacy mechanisms, the consistent
scalability, and the possibility to accommodate various technical platforms and frameworks
regarding the client and backend components.

Considering that information and communication technology has advanced towards
an improved economical environment, which provides enhanced services to consumers
and business actors, it is relevant to note that the health sector also benefits from these
theoretical and practical advancements. Despite the visible and significant benefits that a
cloud-based system deployment provides, there are still security and privacy challenges
that are preventing the full array of benefits from being considered. Thus, the authors
of [55] described a distributed system, which provides different levels and models of encryp-
tion relative to the various distributed software modules. This heterogeneity determines
multiple administrative, functional, and security issues, which make the reported model
unsuitable for the real-time implementation of large-scale medical data processing systems.

The emergence of Internet of Things (IoT) as a theoretically and practically relevant
paradigm, and also the sustained development of cloud computing technologies, the design
and development of electronic health systems are perceived as significant and active
domains of scientific research, which enable the development of medical practices in a
convenient and economical way. In this context, it can be stated that the authors of [56]
discussed about an important problematic that pertains to the fully secure preservation of
the personal data privacy. The paper presented an access control model for cloud-based
data, which uses a certificate-based mechanism. The fundamental features of the described
model are represented by the integration of the relevant trust-related mechanisms with the
proper data monitoring models, which may provide a superior level of security relative to
the access control mechanisms. The authors explained the methodology of the proposed
approach through experimental evaluation results, which apparently demonstrate an
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improvement of the system’s security and performance, through the minimization of the
time that is spent in order to define and implement the permissions that are necessary
to access the relevant services, and also through the optimization of the overall system
resources utilization. Although the algorithmic and data processing structures are designed
in a more uniform manner, as compared to similar reviewed approaches, the reported
model is still unable to provide the required scalability, and also the mandatory end-to-
end medical data privacy between the client devices, and the backend data processing
components. This also favorably differentiates the integrated medical data processing
system, which we describe in this paper.

Cloud computing in healthcare has witnessed a major development in recent years
due to its remote access capabilities, among other factors. The reviewed scientific studies
have shown that it has attracted significant attention in the field of healthcare. Nevertheless,
the surveyed research papers demonstrate that a relatively high number of healthcare con-
sumers are yet to accept the technology, especially in developing countries due to reasons,
such as the data security and the improper and unfriendly utilization of this approach
relative to the end users, with limited or no technical skills [57]. This is another significant
aspect, which relates to the realm of user experience, that is consistently approached by the
integrated data management system, which we report in this paper. Thus, the system is
compatible with the most affordable mobile devices that feature a data connection. This
also allows for the medical data collection to occur in a seamless manner for the enrolled
patients, without any costly changes that would be required to their personal mobile
devices assets.

Considering the Attribute-Based Encryption (ABE) schemes, patients encrypt their
electronic health record (EHR), attach the proper attributes, and transmit them over to
the cloud. Doctors and entitled medical practitioners receive the encrypted EHR, which
corresponds to their area of interest, from the cloud-based systems. The decryption of
the received encrypted EHR involves that the medical practitioners receive the secret
keys from the key generation center (KGC). Considering that the KGC knows the secret
keys of all the encrypted EHR records, it may consequently decrypt the patients’ records.
A decentralized ABE scheme overcomes this issue, but it requires high computation and
communication costs. Moreover, considering a scheme with such an architecture, any
unauthorized doctor may be able to access the patients’ private EHR data. Moreover,
the KGC’s secret keys privacy and the doctor’s attribute privacy also represent serious
concerns. The authors of [58] described a privacy-preserving e-Health (CP2EH) scheme
over the cloud that overcomes the problems of both unauthorized access of patient records
by a doctor, and a doctor’s attribute privacy in an ABE scheme. In the context of this
CP2EH scheme, it is relevant to mention the incorporation of oblivious transfer (OT)
and zero-knowledge proof (ZKP) protocols into the centralized ABE scheme. The OT
protocol maintains the secret keys’ privacy and the doctor’s attribute privacy. Nevertheless,
the described system proves to be rigid concerning the accepted data collection devices.
Additionally, it is compatible with only certain software frameworks, it does not scale well
relative to an increased number of enrolled patients, and it does not implement end-to-end
data privacy mechanisms. In contrast, the integrated data management system addresses
all of these shortcomings.

The authors of [59] described a novel attribute-based encryption (ABE) based on an
access control scheme, which may impose multi-level and controlled access delegation.
Furthermore, it is assessed how such a system may be deployed in an e-Health environment,
in order to securely share the outsourced EHR data of the enrolled patients. Furthermore,
the authors inferred that the proposed scheme is secure against chosen plaintext attacks,
as well as attacks mounted via attribute collusion [60]. Nevertheless, even if this seems
to be one of the most promising approaches, which have been reviewed, it still does not
design an end-to-end privacy-preserving medical data processing pipeline. Additionally, it
still suffers from the essential architectural and functional shortcomings that have already
been mentioned.
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The comprehensive literature review that was conducted demonstrates that although
interesting contributions are reported in the relevant scientific literature, virtually all of
the existing algorithmic and functional models lack on some of the fundamental technical
features, which are necessary in order to implement a real-time, scalable, and completely
private integrated medical data management system. Consequently, it can be asserted that
the integrated medical data management system, which is reported in this paper, is one of
the few that fulfills all of the mandatory algorithmic and technical constraints. This clearly
differentiates it from most of the existing systems, which fully warrants the value of the
contribution that is reported in this paper.

6. Conclusions and Planned Developments

The efficient acquisition of personal health information data has become progressively
relevant during the past fifteen years as a consequence of the continued evolution of
personal mobile devices and medical sensors. It has become feasible to gather the personal
health information data through a minimally obtrusive application of proper mobile sensors
and devices. The collected data, which can be assimilated to the realm of big data, imply
administrative and legal aspects. The administrative aspect mostly pertains to the extraction
of relevant medical knowledge, while the legal aspect is connected to the mandatory
constraint to observe the full preservation of the personal health information data privacy
during its entire lifecycle.

This article presents an integrated personal health information data management
system, which implements all the necessary constraints. It is compatible with the vast
majority of the current and, with a substantial probability, future client-side mobile data
collection devices. The system’s data transportation channels are implemented using se-
cure 5G data channels. The validity and efficiency of the system are evaluated using a
comprehensive field trial that considers 750 enrolled participants. Thus, it is demonstrated
that the deployed integrated system is able to efficiently and scalably accommodate the
involved fully homomorphic encryption data processing tasks. This is a relevant achieve-
ment, considering that it is one of the few existing approaches that implements a fully
functional integrated personal health information data management system, which spec-
ifies complete data privacy mechanisms considering all stages of the data management
process: acquisition, transportation, processing, and storage. This contribution has also
the merit to describe a system, which uses virtualized secure 5G data channels, which
add an additional layer of security relative to the fully homomorphically encrypted data
management routines. It is interesting to note that this data security model can be applied
to other relevant use cases, such as the organization of chess tournaments.

The architecture and logical specification of the virtualized 5G data infrastructure will
be improved, together with the data processing components that are based on the fully
homomorphic encryption routines. This planned optimization effort has the role to relieve
the load on the computational resources that are necessary in order to transfer, store, and
process the collected personal health information data. The thorough field trial demon-
strates that the system is capable to manage the intended use case scenarios. Consequently,
the necessary planning has been made for its continued development and maintenance.
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