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Abstract: This study provokes the existence of quantum Hermite-Hadamard inequalities under
the concept of g-integral. We analyse and illustrate a new identity for the differentiable function
mappings whose second derivatives in absolute value are («, m) convex. Some basic inequalities
such as Holder’s and Power mean have been used to obtain new bounds and it has been determined
that the main findings are generalizations of many results that exist in the literature. We make links
between our findings and a number of well-known discoveries in the literature. The conclusion in
this study unify and generalise previous findings on Hermite-Hadamard inequalities.
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1. Introduction

When there is no limit in calculus, it is referred as g-calculus. Euler is the inventor of
g-parameter and also the creator of g-calculus. Jackson began his work in a symmetrical
manner in the nineteenth century and presented g-definite integrals. Q-calculus is used
in a wide range of subjects, including mathematics, number theory, hyper geometry and
physics. One can see in [1-4] and references therein. In g-calculus, we substitute classical
derivative with difference operator, allowing you to work with sets of non-differentiable
functions. Quantum difference operators are of tremendous importance because of their
applications in a variety of mathematical disciplines, including orthogonal polynomials,
basic hypergeometric functions, combinatorics, mechanics and the theory of relativity.
Many essential concepts of quantum calculus are covered in Kac and Cheung’s book [5].
These ideas help us to develop new inequalities, which can be useful in the discovery of
new boundaries.

Integral inequalities is historically viewed as a classical field of research. From classical
to modern applications, inequalities have been used in mathematical analysis. In 1934,
Polya and Hardy introduced classical work on inequalities. Integral inequalities plays vital
role in differential equation theory. Many researchers have studied integral inequalities
in classical calculus along with their applications (see [6-9]) . Because the value of mathe-
matical inequalities was well established in past, inequalities such as Hermite-Hadamard,
Popoviciu’s, Steffensen-Griiss, Jensen, Hardy and Cauchy-Schwarz performed an essential
role in the theory of classical calculus and g-calculus [10-14].

In convexity theory, Hermite-Hadamard is one of the most well known inequality,
which was developed by Hermite and Hadamard (see also [15], [16] p. 137). Convexity is
very simple and natural concept to solve many problems of mathematics. Convexity is

Symmetry 2022, 14, 1394. https:/ /doi.org/10.3390/sym14071394 https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym14071394
https://doi.org/10.3390/sym14071394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7192-8269
https://orcid.org/0000-0001-8843-955X
https://doi.org/10.3390/sym14071394
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071394?type=check_update&version=2

Symmetry 2022, 14, 1394

20f13

growing area of research that has applications in complex analysis, number theory and
many other fields. Convexity also has a significant impact on people’s lives with numerous
uses in industry, medicine and business. Convex functions are studied by researchers in a
variety of fields and are defined as:

Definition 1 ([6]). If g : [01,62] C R — R is convex, then for every », y € [01,6,] and every
Kk € [0,1], we have:
g(xy + (1 —x)2) <xg(y) + (1 —x)g(>).

Definition 2 ([17]). Ifg: [0,6,) — R is called (x, m) convex, then following inequality holds
g+ m(1—x)y) < xg(s) +m(1—-x)a(y),
holds ¥/3¢,y € [0,62]. x € [0,1], («,m) € [0,1]? and m € (0,1].

Convexity has a geometrical interpretation with various applications. In accordance
with these inequalities: if g : I — ¥ is a convex function on I over the real numbers and
01,60, € I with 87 < 6,, then

6>
01 + 0> 1 9(61) +a(62)
o(5 )sez_ele/g(%)d%sz. (1)

If g is a concave function, both sides of inequality are in reversed manner. We can see
that Hermite-Hadamard inequality come from Jensen’s inequality. Over the last few years,
Hermite-Hadamard inequalities for convex functions have gotten a lot of attention, and as
a result, there have been a number of refinements and generalizations.

The goal of this paper is to use the newly developed concept of g%-integral to in-
vestigate H-H inequality for («,m) convex functions. We also analyse how our outcomes
compare to similar outcomes in the literature.

2. Description of g-Calculus
We will consider as g € (0,1) throughout the whole article. In this part, we set up the
notation given below (see Ref. [5]):

n

1—¢q
1—¢g°

(], =

Jackson integral [3] of g was described by Jackson from 0 to 6, as follows:

6, o
[ o) g = (1= ) g"a(ear"), @
0 n=0

provided that the sum converges absolutely.
The Jackson integral [3] of a function g over the interval [0y, 6,] is as follows:

0 ) 0
/g(%) dgre = /9(%) dgs —./g(%) dgs .
61 0 0

Definition 3 ([18]). Let g : [01, 62] — R. The qg,-derivative of f at » € [0, 62] is defined as:
cont.

_9(0) — g+ (1 - q)00)

T-qG—o) 7™ ®
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Since g : [0, 03] — R, we can define
cont.
Dgg(61) = li D
6, qg( 1) %grf}l 6, qg(%)
The function g is said to be qq, -differentiable on [01,0,] if g, Dgg(5) exists Vi € [6q,65].
If we take 61 = 0 in (3), then we have Dgg() = Dgg(5¢), where Dgg(s) is a known

g-derivative of g at s« € [0,65] in (see Ref. [5]) given as:

Dgg(s) = W, 2 #0.

Definition 4 ([19]). Let g : [01, 62] — R. The q%-derivative of g at 3 € [01,0,] is given as:
cont.

2 (gt (1-9)6) — g
"Din() = i, — 59

Definition 5. Let g : [0, 0,] — R. The second q%2-derivative of g at » € [0y, 6, is given as:
cont.

(%), ¥ 75 92.

% D7 ()
= Gqu( gqug(%))

a(*>+ (1 - g)62) — ([2lg) (g + (1 - 9)62) + qa(>2)
(1—¢)%q(62 — »)°

Definition 6 ([18]). Ifg : [61,62] — R. Then, the qq,-definite integral on [0y, 0,] is defined as:
cont.

1
= (1=)(62=00) 1 ¢"a(g"02+ (1= 4")61) = (62— ) [ ol = )61+ x62) dyx
=0 0

In [20], researchers presented the gy, -Hermite-Hadamard inequalities for generalized
convex function in g-calculus:

Theorem 1. Let g : [01,62] — R is a convex differentiable function on [0, 0,], we have

q61 + 62 / q9(61) + 9(62)
g< 1+q) 92791 a(x) gdgx < s . 4)

For the both sides of the inequality (4), the authors defined specific boundaries
in [20,21]. In [19], Bermudo et al. proposed the following definitions and derived cor-
responding Hermite-Hadamard inequalities.

Definition 7 ([19]). Let g : [01, 62] — 3?, then q%2-definite integral on [0y, 6, is given as:
con
o 1
(1—9)(62—01) ) 4"a(q"01 + (1= 4")62) = (62— 1) [ a(xty + (1= 1)62) dyx
n=0 0

Theorem 2 ([19]). If g : [61,02] — R is convex and differentiable function on [61,65] , then
q-Hermite-Hadamard inequalities are given as follows:
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6>
01 + q92 1 ) g(91) + qg(92)
g( 2 )392—91/ 9(3) g < T or = ©)

where 0 < q < 1.
The following inequalities can be obtain from Theorems 1 and 2.

Corollary 1 ([19]). With the assumptions of Theorem 2, we have

) 0>
q91+92 91+q92 < 1 / / 0, <
o B2 ) oA ) < L] [aG) e + [ a() e < a00) +0(02) ©
61 61
and
0, + 0 1 i Vi (61) + 8(62)
1102 o g(b1) +9(02
< y) < 27 YVA)
g( : >_ 2(92_91){/9(}0 sy + [a() e }_ : )
o o
Theorem 3 (Holder’s inequality, Ref. [22] p. 604). Let sz > 0, p1 > 1. If ;—1 E = 1. Then

1 1
© “ 92
[ aGastaldge < ( [ClaGardye ) ([Tlsoo1 )

In recent years, many papers have been devoted to inequalities for quantum integrals.
For some of them, one can refer to [23-30].

3. Main Results

Now, we present some novel Hermite-Hadamard inequalities with the concept of
quantum integral.

Lemma 1. Let g : [01,0,] C R — R is a twice q%2-differentiable function on (61,0,) such that
92ng € C[61, 0] and integrable on [0y, 62], we have:

mb,
9(61) + qg(mb,) 1 mé,
! [Z]q 2 (mez_el) a/g(%) ) dq%
qZ(mgz _91)2 i 65 2
= T /K(l —qx) 2Dgg(k01 +m(1 —x)02)dgx. 8)

Proof. By using Definition 5, we have
“2DZg(xby + m(1 —x)6,)
= %D, (2D (9(x01 +m(1 ~x)65)) )

a(9%x01 + m(1 —xq%)6,) — (14 q)g(qxby + m(1 — qK)Gz) +qg(xb +m(1— K)Gz)
(1—q)*q(mby — 61)*x

Also,

/01 x(1 — gx) 92D§g(1{91 +m(1 —x)6) dgx )
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_ /1 a(9%x01 + m(1 —xq%)6;) — (14 9)g(qx61 + m(1 — gx)62) + qg(x6; + m(1 — K)Gz)d .
(1—q)*q(mb — 61)* !
- /1 a(9*k6; + m(1 —xq%)6,) — (14 q)a(qx6y + m(1 — gx)6,) + qga(x6; + m(1 — «)6,) I
o (1—0)%g(mé; — 6;)° "
and
/1 a(9%x01 + m(1 —xg%)62) — (14 9)a(qx6y + m(1 — qx)60;) + qg(x6; + m(1 — K)Gz)d i}
(1—9)%q(mb; — 61)° !
o 9(7"20 +m(1—q""2)6s) = 8(7" 101+ m(1—g""1)0,)
1- —(1-q)(1+
O L T e O T G
9(q"01 +m(1—q")0,)
n 10
7 nzo (1—9)%q(mb; — 6,7 o
i g(qn+201 + m(l _ qn+2)92 i n+191 + m(l _ anrl)gz)
i (1—q)q(méy —6;) =0 (1—q)g(my —6;)?
B 0 g(qn+161 + m(l _ n+1)02 =] g n91 4 m<1 _ qn)92>‘|
! [Z%) RSP i P e R
a(m) — g(g01 +m(1 - q)65) _ q[ g(m62) — a(61) ]
(1—q)q(mb, — 61)° (1—q)q(mb, — 61)
From (2) and Definition 7,
/1 ] [g(qzxel +m(1—xq%)62) — (14 q)g(qx61 + m(1 — gx)6) + qg(x6; + m(1 — K)Qz)]d .
0 (1— q)°q(m6; — 61)° !
oo qn+29(qn+291 + m(l _ qn+2)92)
- —q)(mb, — 6
ol -ame: o n;o (1 0)% (mby — )] o
anrl (qn+191 4 m(l _ qn+1)92)
- (1= 0, —
ad n n91 +m(1—q )92)
+g(1 — 0
1= ngo (1—0)%q(mé; — 6;)°
1
- { (1- q)2q3(m92 - 91)3
mos
(" atoe) e = (1= (62— 01)a(8r) — (1 = )t 61)qa(a0r + m(1 — ) )
1+ q My mo; _ _ _
(1) (mbr — 1) (/91 80) Mgz = (1= @)1+ ) (e 91)9(91))
1 b2 me, :|
2d
+ (1 _ q)z(mgz _ 61)3 /91 g(%) q%
_ 144 " ey 7 +q-1 oy 8961 +m(1—q)65)
el G M ot ey O et iy
Using (10) and (11) in (9), we have
/01 x(1 — gx) 92D§g(K91 +m(1—x)6r) dgx (12)
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_ g(mb) —g(gbr +m(1—q)62) l a(m) — g(61) ]
(1—q)q(mby — 6;)* (1—q)q(mby — 61)°

1+ mba 24g-1 01 +m(1—q)0
_ q32/‘ 9(56) "rdyre— — 11 29(91)+g(q1 ( q)%
(m — 61)7g> /61 (1—¢)q*(mby — 61) (1—9g)q(mb, — 61)
meo.
- 9(91)+q9(n2192) o 1+4g i / * §(50) "2, 5.
(m62 —61) q2 (m62 —91) q2 01

2
Multiplying both sides of (12) by W, we get required identity. O

Remark 1. By putting m = 1 and taking limit ¢ — 1~ in Lemma 1, we get
>

2 1
sl s 6/ () de = 2201 0/ k(1= ) g (k81 + (1 — K)65) d,

which is given in [31].

Theorem 4. If g : [01,6,] C R — R is a twice q*2-differentiable function on (6y,0,) such that
92D§g € Cl[0y,62] and integrable on [61,65], then we have following inequality, provided that

92D§g‘ is («, m) convex on [0y, 67]

mo;
9(91) _.[_21}7‘79(7’”92) _ mezli 91 é/ g(%) mGqu% (13)
g (my — 01)? [ [« + 3]y — gla+2]g 1o,
B 114 l [tx+g]q[a+2]q gk D39(91)‘
1 [ + 3], — gla + 2] !
+ m<[3]q[z]q N [“+g]q[a+2]q ‘7>|9 Dég(@z)l}.

Proof. Taking modulus on Lemma 1 and then using («,m) convexity of

GzDgg

obtain following

m92
g(61) +qg(mb) 1 / mo,
Ttq Y 9(5) "2dg
01
2 (mbs — 0% | 6,92
< TR icr - quy) 03000+ 1 - 00
0
6, —61) 1
< m1iq . /0 (1 - qx)) [* |2 D2g(61) | + m(1 — x*) 92D§9(92)qu'c
2
_ ‘7(”116:461[92[) 91‘/ “(1—gx) dK—f—mQZngBz’/ (1—x%) 1—‘1K))dK
2 2
_ g°(mby — 6y) [044‘3][4—‘1["“"2]61 0, 2
= T+q [+ 3] + 2], Dﬂw”’
1 [ac+3]q—q[o<+2}q>€ )
+ m — 2Dzg(62)]] -
([3]11[2}‘7 [“"‘3]47[“"‘2]'1 | ! (&)

Hence the theorem is proved. [
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Remark 2. By taking limit as ¢ — 1~ and « = m = 1 in Theorem 4, we get following Trape-
zoidal inequality:

1 /ng(%)d%— 9(91)+g(92)
0, — 04

< (62— 61)* [Ig”(f)l)l + 9" (62)]
0 2

- 12 2 !

which is given by Sarikaya and Aktan in [32], Proposition 2.

Example 1. Let consider the convex function g : [0,1] — R defined by g(><) = 3 and let m = }
and o« = 1. Under these assumptions, we have

m92 %
/g(%) mQqu% = /x3 %dq%
0 0
1 _ 00
= 5 L4qa-q"
n=0
i, s
o] [2, [Bl; [
Then the left hand side of the inequality (13) reduces to
(0 +aa(mty) 1}
g(61) +qo(méy) o
1+g mby — 6, 6/9(”) g
1

q_%_3+3_1H

82, 8| [, Bl M,

On the other hand, by Definition 5, we get
%D2g() = D2 = 2], (3], + [2], (3 - 3], )

Hence, we have

]| - 030 =2, - 4,

and
2D2g(6,)| = ['D2a(1)] = 32,

Therefore, the right hand side of the inequality (13) reduces to

g*(mby — 61)% | [« + 3]y — qla + 2],

1+¢g [ + 3] [a + 2], 92D§g(61)‘
. 1 _[a+3]q—q[¢x+2}q 6y 2
R (Cromiares rreson)) Dﬂ”ﬁﬂ
_ ¢ (1 a _
= ii+g) (mq thﬂx3 3l
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By the inequality (13), we have the inequality

2, "B, M,

One can see the validity of the inequality (14) in Figure 1.

CERE B, 9

q 1[1 3 3 1H<q2(2—q+2q2)

0.07

0.06 [

0.05 |

—— The left term
The right term

0.04
0.03 -
0.02 |

0.01

0

0 0.‘1 0.‘2 0.‘3 0.‘4 015 0.‘6 017 0.‘8 O.‘Q 1
Figure 1. An example to the inequality (13).
Theorem 5. Let g : [01,60,] C R — R is a twice q*-differentiable function on (01,6,) and

92D§g € C[by,0,] and integrable on [0, 65]. If
we have the following inequality:

92D§g‘m, p1 > 1,is (o, m) convex on [0, 6],

mGz

g(61) + gg(mob 1

O asnt) L [ e "
6

1

<

“D7g(61)

‘72(71192—91)2 <[0‘+3]q—¢1[¢x+2}q
(120)% 7 (13])7r \ [+ 3l +2]g

1 [ +3]g — gl + 2] 4, . 1
+ m<[3] - ’ q>|9D§9(92)|g> :

q12]4 [+ 3] [a + 2],

Proof. By applying modulus on Lemma 1 and applying Power mean inequality, we get

m92
9(61) + qg(mb,) 1 / by
- d
1+q mb, — 64 ; g(%) 7%
1

qz(m()z — 91)2

1
i /(K(l — ) = D2g(x61 + m(1 — 1)65) |dgx
0
g*(my — 61)* ( 1 g 6212 o1 g
S T 1+q </0 ((1— qK))qu) /(K(l —qx)) |?Dge(x6; + m(1 —x)62)| dgx | .
0

Applying («,m) convexity of | D; g ' @1, we have
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mGz
9(61) +qg(mb) 1 / m
1+ q mby — 61 P g(%) dq%
1
2 2 1 1-L
q-(mbp — 61) “1
< BT /O (x(1 — gx))dgx

1

92D§g(92) ‘@1} qu> o1

X </01(K(1 —gx)) {K“

2 RV -

£1
“D3g(0n)| " +m(1— )

o) 1
X 92D§g(91)‘“/0 k*(x(1 — qx))dgx +m

_ g(mb—6)° 1 \'"%
B 1+gq ([2]4[3%)

[« +3]5 — qla + 2]
X( [a+q3]q[a+z]q :

“D7g(6,)

“D7g(61)

o 1T w43l —qle+2]g 6,2 A\
- (mmq [ + 3], [+ 2] ) Dqng)'”) '

Hence we get required results. [

Remark 3. By taking m = « = 1 and then taking q — 1~ in Theorem 5, we get

6> 0y
61) +g(0 1 6, — 0 > L
9( 1) 29( 2) " /g(%)d% < ( 2 i) (’g//(91)|“+|g//(92)’p1)"1
270, 12.201

which is given by Ali et al. in [33].

Theorem 6. Let g : [61,602] C R — R is a twice q*-differentiable function on (61, 6) and 92D§g €
Cl[6y, 02] and integrable on [01, 05]. If

L+ L —1 then we have,

o1,
02 D%g‘ lis (a, m) convex on [0y, 62], for some 1 > 1 and

02 1

(61) +qa(m6>) "R

m
g\ 1—30;7 2 _mez_el /g(%)m(?qu%
61
s N

L P —0) L %D2g(0r)| " +m(la+ 1)y~ 1)|%=D2g(62)| ") ;

- 2

>~ 1+q (ul) [0(+1]q ’ ( )
where = (1—q) T (¢")" (1- ")

n

0

Proof. Take modulus on Lemma 1 and then, applying well-known Holder’s inequality,

we get
@) +ag(me) 1T
glb1) T qgimoz) by
1+q m92—919/g(%) dq%
1
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2 1
m92—91
14+gq / (1= qx))
0
1

s <(/ ) (]
0

92D2 g(x6; +m(1 —x)67) ’d K

2D2g(xk; +m(1— K)Qz)‘ 1d,ﬂ<> "

Since |%2 ng’ (a, m) convex, we have
@) +apmer) 1 f°
g\ glimos
1 -gl] B mb, — 91 / g(%) mequ%
01

1

1 ©
qz(mfj_—q 91)2 (/(K(l _ qK))mqu)
0

( /1(1 —K"‘)qu)g}l
’m

1

P1N\ o7

C Pmty — 0,)> ) “D2g(61)| +m(la+1]3—1)|"2D2g(62)| "
- 1+q ! [ +1] '

92D2g<92)

92ng(91)‘ /OK dgk +m

Using the fact that
1 &%
_ / 1 _ qK))md K = 1 _ 2 g)erl( qn+1)@2,
0 n=0

the required result can be obtained. O

Remark 4. By taking m = « = 1 and q — 17 in Theorem 6, we get

1
w = [0 )% = Bl + 1,021 1)
0

where B(,y) is Euler Beta function.
Inequality (15) reduces in following inequality

0>

(01) +9(62) 1
g(th 29 2 _92_919/9(%)01%

o (62— 61)*
="

1
|g//(91)‘91 + |g//( 2)'@1) 01

(Bon+ 1,0+ 1)% ( :

which is given by Ali et al. in [33].

Theorem 7. By using the assumptions of Theorem 6, following inequality holds

m92
g(6h) +qg(mo) 1 / b,
1+q miy — 9 g(>) "2dy (16)
1

1

< qz(mez - 91)2 1 m(

1
1\ o1
7

©
Us 92D§g(91)‘ ! +m us

“D7g(62)




Symmetry 2022, 14, 1394 11 of 13

where

[e.0) (e )

Uy = 2 n(a+1) ( /xn+l)p1 and uz = (1—q) Z 7"(1— q™a) (1 _ qixn+l)

=0 n=0

21

Proof. Applying modulus in Lemma 1 and also using well-known Hélder’s inequality,

we get
0(6) +qa(mby) 1 7 ) s
1+gq mey 6 J g 7
7 (mby — 61)*

1
T+q b/ 1—qK Gzng(Kgl +m(1—1< 92 ‘qu

1

2 2 (1 92, 1
q°(mb — 61) / 02 / ) o\
T+4 J k¥2d K ; (1—gx) dex | .

92D§g(K91 +m(1—x)b)

2
As |%2 D%g‘ lis (a, m) convex, we have
mf)z
9(01) + qg(mo; 1 :
( )1 qu( )  mby —6; / a(>) ’"9qu%
01

a1

5 2 1. ©2
< 1 (mb — 61) (/ Kmqu>
1+¢g
0
“(
1

7 (mby — 6;)? 1 2 (
T+g [p2+1],

One can easily see that

1
0 1 o1
K1(/0 ( —gx )531( Ka)qu)u

1
1 ) o1

p 1
921)59(61)‘ 1/()(1—(11("‘)’@11(”‘ dgx +m

%DZg(62)

DZg(62)

92D29(91)’/ +m us

1 00 >
Uy = /O (1- qK“)le“ dgk = (1—4q) Z qn(a—i-l) (1 _ q(ntx-&-l))“
n=0

and

Mg—/ (1—gx")1 (1 —x%)dgx = (1—¢q Z (1—q )(1fqom+l)m.

n=0

We get the required results. [

Remark 5. By takingm = « = 1and q — 17 in Theorem 7, we have

1
P ngd —
2 / T o+ (g1 +2)

and
1

1 +2

uz = /01(1 — %) (1 —x)dx =
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Moreover, the inequality (16) reduces to the following inequality

0>

g(6h) +g(62) 1 /
7 6, Hlé g(s0)dx

1

(6, — 61)° < 1
2(p1+1) \p1 +2

>” ((p1+2)|9"(61)]"" + |9”(92)’m)&'

4. Conclusions

The main findings of our study are designed to prove quantum Hermite-Hadamard
inequalities utilizing the idea of convex function to get improved outcomes. Furthermore,
we demonstrated that the newly discovered inequalities are strong generalizations of
similar findings in the literature. Adopting the novel approach, we extended the study of
Hermite-Hadamard type integral inequalities using Power-mean and Holder’s integral
inequalities. It is interesting to extend such findings for other convexities. We presume that
our newly announced concept will be the focus of much research in this fascinating field of
inequalities and analysis.
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